Кто умнее, человек или компьютер? Раунд 9: Опасность – Новости 2021
Такие понятия как “BIG data”, искусственный интеллект уже никого не удивляют. А практически, мы уже привыкли к Siri, Алисе и “OK, COOGLE”. Пылесосы ползают по квартире и все такое. Может пора уже начать бояться появления Терминатора? Шутка. А если серьезно, скоро догонит компьютер человека? Есть вещи которые не сопоставимы, их нельзя измерить числами. Например если к двум ноздрям прибавить три яблока – будет пять, вот только чего пять? Ха-ха. С каждым годом компьютеры совершенствуются, и не столько железо, а вот софт не стоит на месте. Такие понятия как “BIG data”, искусственный интеллект уже никого не удивляют. А практически, мы … Читать далее
Продвинутые шахматные программы могут всего за доли секунды рассчитать все возможные игровые комбинации и выстроить наиболее удачную стратегию. Что касается людей, то при выполнении подобных задач мы ошибаемся гораздо чаще.
Компьютеры имеют и другие преимущества. Их память надежнее, она вмещает огромное количество информации.
Вообще-то, честно говоря, человеческая память вмещает в себя несравненно намного больше информации, чем любой компьютер, но она так устроена, что далеко не вся запрятанная в ней информация может быть использована в нужный момент.
А вот компьютеры не страдают таким недостатком, и в любой момент готовы использовать всю заложенную в их память информацию.
Если не принимать во внимание возможные баги (ошибки) и системные сбои, компьютерные расчеты характеризуются высокой степенью точностью.
Всегда ли эффективен тест Тьюринга
Но обо всем по порядку. В главе 1 “Общая история искусственного интеллекта” описываются ключевые достижения, произошедшие с середины 20-го века, которые в некотором роде приблизили нас к созданию интеллектуальных систем. В главе 2 узнаем чуть больше, а именно подходы к определению уровня интеллекта. Если вы не слышали ни о чем, кроме теста Тьюринга, то здесь вы найдете для себя кое-что любопытное.
Тьюринг задался целью определить, может ли машина мыслить.
Стандартная интерпретация этого теста звучит следующим образом: «Человек взаимодействует с одним компьютером и одним человеком. На основании ответов на вопросы он должен определить, с кем он разговаривает: с человеком или компьютерной программой. Задача компьютерной программы — ввести человека в заблуждение, заставив сделать неверный выбор».
Все участники теста не видят друг друга. Если судья не может сказать определенно, кто из собеседников является человеком, то считается, что машина прошла тест. Чтобы протестировать именно интеллект машины, а не её возможность распознавать устную речь, беседа ведется в режиме «только текст», например, с помощью клавиатуры и экрана (компьютера-посредника). Переписка должна производиться через контролируемые промежутки времени, чтобы судья не мог делать заключения, исходя из скорости ответов. Во времена Тьюринга компьютеры реагировали медленнее человека. Сейчас это правило тоже необходимо, потому что они реагируют гораздо быстрее, чем человек.
Или вас не оставит чтение равнодушным, если вы уверены, что текущие решения уже проходят тест Тьюринга или еще не проходят, потому что на самом деле этот тест — только обобщение, а конкретные “реализации” могут быть разные, что в книге также раскрывается.
Представлен хороший обзор различных подходов (отличных от теста Тьюринга) и приведены их положительные и отрицательные стороны. Вывод такой, что привычные нам тесты, в том числе и тест на IQ, могут решаться узкими подходами или их комбинацией, а оценка AGI требует своего пути, но все наработки в этой области пока более теоретические, чем практические. В книге в том числе приводится пример, как тест Тьюринга проходился программой (Eugene Goostman) вообще без применения искусственного интеллекта, а лишь с использованием комбинации широкого дерева диалогов и ухода от тех вопросов, которые в дереве не прописаны: собеседник позиционировал себя как украинский мальчик, плохо говорящий на английском языке, т.е. защищал себя от сложных вопросов сразу и возрастом и незнанием языка. Но даже с использованием технологий искусственного интеллекта, создается впечатление, что для каждой отдельной реализации теста найдется узкоспециализированный подход, который этот тест решит. Возможным решением видится только создание второго AGI, который бы мог на ходу сам придумывать тесты для проверки первого AGI. Или же проверять его интуитивно, основываясь на нашем человеческом опыте.
Подходы к созданию искусственного интеллекта
В первую очередь следует выделить общий подход к созданию искусственного интеллекта, который предполагает, что он будет способен к проявлению поведения, которое не будет отличаться от человеческого. Кстати, представленную идею можно назвать обобщением подхода теста Тьюринга, согласно которому машину можно считать разумной тогда, когда она будет в состоянии вести беседу с обычным человеком, и он не сможет отличить её от другого человека, при условии, что беседа идёт в письменной форме.
Второй подход принадлежит писателям-фантастам. Он говорит о том, что искусственный интеллект появится тогда, когда машина сможет творить и чувствовать. Но этот подход не способен выдержать критики, если рассмотреть его более детально. Например, создать машину, которая будет производить оценку каких-либо параметров внутренней или внешней среды и как-то реагировать на них, по большому счёту, не сложно. Учитывая то, что датчики будут реагировать на определённые раздражители, про такой механизм уже можно сказать, что у него есть «чувства».
Третий поход называется символьным. По сути, именно он был изначально свойственен эпохе цифровых машин. После того как был создан первый язык символьных вычислений, разработчики стали уверены, что есть шанс и практической реализации искусственного интеллекта с помощью технологии символьных вычислений, благодаря чему стало бы возможным иметь дело со слабоформализованными смыслами и представлениями.
Был и логический подход к созданию искусственного интеллекта, основанный на моделировании рассуждений, и главным козырем которого являлась логика. Но с 90-х годов прошлого века начал развиваться агентно-ориентированный подход, основанный на применении интеллектуальных агентов и предполагающий, что интеллект является конкретно вычислительной составляющей потенциала машины достигать поставленные перед ней цели.
А в итоге появился гибридный подход, главная идея которого заключается в том, что только комплексное использование символьных и нейронных моделей поможет достичь полноценного спектра вычислительных и когнитивных возможностей. К примеру, нейронные сети могут генерировать экспертные правила рассуждений, а посредством статистического обучения можно сформировать порождающие правила.
Теперь же вернёмся к тесту Алана Тьюринга.
Игровые боты
В некоторых онлайн-играх ресурсы для прокачки персонажей даются только за длительное выполнение рутинных действий/либо за деньги. Иногда дешевле купить/написать бота, чем ускорять прохождение уровней стандартными способами.
Продажа игровых ботов — масштабный бизнес. К примеру, одна копия бота для World of Warcraft Honor Buddy стоит $25, столько же придется отдать за Tank Leader для World of Tanks. А ведь в эти игры играют сотни миллионов игроков по всему миру!
Отдельно стоит упомянуть программы для автоматизации игры в покер. Стоимость одной копии такой программы, к примеру WarBot, может достигать $100 и выше. Карточные боты никогда не тильтуют и четко следуют стратегии, но за их использование аккаунт игрока могут забанить.
Что описывают стандарты IEEE о искусственном интеллекте?
Один из стандартов, IEEE P7004, описывает правила сертификации и контроля тех организаций и систем, которые обрабатывают данные о детях и студентах. IEEE P7005 регулирует работу с данными о наемных работниках.
При его соблюдении ИИ и организации, работающие с данными, обязаны действовать, основываясь на безопасности и благополучии — даже с теми, что находятся в свободном доступе. Так же IEEE описала обязательные нормы, которым должны соответствовать доступ, сбор, хранение, использование, совместное использование и уничтожение данных о детях и учащихся.
Третий стандарт IEEE P7006 описывает для создание и контроль работы персонализированных ИИ-агентов — посредников в принятиях решений между несколькими компьютерами или системами. Методология разработки и технические элементы, заложенные в стандарте, должны исключить любые проблемы в работе интеллектуального аппарата.
Цифровая телепатия: как искусственный интеллект учится читать мысли человека
Чтобы поразить мир, необязательно строить огромную лабораторию, начиненную тоннами гудящего железа. В системном блоке компьютера живет, развивается, крепнет искусственный интеллект, нейросеть, у которой одна задача научиться копировать любой голос. Нужно ей для этого всего ничего.
Владимир Свешников, генеральный директор компании: «Несколько часов примеров голоса, то есть это аудио, и к аудио прилагается текст. Загружается текст, ставится задача синтезировать голос. Нейросеть это запоминает, как ребенок».
Характерные речевые особенности программа улавливает так, что невооруженным ухом от оригинала не отличишь. Как доверять телефонам, когда эта машина научится говорить не как сейчас, по заранее написанному, а считывая мысли в реальном времени и подменяя голос?
Существуют риски для бизнеса, ведь можно обрушить акции компании, опубликовав фальшивую запись. Ученые в сфере искусственного интеллекта должны относиться ответственно к своим разработкам, а общество задуматься о контроле над ними. Это может показаться фантастическим бредом, но совсем скоро хитроумные программы действительно будут управляться одной лишь силой мысли. Великий мечтатель и фанат самых дерзких разработок Илон Маск презентовал крохотный имплант для мозга.
Илон Маск, изобретатель, Основатель компании SpaceX: «Это может звучать странно, но мы пытаемся достичь некого симбиоза между человеческим и искусственным интеллектом. Первый такой чип мы планируем внедрить человеку уже в следующем году, так что ждать осталось недолго».
Количество сторонников идеи чипирования растет по экспоненте, чип в голове может стать таким же привычным аксессуаром, как смартфон. И тогда эта технология действительно срастит искусственный интеллект с человеческим разумом. Именно об этом грезит Маск чтобы в перспективе любую информацию загружать прямо в мозг, как в компьютер, учить языки за считаные часы, а то и минуты, и даже передавать друг другу мысли.
Известный телепат Лиор Сушард развлекает публику в эфире вечернего шоу. Многие, наверное, скажут: шарлатан. Но прежде чем говорить о том, можно ли с помощью машин читать мысли, надо разобраться, что такое телепатия. В прямом эфире НТВ провели эксперимент с участием телезрителей. Их попросили максимально быстро отвечать на вопросы. Сначала нужно было решать в уме примеры, а затем быстро загадать инструмент и цвет. Большинство гостей в студии подумали про «красный молоток». Никто не залезал к ним в голову. Это никакая не телепатия, а психология: людей отвлекали вычислениями, они теряли бдительность и выбирали первое, что приходило в голову. По статистике, чаще всего это именно красный цвет и именно молоток, который знаком всем с детства. Иллюзионист Лиор Сушард, у которого трюки гораздо сложнее, признается, что его «магия» тоже строится исключительно на науке.
Читать еще: Украшение рамки своими руками. Рамки для фото своими руками. Рамка, окутанная нитью. Рамки из картонных туб и втулок от туалетной бумаги
Лиор Сушард, иллюзионист: «Я использую пять своих чувств чтобы создать шестое чувство. Здесь очень много техник, начиная с психологии и заканчивая языком тела».
Искусственный интеллект читает мысли людей примерно по тому же принципу. Доказательством может служить применяемая в реабилитационном центре технология, которая помогает людям писать силой мысли, без рук. Нужно расслабиться и концентрироваться на определенной букве, цифре, символе. Компьютер понимает, что пользователь хочет набрать. Сегодня это окно в мир для потерявших способность двигаться. Если технологию усовершенствовать, она пригодится любому.
Алеся Чичинкина, PR-директор компании-разработчика : «Нейронет это то, что должно заменить интернет к 2035 году, когда исчезнут посредники между нашим мозгом и тем, что мы хотим сделать, напечатать ли, дать ли команду какому-то устройству».
Крупный автопроизводитель презентовал программу, которая предугадывает желания водителей.
Люсиан Джордж, старший исследователь в области инноваций: «Программа фиксирует очень четкие сигналы, которые появляются в нашем мозгу, когда мы что-то хотим сделать и когда, наоборот, чего-то не хотим».
Эта технология будет выигрывать водителю драгоценные секунды и предотвращать аварии. Почему же люди боятся слияния с искусственным интеллектом? Оказывается, подвох есть.
Томас Риардон, генеральный директор компании-разработчика технологии управления компьютера мыслями: «Самая мощная идея, которую мы имеем, что искусственный интеллект может доминировать над нами и нашими собственными нейронными сетями».
Уже скоро людям предстоит жить в мире, в котором правду о себе будет скрыть невозможно, а любая бездушная машина сможет читать мысли.
1960-е: Исследования в МГУ и Академии наук СССР
В СССР работы в области искусственного интеллекта начались в 1960-х годах. В Московском университете и Академии наук был выполнен ряд пионерских исследований, возглавленных Вениамином Пушкиным и Д. А. Поспеловым.
В 1964 году была опубликована работа ленинградского логика Сергея Маслова «Обратный метод установления выводимости в классическом исчислении предикатов», в которой впервые предлагался метод автоматического поиска доказательства теорем в исчислении предикатов.
В 1966 году В. Ф. Турчиным был разработан язык рекурсивных функций Рефал.
Пишите комментарии
Какие еще видео можно добавить в эту статью? Оставляйте свои комментарии со ссылками на научные источники и исследования этой проблемы ниже… Будем рады вашей помощи в объективном исследовании этого вопроса.
Если вы заметили ошибку или опечатку в тексте, выделите ее курсором и нажмите Ctrl + Enter
Не понравилась статья? Напиши нам, почему, и мы постараемся сделать наши материалы лучше!