Квантовые компьютеры — что это такое? Принцип работы и фото квантового компьютера

Почему так сложно создать квантовый компьютер? С белорусским физиком объясняем технологию будущего

Изобретению квантовых компьютеров частенько предсказывают прорыв, аналогичный прорывам при изобретении колеса, покорении огня или создании хорошо знакомых нам компьютеров. Но пока с этой задачей в полном масштабе никто справиться не сумел. В чем же основная загвоздка и зачем нам квантовые компьютеры? Сегодня Onliner.by объясняет суть компьютеров будущего, а помогает нам в этом заместитель заведующего Центром квантовой оптики и информатики Института физики НАН Беларуси член-корреспондент Дмитрий Могилевцев.

Зачем вести разработки по созданию квантовых компьютеров? Чем нас не устраивают нынешние, которые постоянно прогрессируют в своей мощности? Теоретически квантовые компьютеры способны быстро решать задачи, на которые даже у суперкомпьютеров уйдут тысячелетия.

— Но есть нюанс. Пока квантовый компьютер дает выгоду только для определенного круга задач. Сейчас они и строятся под такие задачи. Поиск дающих выгоду квантовых алгоритмов — это сама по себе отдельная дисциплина, — рассказывает Дмитрий Могилевцев. — Бум квантовых компьютеров начался с того, что американец Питер Шор предложил с их помощью решать очень важную с практической точки зрения задачу факторизации. Она имеет огромное значение в криптографии.

Перемножить целые числа — это просто, а вот узнать, на какие простые множители разлагается число — крайне трудная задача для классического компьютера. 15 факторизуется на простые числа 3 и 5. Но что если число очень большое и состоит из тысяч цифр?

В теории на классическом компьютере такую задачу разрешить можно, однако на практике это потребует много времени. Увеличивается число — временны́е затраты возрастают по экспоненте и быстро выходят на времена, сравнимые с возрастом Вселенной. А алгоритм Шора, используя возможности квантовых компьютеров, способен произвести факторизацию за время, не намного превосходящее время умножения целых чисел.

Например, современный суперкомпьютер, позволяющий делать более десяти в пятнадцатой степени операций в секунду, разложил бы число с пятьюстами знаками за 5 млрд лет. Квантовый компьютер со скоростью всего миллион операций в секунду решил бы ту же задачу за 18 секунд.

Так как факторизация лежит в основе всей современной криптографии, изобретение эффективных квантовых компьютеров поставит под угрозу большинство активно используемых ныне методов шифрования данных. Ведь вся информация, которая нынче передается через сеть, подвергается шифрованию — банковские транзакции, секретная переписка в соцсетях и прочее. Квантовый компьютер сможет подобрать код для расшифровки этих данных в мгновение ока. И тогда не останется ничего тайного.

— Правда, надолго ли — это еще вопрос. Уже сейчас ведутся работы над постквантовым шифрованием, устойчивым к подобному взлому. Хотя эффективность таких систем криптографии пока еще много хуже традиционных.

А еще квантовые компьютеры могут быть очень полезными для моделирования динамики сложных квантовых систем. Именно в этом еще в начале 80-х годов прошлого века видел их выгоду знаменитый физик, лауреат Нобелевской премии Ричард Фейнман. Кстати, сама идея квантовых вычислений предложена известным советским математиком Юрием Маниным в 1980 году.

Принцип работы квантового компьютера

Чтобы понимать, как работает новый процессор, необходимо иметь хотя бы поверхностные знания принципов квантовой механики. Нет смысла приводить здесь математические раскладки и выводить формулы. Обывателю достаточно ознакомиться с тремя отличительными особенностями квантовой механики:

  • Состояние или положение частицы определяется только с какой-либо долей вероятности.
  • Если частица может иметь несколько состояний, то она и находится сразу во всех возможных состояниях. Это принцип суперпозиции.
  • Процесс измерения состояния частицы приводит к исчезновению суперпозиции. Характерно, что полученное измерением знание о состоянии частицы отличается от реального состояния частицы до проведения замеров.

С точки зрения здравого смысла – полная бессмыслица. В нашем обычном мире эти принципы можно представить следующим образом: дверь в комнату закрыта, и в то же время открыта. Закрыта и открыта одновременно.

что такое квантовые компьютеры

В этом и заключено разительное отличие вычислений. Обычный процессор оперирует в своих действиях бинарным кодом. Компьютерные биты могут находиться только в одном состоянии – иметь логическое значение 0 или 1. Квантовые компьютеры оперируют кубитами, которые могут иметь логическое значение 0, 1, 0 и 1 сразу. Для решения определённых задач они будут иметь многомиллионное преимущество по сравнению с традиционными вычислительными машинами. Сегодня уже есть десятки описаний алгоритмов работы. Программисты создают особый программный код, который сможет работать по новым принципам вычислений.

Молекулярное моделирование

Другим примером служит точное моделирование молекулярных взаимодействий, нахождение оптимальных конфигураций для химических реакций. Такая «квантовая химия» настолько сложна, что сегодняшние компьютеры могут анализировать только простейшие молекулы.

Химические реакции — квантовые по своей природе, поскольку они образуют сильно запутанные квантовые суперпозиционные состояния. Но квантовые компьютеры не будут испытывать трудностей с оценкой даже самых сложных процессов.

Google уже совершила прорыв в эту область, имитируя энергию молекул водорода. В результате были получены более эффективные продукты — от солнечных элементов до фармацевтических препаратов, — и в особенности это повлияло на производство удобрений. Поскольку на производство удобрений уходит 2% мировой энергии, последствия для энергетики и окружающей среды будут значительными.

Направление 1. Моделирование сложных физических систем

Впервые о квантовых компьютерах в начале 80-х заговорил известный американский физик Ричард Фейнман. Его идея была предельно проста: подобное понимается через подобное. Исследователям все чаще были нужны не просто теоретические расчеты квантовых систем, но и моделирование их поведения, которое невозможно осуществить на обычном компьютере за какое-нибудь разумное время. Ведь если одна квантовая частица может находиться одновременно в двух состояниях (0 и 1), то система из двух частиц — уже в четырех (00, 01, 10, 11), из трех — в восьми (000, 001, …, 111) и т. д.

Получается, для моделирования системы, скажем, из 10 электронов нужно сразу 1024 (2 = 1024) параллельно вычисляющих процессора, поскольку изменение состояния каждого электрона может эффектом домино моментально отразиться и на всех остальных частицах (одни комбинации нулей и единичек станут более вероятными, другие — менее), а обычный кремниевый процессор не умеет менять состояние сразу двух битов.

Впрочем, ощутимых практических успехов в области моделирования пока не добились. Но зато уже понятно, что идеальный квантовый компьютер, будь он построен, по своей вычислительной мощности превзойдет самые мощные современные машины. Ведь тот же 512-кубитовый чип — это 2 параллельно 10 512 работающих процессоров. Для сравнения: количество элементарных частиц во всей Вселенной, по оценкам ученых, не превышает 2 . Так что если даже каждая из них вдруг станет обычным цифровым процессором в огромном компьютере, D-Wave все равно решит свое судоку быстрее этой невообразимой махины.

С какими сложностями столкнулись ученые

Решить, какие из квантовых объектов наиболее целесообразно использовать для новых технологий, чтобы они выступали в роли кубитов, ученые пока что еще не смогли. Они рассматривают варианты с фотонами, электронами и другими частицами. Другая проблема заключается в нестабильности кубитов. Для контроля за этими частицами нужно очень мощное охлаждение.

квантовый компьютер

Принцип работы квантового компьютера

Давайте вернемся к нашей задачке про трех людей и две машины и рассмотрим ее с точки зрения квантового компьютера:

Для решения подобной системы нам понадобится компьютер с 3 кубитами.

Помните, что классический компьютер должен был пройти все варианты один за одним? Так вот поскольку кубиты одновременно имеют состояния «1» и «0», то и пройти через все варианты он сможет, фактически одновременно!

Знаю, что прозвучит максимально странно, но представьте, что в данной ситуации наши три кубита создают 8 различных параллельных миров, в каждом из которых существует одно решение, а потом они все собираются в один! Реально «Мстители» какие-то!

Но что же получается? Он выдает все варианты сразу, а как получить правильный?

Для этого существуют специальные математические операторы, например оператор Грувера, который позволяет нам определять правильные результаты вычислений квантовых систем! Это специальная функция, которая среди всех возможных вариантов находит нужный нам.

Помните задачку про 100 человек в 2 автобуса, которую не смогли бы решить все современные компьютеры вместе взятые? Для квантового компьютера со 100 кубитами эта задачка все равно что семечку щелкнуть! То есть компьютер находится одновременно в 2 в 100 степени состояний, а именно:

1,267,650,600,228,229,401,496,703,205,376 — вот столько состояний одновременно! Столько параллельных миров!

Думаете, что всё это звучит слишком хорошо, чтобы быть правдой? Да, вы правы. Есть куча нюансов и ограничений. Например, ошибка. Проблема в том, что кубиты, в отличие от обычных битов, не определены строго.

У них есть определенная вероятность нахождения в состоянии 1 или 0. Поэтому есть вероятность ошибки и чем больше кубитов в системе, тем больше суммарная вероятность, что система выдаст неправильный ответ. Поэтому зачастую надо провести несколько расчетов одной и той же задачи, чтобы получить верный ответ.

Ну то есть как верный? Он всегда будет содержать в себе минимальную возможность ошибки вследствие своей сложной квантовой природы, но ее можно сделать ничтожно малой, просто прогнав вычисления множество раз!

Вероятность создания квантового ПК

Сравнение с классическим

Кубит не построить из нескольких частиц, а в нужном состоянии могут находиться только атомы. По умолчанию эти множественные частицы неурегулированные. Китайские и канадские ученые пытались использовать для разработки компьютера чипы на фотонах, но исследования не увенчались успехом.

Существующие типы квантовых ПК:

  • в полупроводниковых кремниевых кристаллах;
  • на электронах в полупроводниковых квантовых точках;
  • в микрорезонаторах на одиночных атомах;
  • на линейных оптических элементах;
  • на ионах в одномерном кристалле в ловушке Пауля.

Квантовые вычисления предполагают последовательность операций, которые совершаются с одним или несколькими кубитами, что вызывает изменения всей системы. Задача – выбрать из всех ее состояний правильное, дающее результат вычислений. Может быть сколь угодно много состояний, максимально приближенных к истинному.

История создания

Для полноценного квантового ПК нужны значительные достижения в физике. Программирование должно отличаться от существующего сейчас. Квантовые вычислительные устройства не смогут решить задачи, которые не под силу обычным, но ускорят решения тех, с которыми справляются.

Последним по времени прорывом стало создание процессора Bristlecone корпорацией Google. Весной 2018 года компания опубликовала заявление про получение 72-кубитного процессора, но его принципы работы не проафишировала. Считается, что для достижения «квантового превосходства», когда ПК начинает превосходить обычный, потребуется 49 кубитов. Google добилась выполнения условия, но вероятность погрешности вычислений (0,6 %) осталась выше требуемого.

1998

Исследователям из Массачусетского технологического института удалось впервые распределить один кубит между тремя ядерными спинами в каждой молекуле жидкого аланина или молекулы трихлороэтилена. Такое распределение позволило использовать «запутанность» для неразрушающего анализа квантовой информации.

В марте ученые из Национальной лаборатории в Лос Аламосе объявили о создании 7-кубитного квантового компьютера в одной единственной капле жидкости.

Принцип работы КК

Привычная схема работы компьютеров, ноутбуков, смартфонов или планшетов, использующая цифровой принцип, базируется на использовании классических алгоритмов, что кардинально отличается от принципа действия квантового компьютера. Так, обычный компьютер покажет одинаковый результат вне зависимости от того, сколько раз запустить вычисление, варианты просчитываются последовательно.

Принцип работы КК

Квантовый компьютер использует совершенно иной – вероятностный принцип работы. В определённом смысле система уже содержит все возможные варианты решений. Результат вычислений – это наиболее вероятностный ответ, а не однозначный, при этом при каждом последующем запуске квантового алгоритма вероятность получения правильного ответа растёт, а значит, спустя 3–4 быстрых прогона можно быть уверенным, что мы пришли к верному решению, например, ключу шифрования.

В квантовых системах, применяющих в своей работе кубиты, с ростом числа частиц растёт в геометрической прогрессии и количество обрабатываемых одновременно значений.

Говоря о том, как работает квантовый компьютер, стоит упомянуть и о связи кубитов. При наличии нескольких кубитов в системе изменение одного повлечёт также изменение остальных частиц. Вычислительная мощность достигается путём параллельных расчётов.

Несмотря на многомиллионные вложения, развиваются квантовые технологии достаточно медленно. Это связано с большим количеством трудностей, с которыми пришлось столкнуться учёным в процессе исследований, включая необходимость построения низкотемпературных саркофагов с максимальной изоляцией камеры с процессором от любых возможных внешних воздействий для сохранения квантовых свойств системы. Кроме того, перед исследователями стоит задача по решению ошибок, поскольку квантовые процессы и вычисления имеют вероятностную природу и не могут быть стопроцентно верными.

Построение стабильных систем к тому же далеко от идеала, а при реализации квантового компьютера на физическом уровне применяется несколько вариантов решений с использованием разных технологий. Так что создание полноценного универсального квантового компьютера всё ещё в будущем, хоть и не таком далёком, как казалось ещё пять лет назад. Его созданием занимаются крупнейшие компании, такие как IBM, Google, Intel, Microsoft, внёсшие большой вклад в развитие технологий, а также некоторые государства, для которых данный вопрос имеет стратегическое значение.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector