«Квантовый компьютер в сравнении с классическим — это атомная бомба в сравнении с калькулятором». Физик-теоретик Алексей Федоров — о значении квантового превосходства и роли российской науки в этой сфере
Почему о квантовых компьютерах говорят уже давно, а купить их мы до сих пор не можем? Как они будут взаимодействовать со слабым и сильным искусственным интеллектом и экологичны ли они? Что такое квантовое превосходство и чем оно похоже на магию Доктора Стрэнджа из «Мстителей»? Рассказывает Алексей Фёдоров, руководитель научной группы «Квантовые информационные технологии» Российского квантового центра, член научного совета Российского квантового центра, PhD.
— Вас назвали одним из главных конкурентов Илона Маска. Почему? Вы с ним работаете над разными научными задачами.
— Меня назвали не конкурентом, а одним из российских Илонов Масков. Я удивлен, что так много людей поняли это буквально. Конечно, это лишь аналогия, но, как мне кажется, она имеет право на жизнь. То, что сейчас происходит в квантовых технологиях, часто сравнивают с космической и ядерной гонкой, потому что в «квантах» заключен большой стратегический потенциал, в эту сферу вовлечено много людей; государства и частные компании заинтересованы в развитии технологий.
Но если говорить про общее между мной и Маском… Недавно я смотрел его старое интервью, там он сказал: «Я просто хочу сделать космические полеты доступными». Так вот, я и моя команда работаем над тем, чтобы квантовые технологии вышли за рамки академической области и превратились в целое поколение новых приборов и устройств, которое мы сможем использовать в ближайшее время. В этом смысле для меня работа Илона Маска — один из примеров того, как сложная технология может становиться всё более и более доступной, меняя тем самым наш мир.
— В какое ближайшее время? Россия ведь отстает в сфере квантовых технологий. В общем, когда нам, простым пользователям, ждать квантовые ноутбуки?
— Макбук и айфон, которые мы используем, в каком-то смысле являются квантовыми устройствами. Внутри них есть транзисторы, интегральные схемы, матрицы и другие механизмы, которые построены на принципах квантовой физики. Если бы в начале XX века квантовая физика не появилась, то таких приборов и технологий не было.
Что это за «квант»?
Квант – это не физический объект. В физике термин «квант» используется для описания наименьшей возможной части чего-либо. Это может быть «квант мощности», «квант времени» или «квант частицы». Следуя этому пути, мы придём к таким терминам, как «квантовая физика» и «квантовая механика», то есть к областям науки, имеющим дело с минимально возможными взаимодействиями или системами – на уровне атомов и даже отдельных кварков.
Мы подошли к кубиту (квантовому биту), то есть «наименьшей и неделимой единице квантовой информации». В то же время мы подходим к первой точке касания, которая говорит нам о сходствах и различиях в том, как классические компьютеры (с использованием битов) и квантовые компьютеры (с использованием кубитов) выполняют вычисления.
В классических компьютерах каждая часть информации хранится в виде последовательности нулей и единиц. Вкл/выкл – только такую информацию понимают и интерпретируют современные компьютеры, консоли, смартфоны, умные часы и умные телевизоры. То же самое и с операциями, выполняемыми с этой информацией. Просматриваем ли мы фотографии из отпуска, болтаем с друзьями в чате, играем в последнюю игру или выполняем сложные криптографические вычисления – всё происходит в двоичном формате, где либо 0, либо 1, и ничего больше.
Насколько неэффективна эта система, мы можем увидеть, когда подойдем к её пределам. И независимо от того, не хватает ли нам места на смартфоне для нового селфи или ученым приходится неделями создавать математические модели развития пандемии, вина кроется в том, что для этого нужно слишком много нулей и единиц, а места для их хранения и ресурсов для обработки не хватает.
Кубит решает эту проблему! Этот способ хранения информации использует свойства квантовой физики, которые позволяют ему оставаться в суперпозиции. Кубит может принимать любое значение от 0 до 1 – он обладает свойствами всего спектра и может составлять, например, 15 процентов в данный момент и 85 процентов – в следующий. Теоретически это позволяет хранить гораздо больше информации или ускорить вычисления, но также связано с множеством проблем, которые сложно контролировать и даже понять.
Ещё одна особенность квантовых компьютеров, которая позволяет дополнительно масштабировать вычислительную мощность – это использование квантовой запутанности. Это состояние, когда два кубита соединены друг с другом, и всякий раз, когда мы наблюдаем за одним из них, другой будет находиться в точно таком же состоянии. Запутанность позволяет группировать кубиты в ещё более эффективные единицы для записи и обработки информации.
Как делают кубиты и в чём сложность
Максимально упрощённо: чтобы получить рабочий кубит, нужно взять один атом, максимально его зафиксировать, оградить от посторонних излучений и связать с другим атомом специальной квантовой связью.
Чем больше таких кубитов связано между собой, тем менее стабильно они работают. Для достижения «квантового превосходства» над обычным компьютером нужно не менее 49 кубитов — а это очень неустойчивая система.
Основная сложность — декогеренция. Это когда много кубитов зависят друг от друга и на них может повлиять всё что угодно: космические лучи, радиация, колебания температуры и все остальные явления окружающего мира.
Такой «фазовый шум» — катастрофа для квантового компьютера, потому что он уничтожает суперпозицию и заставляет кубиты принимать ограниченные значения. Квантовый компьютер превращается в обычный — и очень медленный.
С декогеренцией можно бороться разными способами. Например, компания D-Wave, которая производит квантовые компьютеры, охлаждает атомы почти до абсолютного нуля, чтобы отсечь все внешние процессы. Поэтому они такие большие — почти всё место занимает защита для квантового процессора.
Квантовый процессор на девяти кубитах от Google
Чем квантовый компьютер превосходит обычный?
Принцип суперпозиции, при котором базовая единица информации может существовать более чем в одном состоянии одновременно, позволяет квантовому компьютеру хранить и обрабатывать одновременно гораздо больше данных, чем любому другому. При этом большими объемами данных можно управлять одновременно с помощью концепции, известной как квантовый параллелизм. Имея возможность вычислять и анализировать разные состояния данных одновременно, а не по одному, квантовые системы могут давать результаты с очень высокой скоростью.
Принцип суперпозиции, при котором базовая единица информации может существовать более чем в одном состоянии одновременно, позволяет квантовому компьютеру хранить и обрабатывать одновременно гораздо больше данных, чем любому другому.
Квантовые системы можно было бы применить для того, чтобы решить проблему коммивояжера — задачу, которая требует нахождения кратчайшего маршрута между множеством городов, прежде чем вернуться домой. А решение этой задачи позволило бы более грамотно выстраивать навигацию и планировать маршруты по всему миру, что удешевило бы и упростило перемещения людей и грузов. Подобного рода исследования уже проводит Volkswagen совместно с D-Wave и Google.
Квантовый компьютер способен обрабатывать огромные объемы финансовых, фармацевтических или климатологических данных, чтобы найти оптимальные решения проблем в этих отраслях.
Наконец, квантовые системы способны найти новые методы шифрования и легко взламывать даже самые сложные шифры.
IBM Quantum уже работает с клиентами над решением подобных проблем. Компания помогает разработать новое поколение электромобилей на технологии квантовых батарей с Daimler; технологию снижения выбросов углерода в атмосферу с помощью открытия экологичных материалов с ExxonMobil: ищет истоки зарождения Вселенной вместе с CERN. А Google использовала Sycamore для точного моделирования химической реакции.
Зачем нужен квантовый компьютер?
Этот исследовательский центр, расположенный в Йорктаун-Хайтс, немного похож на летающую тарелку, как и задумывалось в 1961 году. Он был спроектирован архитектором-неофутуристом Ээро Саариненом и построен во время расцвета IBM как создателя крупных мейнфреймов для бизнеса. IBM была крупнейшей компьютерной компанией в мире, и за десять лет строительства исследовательского центра она стала пятой крупнейшей компанией в мире, сразу после Ford и General Electric.
Хотя коридоры здания смотрят на деревню, дизайн таков, что ни в одном из офисов внутри нет окон. В одной из таких комнат и обнаружился Чарльз Беннет. Сейчас ему 70, у него большие белые бакенбарды, он носит черные носки с сандалиями и даже пенал с ручками. В окружении старых компьютерных мониторов, химических моделей и, неожиданно, небольшого диско-шара, он вспоминал рождение квантовых вычислений так, будто это было вчера.
Когда Беннетт присоединился к IBM в 1972 году, квантовой физике уже было полвека, но вычисления все еще полагались на классическую физику и математическую теорию информацию, которую Клод Шеннон разработал в MIT в 1950-х годах. Именно Шеннон определил количество информации числом «битов» (этот термин он популяризовал, но не изобрел), необходимых для ее хранения. Эти биты, 0 и 1 бинарного кода, легли в основу традиционных вычислений.
Спустя год после прибытия в Йорктаун-Хайтс Беннетт помог заложить основу для теории квантовой информации, которая бросила вызов предыдущей. Она использует причудливое поведение объектов в атомных масштабах. В таких масштабах частица может существовать в «суперпозиции» множества состояний (то есть в множестве позиций) одновременно. Две частицы также могут «запутываться», так что изменение состояния одной мгновенно отзывается на второй.
На вид это обычный вычислительный центр.
Беннетт и другие поняли, что некоторые виды вычислений, которые занимают слишком много времени или вообще невозможны, можно было бы эффективно проводить при помощи квантовых явлений. Квантовый компьютер хранит информацию в квантовых битах, или кубитах. Кубиты могут существовать в суперпозициях единиц и нулей (1 и 0), и запутанность и интерференцию можно использовать для поиска вычислительных решений в огромном числе состояний. Сравнивать квантовые и классические компьютеры не совсем правильно, но, выражаясь фигурально, квантовый компьютер с несколькими сотнями кубитов может производить больше вычислений одновременно, чем атомов в известной вселенной.
Подписывайтесь на наш канал в Яндекс Дзен. Там можно найти много всего интересного, чего нет даже на нашем сайте.
Летом 1981 года IBM и MIT организовали знаковое мероприятие под названием «Первая конференция по физике вычислений». Оно проходило в отеле Endicott House, особняке во французском стиле недалеко от кампуса MIT.
На фото, которое Беннетт сделал во время конференции, на лужайке можно увидеть некоторых из самых влиятельных фигур в истории вычислительной и квантовой физики, включая Конрада Зузе, который разработал первый программируемый компьютер, и Ричарда Фейнмана, внесшего важный вклад в квантовую теорию. Фейнман держал на конференции ключевую речь, в которой поднял идею использования квантовых эффектов для вычислений.
«Самый большой толчок квантовая теория информации получила от Фейнмана», говорит Беннетт. «Он сказал: природа квантовая, мать ее! Если мы хотим имитировать ее, нам понадобится квантовый компьютер».
Квантовый компьютер IBM — один из самых перспективных из всех существующих — расположен прямо по коридору от офиса Беннетта. Эта машина предназначена для создания и манипуляции важным элементом квантового компьютера: кубитами, которые хранят информацию.
Безграничное будущее квантовых компьютеров
Квантовые компьютеры обещают быть очень мощными вычислительными машинами, которые помогут решить много сложных проблем и, возможно, изменить весь мир. Сами ученые не могут представить, какие возможности они предоставят пользователям.
«В свое время глава IBM сказал, что не представляет сценарий, в котором обычному человеку понадобится доступ к компьютеру, – говорит Дас Сарма. – Сегодня в моей семье десять ПК. Квантовый компьютер сможет делать невероятные вещи, которые мы не можем предсказать сегодня».
Принципы работы квантового компьютера для чайников
Раз мы уж заговорили о квантовой физике, давайте немножко поговорим о ней. Я не буду углубляться в дебри друзья. Я ведь «чайник», а не квантовый физик. Лет сто назад Энштейн опубликовал свою теорию относительности. Все умные люди того времени удивлялись, как много в ней парадоксов и невероятных вещей. Так вот, все пародоксы Энштейна, описывающие законы нашего мира — просто невинный лепет пятилетнего ребенка по сравнению с тем, что твориться на уровне атомов и молекул.
Сами «квантовые физики», описывающие явления происходящие на уровнях электронов и молекул говорят примерно так: » Это невероятно. Этого не может быть. Но это так. Не спрашивайте нас, как это все работает. Мы не знаем, как и почему. Мы просто наблюдаем. Но это работает. Это доказано экспериментально. Вот формулы, зависимости и записи экспериментов.»
Так в чем же разница между обычным и квантовым компьютером? Ведь обычный компьютер тоже работает на электричестве, а электричество — это куча очень маленьких частиц — электронов?
Наши с Вами компьютеры работают по принципу или «Да» или «Нет». Если есть ток в проводе, это «Да»или «Единица». Если тока в проводе «Нет», то это «Ноль». Вариант значения «1 «и «0» есть единица хранения информации под названием «Бит».. Один байт это 8 бит и так далее и так далее…
Теперь представьте ваш процессор, на котором 800 миллионов таких «проводов» на каждом из которых за секунду появляется и исчезает такой вот «ноль» или «единица». И вы мысленно можете вообразить, как он обрабатывает информацию. Вы сейчас читаете текст, но на самом деле это совокупность нулей и единиц.
Путем перебора и вычислений Ваш компьютер обрабатывает Ваши запросы в Яндексе, ищет нужные до тех пор, пока не решит задачу и путем исключения не докопается до нужной Вам . Выводит на монитор шрифты, картинки в читаемом для нас виде… Пока надеюсь ничего сложного? А картинка — это тоже нули и единицы.
Представьте теперь себе друзья на секунду модель нашей солнечной системы. В центре Солнце, вокруг него летит Земля. Мы знаем, что она в определенный момент всегда находится в определенной точке пространства и через секунду она уже улетит на тридцать километров дальше.
Так вот, модель атома то же планетарная, там атом тоже вращается вокруг ядра. Но ДОКАЗАНО, друзья, умными парнями в очках, что атом в отличии от Земли одновременно и всегда находится во всех местах..Везде и нигде одновременно. И назвали они это замечательное явление «суперпозицией». Для того, чтобы познакомится поближе и другими явлениями квантовой физики, предлагаю глянуть научно-популярный фильм, где простым языком рассказывается о сложном и в довольно оригинальной форме.
Продолжим. И вот на смену «нашему» биту приходит квантовый бит. Его еще называют «Кубит». У него то же всего два исходных состояния «ноль» и «единица». Но, так как природа его «квантовая», то он может ОДНОВРЕМЕННО принимать все возможные промежуточные значения. И одновременно находиться в них. Теперь значения не надо последовательно вычислять, перебирать. долго искать в базе. Они известны уже заранее, сразу. Вычисления идут параллельно.
Первые «квантовые» алгоритмы для математических вычислений были придуманы еще математиком из Англии Питером Шором в 1997 году. Когда он показал их миру, все шифровальщики здорово напряглись, так как существующие шифры «раскалываются» этим алгоритмом за несколько минут.. Вот только компьютеров, работающих по квантовому алгоритму тогда еще не было.
С тех пор с одной стороны идет работа по созданию физической системы, в которой бы работал квантовый бит. То есть «железа». А с другой стороны уже придумывают защиту от квантового взлома и расшифровки данных.
А что сейчас ? А вот так выглядит квантовый процессор под микроскопом на 9 кубит от фирмы Google.
Неужели они нас обогнали? 9 кубит или по «старому» 15 бит, это не так много пока еще. Плюс дороговизна, масса технических проблем и короткое время «жизни» квантов. Но вспомните что сначала были 8 битные, потом появились 16 битные процессоры… Так будет и с этими …
Последние достижения в области квантовых вычислений
Ученые из Университета Нового Южного Уэльса разработали первый квантовый логический элемент в кремнии в 2015 году. В том же году НАСА представило первый операционный квантовый компьютер, созданный D-Wave, стоимостью 15 миллионов долларов.
В 2016 году исследователи из Университета Мэриленда успешно создали первый перепрограммируемый квантовый компьютер. Два месяца спустя Базельский университет определил вариант квантовой машины на основе электронных дырок, которая использует электронные дыры (вместо того, чтобы манипулировать электронными спинами) в полупроводнике при низких температурах, которые гораздо менее уязвимы для декогеренции.
Еще несколько интересных фактов и открытий
12. Квантовые вычисления впервые были упомянуты Ричардом Фейнманом в 1959 году в его знаменитой лекции «Внизу много места». Он рассматривал возможность манипулирования отдельными атомами как расширенную форму синтетической химии.
13. Первый в мире протокол распространения квантовых ключей, BB84, был разработан исследователями IBM Джиллис Брассард и Чарльзом Беннеттом в 1984 году. Это метод безопасной отправки секретного ключа из одной точки в другую для использования в одноразовом шифровании с использованием клавиатуры.
14. В феврале 2018 года физики придумали новую форму света, включающую трифотонные связанные состояния в квантовой нелинейной среде, которая могла бы привести к революции квантовых вычислений.
15. В марте 2018 года Лаборатория квантового искусственного интеллекта, управляемая Ассоциацией космических исследований университетов, НАСА и Google, выпустила 72-битный процессор под названием Bristlecone.
16. Реалистичная модель квантовых вычислений работает на квантовых алгоритмах, которые могут быть классифицированы по типу задачи, которую они решают, или технике/идеям, которые они используют. В настоящее время у нас есть алгоритмы, основанные на усилении амплитуды, квантовом преобразовании Фурье и гибридных квантовых алгоритмах.
17. В настоящее время рассматривается несколько различных кандидатов на физическую реализацию квантовой машины. Среди них самыми популярными являются —
- Спиновая и пространственная квантовая точка
- Квантовый компьютер на алмазной основе
- Полость квантовая электродинамика
- Молекулярный магнит
18. До сих пор 5 компаний производили квантовые чипы — Google (Bristlecone), IBM (IBM Experience and Q), Intel (Tangle Lake), Rigetti (19Q) и D-Wave (Ranier).