Кодирование информации

Информатика 9 класс

Представление информации происходит в различных формах в процессе восприятия окружающей среды живыми организмами и человеком, в процессах обмена информацией между человеком и человеком, человеком и компьютером, компьютером и компьютером и так далее.

Код – это система условных знаков для представления информации.

Кодирование – процесс представления информации в виде кода.

Средством кодирования служит таблица соответствия знаковых систем, которая устанавливает взаимно однозначное соответствие между знаками или группами знаков двух различных знаковых систем.

В процессе обмена информацией часто приходится производить операции кодирования и декодирования информации. При вводе знака алфавита в компьютер путем нажатия соответствующей клавиши на клавиатуре происходит кодирование знака, то есть преобразование его в компьютерный код. При выводе знака на экран монитора или принтер происходит обратный процесс — декодирование, когда из компьютерного кода знак преобразуется в его графическое изображение.

Двоичное кодирование информации:
В компьютере для представления информации используется двоичное кодирование, так как удалось создать надежно работающие технические устройства, которые могут со стопроцентной надежностью сохранять и распознавать не более двух различных состояний (намагничено — ненамагничено, включено — выключено, есть сигнал — нет сигнала).

Принято считать, что состояние «включено» кодируется цифрой «1», а состояние «выключено» — цифрой «0».

Все виды информации в компьютере кодируются на машинном языке, в виде логических последовательностей нулей и единиц.

При записи двоичной цифры реализуется выбор одного из двух возможных состояний (одной из двух цифр) и, следовательно, она несет количество информации, равное 1 биту. Важно, что каждая цифра машинного двоичного кода несет информацию в 1 бит. Таким образом, две цифры несут информацию в 2 бита, три цифры — в 3 бита и так далее. Количество информации в битах равно количеству цифр двоичного машинного кода.

Представление числовой информации с помощью систем счисления:

Для записи информации о количестве объектов используются числа. Числа записываются с использованием особых знаковых систем, которые называются системами счисления.

Алфавит систем счисления состоит из символов, которые называются цифрами. Например, в десятичной системе счисления числа записываются с помощью десяти всем хорошо известных цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Все системы счисления делятся на две большие группы: позиционные и непозиционные системы счисления. В позиционных системах счисления значение цифры зависит от ее положения в числе, а в непозиционных — не зависит.

Римская непозиционная система счисления. Самой распространенной из непозиционных систем счисления является римская. В качестве цифр в ней используются: I (1), V (5), X (10), L (50), С (100), D (500), М (1000).

Значение цифры не зависит от ее положения в числе. Например, в числе XXX (30) цифра X встречается трижды и в каждом случае обозначает одну и ту же величину — число 10, три числа по 10 в сумме дают 30.

Позиционные системы счисления: В позиционных системах счисления количественное значение цифры зависит от ее позиции в числе.

Наиболее распространенными в настоящее время позиционными системами счисления являются десятичная, двоичная, восьмеричная и шестнадцатеричная. Каждая позиционная система имеет определенный алфавит цифр и основание.

Двоичное кодирование текстовой информации.

Для кодирования одного символа используется количество информации, равное 1 байту, то есть i = 1 байт = 8 битов.

Кодирование заключается в том, что каждому символу ставится в соответствие уникальный десятичный код от 0 до 255 или соответствующий ему двоичный код от 00000000 до 11111111. (Такая система кодировки называется ASCII-код и позволяет закодировать 256 символов)

Таким образом, человек различает символы по их начертаниям, а компьютер — по их кодам. При вводе в компьютер текстовой информации происходит ее двоичное кодирование, изображение символа преобразуется в его двоичный код. Пользователь нажимает на клавиатуре клавишу с символом, и в компьютер поступает определенная последовательность из восьми электрических импульсов (двоичный код символа).

Код символа хранится в оперативной памяти компьютера, где занимает один байт.

В процессе вывода символа на экран компьютера производится обратный процесс — декодирование, то есть преобразование кода символа в его изображение. В настоящее время широкое распространение получил новый международный стандарт Unicode, который отводит на каждый символ не один байт, а два, поэтому с его помощью можно закодировать не 256 символов, а N = 2^16 = 65536 различных символов.

Связь между объемом сообщения количеством символов в нём выражается по формуле:

где V — информационный объем сообщения, К — количество символов в сообщении, i — количество бит на символ.

Кодирование чисел

Числовую информацию компьютер обрабатывает в двоичной системе счисления. Таким образом, числа в компьютере представлены последовательностью цифр 0 и 1, называемых битами (бит – один разряд двоичного числа). В начале 1980-х гг. процессоры для персональных компьютеров были 8-разрядными, и за один такт работы процессора компьютер мог обработать 8 бит, т.е. максимально обрабатываемое десятичное число нс могло превышать 111111112 (или 25510). Последовательность из восьми бит называют байтом, т.е. 1 байт = 8 бит. Затем разрядность процессоров росла, появились 16-, 32- и, наконец, 64-разрядные процессоры для персональных компьютеров, соответственно возросла и величина максимального числа, обрабатываемого за один такт.

Использование двоичной системы для кодирования целых и действительных чисел позволяет с помощью 8 разрядов кодировать целые числа от 0 до 255, 16 бит дает возможность закодировать более 65 тыс. значений.

Почему двоичная система счисления так распространена?

Дело в том, что двоичная система счисления – это язык современной вычислительной техники.

Когда любые данные сохраняются на компьютере, они кодируются числами. С числами же компьютер выполняет операции, изменяя эти данные.

Допустим, у нас есть десятичное число 14, которое требуется сохранить в компьютерной памяти. Мы задействуем участок памяти, в данном случае состоящий как минимум из двух элементов, отводимых под разряды. В одном из разрядов мы сохраняем десятичное число 1, в другом – число 4.

Элемент памяти – это физическое устройство. Если проектировать его для хранения десятичной цифры, потребуется создать такое устройство, которое может находиться в десяти разных физических состояниях и способно переключаться между ними. Каждое из этих состояний будет соответствовать числу от 0 до 9.

Создать такой элемент памяти возможно, однако сложнее и дороже, чем создать элемент, способный находиться только в двух состояниях. Одно состояние сопоставить нулю, второе – единице. Кроме того, подобное хранение данных является более надежным.

Поэтому оказалось проще перевести число 14 в двоичную систему счисления, получив число 1110, и именно его сохранить в памяти. И пусть даже при этом будут задействованы не два, а четыре разряда, то есть четыре элементарных единиц памяти.

Кодирование вещественных чисел

Несколько иной способ применяется для представления в памяти персонального компьютера действительных чисел. Рассмотрим представление величин с плавающей точкой.

Любое действительное число можно записать в стандартном виде M × 10 p , где 1 £ M p — целое. Например, 120100000 = 1,201 × 10 8 . Поскольку каждая позиция десятичного числа отличается от соседней на степень числа 10, умножение на 10 эквивалентно сдвигу десятичной запятой на одну позицию вправо. Аналогично деление на 10 сдвигает десятичную запятую на позицию влево. Поэтому приведенный выше пример можно продолжить: 120100000 = 1,201 × 10 8 = 0,1201 × 10 9 = 12,01 × 10 7 . Десятичная запятая «плавает» в числе и больше не помечает абсолютное место между целой и дробной частями.

В приведенной выше записи M называют мантиссой числа, а p — его порядком. Для того чтобы сохранить максимальную точность, вычислительные машины почти всегда хранят мантиссу в нормализованном виде, что означает, что мантисса в данном случае есть число, лежащее между 1(10) и 2(10) (1 £ M

Тип Диапазон Мантисса Байты
Real 2,9×10 -39 ..1,7×10 38 11-12 6
Single 1,5×10 -45 ..3,4×10 38 7-8 4
Double 5,0×10 -324 ..1,7×10 308 15-16 8
Extended 3,4×10 -4932 ..1,1×10 4932 19-20 10

Покажем преобразование действительного числа для представления его в памяти ЭВМ на примере величины типа Double.

Как видно из таблицы, величина это типа занимает в памяти 8 байт. На рисунке ниже показано, как здесь представлены поля мантиссы и порядка (нумерация битов осуществляется справа налево):

S Смещенный порядок Мантисса
63 62..52 51..0

Можно заметить, что старший бит, отведенный под мантиссу, имеет номер 51, т.е. мантисса занимает младшие 52 бита. Черта указывает здесь на положение двоичной запятой. Перед запятой должен стоять бит целой части мантиссы, но поскольку она всегда равна 1, здесь данный бит не требуется и соответствующий разряд отсутствует в памяти (но он подразумевается). Значение порядка хранится здесь не как целое число, представленное в дополнительном коде. Для упрощения вычислений и сравнения действительных чисел значение порядка в ЭВМ хранится в виде смещенного числа, т.е. к настоящему значению порядка перед записью его в память прибавляется смещение. Смещение выбирается так, чтобы минимальному значению порядка соответствовал нуль. Например, для типа Double порядок занимает 11 бит и имеет диапазон от 2 -1023 до 2 1023 , поэтому смещение равно 1023(10) = 1111111111(2). Наконец, бит с номером 63 указывает на знак числа.

Таким образом, из вышесказанного вытекает следующий алгоритм для получения представления действительного числа в памяти ЭВМ:

  1. перевести модуль данного числа в двоичную систему счисления;
  2. нормализовать двоичное число, т.е. записать в виде M × 2 p , где M — мантисса (ее целая часть равна 1(2)) и p — порядок, записанный в десятичной системе счисления;
  3. прибавить к порядку смещение и перевести смещенный порядок в двоичную систему счисления;
  4. учитывая знак заданного числа (0 — положительное; 1 — отрицательное), выписать его представление в памяти ЭВМ.

Пример. Запишем код числа -312,3125.

  1. Двоичная запись модуля этого числа имеет вид 100111000,0101.
  2. Имеем 100111000,0101 = 1,001110000101 × 2 8 .
  3. Получаем смещенный порядок 8 + 1023 = 1031. Далее имеем 1031(10) = 10000000111(2).
  4. Окончательно
    1 10000000111 0011100001010000000000000000000000000000000000000000
    63 62..52 51..0

Очевидно, что более компактно полученный код стоит записать следующим образом: C073850000000000(16).

Другой пример иллюстрирует обратный переход от кода действительного числа к самому числу.

Почему в вычислительной технике взята за основу двоичная система счисления?

Реализация двоичной системы счисления для кодирования информации намного проще, чем применение других способов.

Действительно, удобно кодировать информацию в виде последовательности нулей и единиц, если представить эти значения как два возможных устойчивых состояния электронного элемента.

Эти состояния легко различать. Недостаток двоичного кодирования – длинные коды. Но в технике легче иметь дело с большим количеством простых элементов, чем с небольшим числом сложных.

История двоичной системы счисления

I. Понятие двоичной системы счисления…………………………………………………………………..

1.1. История двоичной системы счисления

1.2. Перевод чисел из двоичной системы счисления в десятичную

1.3. Перевод десятичного числа в двоичное

II. Почему удобна двоичная система? ………………………………………………

2.1. Достоинства двоичной системы

2.2. Недостатки двоичной системы

Кто стоит у истоков двоичной системы счисления, как давно и где ее начали применять, почему двоичная система счисления сохранилась до наших дней.

Понятие «число» является ключевым как для математики, так и для информатики. Люди всегда считали и записывали числа, даже 5 тысяч лет назад. Но записывали их по другим правилам, хотя в любом случае число изображалось с помощью любого или нескольких символов, которые назывались цифрами.

Язык чисел, как и любой другой, имеет свой алфавит. В том языке чисел, которым мы обычно пользуемся, алфавитом служат десять цифр – от 0 до 9. Это десятичная система счисления.

Системой счисления мы будем называть способ представления числа символами некоторого алфавита, которые называют цифрами.

Причина, по которой десятичная система счисления стала общепринятой, вовсе не математическая. Десять пальцев рук – вот аппарат для счета, которым человек пользуется с доисторических времен. Древнее написание десятичных цифр:

Понятие двоичной системы счисления.

Двоичная система счисления — позиционная система счисления с основанием два. (Позиционная система счисления (позиционная нумерация) — система счисления, в которой значение каждого числового знака (цифры) в записи числа зависит от его позиции (разряда).

История двоичной системы счисления.

Мысль о двоичной системе принадлежит Лейбницу, который полагал, что при трудных исследованиях в теории чисел она может иметь большие преимущества перед десятичной системой. Кроме того, при всяких арифметических операциях действия над числами, написанными в бинарной системе, облегчаются в высшей степени. Иезуит Буве (Bouvet), миссионер в Китае, которому Лейбниц писал о своём изобретении, сообщил ему, что в Китае существует загадочная надпись, которую можно вполне объяснить бинарной системой. Надпись эта, которую приписывают императору Фо-ги, жившему в 25 веке до н. э., основателю Китайской империи, покровителю наук и искусств, не могла быть объяснена китайскими учёными, которые считали её не имеющей смысла. Она состоит из ряда длинных и коротких чёрточек. Если принять, что длинная черта означает 1, а короткая 0, то вся надпись оказывается просто рядом натуральных чисел, написанных по двоичной системе. Вот эта надпись:

Двоичная система счисления оказалась удобной для использования в ЭВМ. Использование двоичной системы оказалось наиболее эффективным в электронных схемах: цифры 0 и 1 удобно кодировать уровнями напряжения, соответствующим напряжению на шинах питания, „0“ и „+V“; использование большего количества уровней привело бы к усложнению схем. Хотя были прецеденты создания и троичных ЭВМ.

В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, двойка является основанием двоичной системы счисления. (Аналогично у десятичной системы основание 10.)

Чтобы научиться понимать числа в двоичной системе счисления, сначала рассмотрим, как формируются числа в привычной для нас десятичной системе счисления.

В десятичной системе счисления мы располагаем десятью знаками-цифрами (от 0 до 9). Когда счет достигает 9, то вводится новый разряд (десятки), а единицы обнуляются и счет начинается снова. После 19 разряд десятков увеличивается на 1, а единицы снова обнуляются. И так далее. Когда десятки доходят до 9, то потом появляется третий разряд – сотни.

Двоичная система счисления аналогична десятичной за исключением того, что в формировании числа участвуют всего лишь две знака-цифры: 0 и 1. Как только разряд достигает своего предела (т.е. единицы), появляется новый разряд, а старый обнуляется.

Попробуем считать в двоичной системе:

1 – это один (и это предел разряда)

11 – это три (и это снова предел)

100 – это четыре

1.3. Перевод чисел из двоичной системы счисления в десятичную:

1. 10001001 = 1*2^ + 0*2^ + 0*2^ + 0*2^ + 0*2^ + 0*2^ + 0* 2^ + 0*2^ = 128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 = 137

Т.е. число 10001001 по основанию 2 равно числу 137 по основанию 10. Записать это можно так:

2. 1011_ = 1*2^3 + 0*2*2+1*2^1+1*2^0 =1*8 + 1*2+1=11_

3. 10101010_ = 1*2^ + 0*2^ + 1*2^ + 0*2^ + 1*2^ + 0*2^ + 1*2^ + 0*2^ = 128 + 32 +8 + 2 = 170_

4. 101101_ = 1*2^ + 0*2^ + 1*2^ + 1*2^ + 0*2^ + 1*2^ = 63_

5. 100,101_ = 1*2^ +0*2^ + 0*2^ + 1*2^ + 0*2^ + 1*2^ = 4 + 2 = 6Элементы оглавления не найдены._

6. 111101_ = 1*2^ + 1*2^ + 1*2^ + 1*2^ + 0*2^ + 1*2^ = 32 +16 + 13 = 61_

7. 1001_ = 1*2^ + 0*2^ + 0*2^ + 1*2^ = 9

8. 10011,1_ = 1*2^ + 0*2^ + 0*2^ + 1*2^ + 1*2^ + 1*2^ = 19,5

9. 11101,11_ = 1*2^ + 1*2^ + 1*2^ + 0*2^ +1*2^ + 1*2^ = 57,5

10. 100111 = 1*2^ + 0*2^ + 0*2^ +1*2^ + 1*2^ + 1*2^ = 39

1.4. Перевод десятичного числа в двоичное:

Может потребоваться перевести десятичное число в двоичное. Один из способов – это деление на два и формирование двоичного числа из остатков. Например, нужно получить из числа 77 его двоичную запись:

77 / 2 = 38 (1 остаток)

38 / 2 = 19 (0 остаток)

19 / 2 = 9 (1 остаток)

9 / 2 = 4 (1 остаток)

4 / 2 = 2 (0 остаток)

2 / 2 = 1 (0 остаток)

1 / 2 = 0 (1 остаток)

Собираем остатки вместе, начиная с конца: 1001101. Это и есть число 77 в двоичном представлении. Проверим:

1. 1001101_ = 1*2^ + 0*2^ + 0*2^ + 1*2^ + 1*2^ + 0*2^ + 1*2^ = 64 + 8 + 5 = 77_

2. 49_ = dfrac < 49 > < 2 >= 110001_

3. 15_ = dfrac < 49 > < 2 >= 1111_

4. 31_ = dfrac < 31 > < 2 >= 11111_

5. 0,45_ = dfrac < 0,45 > < 2 >= 0,11100_

6. 95_ = dfrac < 95 > = 1011111_

7. 102_ = dfrac < 2 >= 1100110_

8. 58_ = dfrac < 58 > < 2 >= 110100_

9. 4956_ = dfrac < 4956 > < 2 >= 101101011100_

10. 125_ = dfrac < 125 > < 2 >= 10111101_

2. Почему удобна двоичная система?

Стоит отметить, что двоичная система издавна была предметом пристального внимания ученых. Официальное рождение двоичной системы счисления связано с именем Г.В.Лейбница, опубликовавшего в 1703 г. статью, в которой он рассмотрел правила выполнения арифметических действий над двоичными числами. Во время работы ЭВМ постоянно происходит преобразование чисел из десятичной системы счисления в двоичную, и наоборот. Да и человеку, имеющему дело с ЭВМ, часто приходится прибегать к преобразованиям чисел.

Вот, что писал Лаплас об отношении великого немецкого математика Г.В. Лейбница к двоичной (бинарной) системе: «В своей бинарной арифметике Лейбниц видел прообраз творения. Ему представлялось, что единица представляет божественное начало, а нуль – небытиё и что высшее существо создает все сущее из небытия точно таким же образом, как единица и нуль в его системе выражают все числа».

Главное достоинство двоичной системы – простота алгоритмов сложения, вычитания, умножения и деления. Таблица умножения в ней совсем не требуется ничего запоминать, ведь любое число, умноженное на ноль, равно нулю, а умноженное на единицу равно самому себе. И при этом никаких переносов в следующие разряды, а они есть даже в троичной системе счисления.

Если отвлечься от технических деталей, то именно с помощью этих операций и выполняются все операции в компьютере, так как удалось создать надежно работающие технические устройства, которые могут со 100 процентной надежностью сохранять и распознавать не более двух различных состояний (цифр):

— электромагнитные реле (замкнуто/разомкнуто), широко использовались в конструкциях первых ЭВМ;

— участок поверхности магнитного носителя информации (намагничен/ размагничен);

— участок поверхности лазерного диска (отражает/не отражает);

— триггер, может устойчиво находиться в одном из двух состояний, широко используется в оперативной памяти компьютера.

Утверждение двоичной арифметики в качестве общепринятой при конструкции ЭВМ с программным управлением состоялось под влиянием работы Дж. фон Неймана о проекте первой ЭВМ с хранимой в памяти программой. Работа написана в 1946 году.

2.1. Достоинства двоичной системы счисления:

1. Достоинства двоичной системы счисления заключаются в простоте реализации процессов хранения, передачи и обработки информации на компьютере.

2. Для ее реализации нужны элементы с двумя возможными состояниями, а не с десятью.

3. Представление информации посредством только двух состояний надежно и помехоустойчиво.

4. Возможность применения алгебры логики для выполнения логических преобразований.

5. Двоичная арифметика проще десятичной.

2.2. Недостатки двоичной системы счисления:

1. Итак, код числа, записанного в двоичной системе счисления представляет собой последовательность из 0 и 1. Большие числа занимают достаточно большое число разрядов.

2. Быстрый рост числа разрядов — самый существенный недостаток двоичной системы счисления.

3.1. Заключение:

В ходе изучения данной темы мы выяснили, что двоичная система счисления намного старше электронных машин. Двоичной системой счисления люди интересуются давно. Особенно сильным это увлечение было с конца 16 до 19 века. Знаменитый Лейбниц считал двоичную систему счисления простой, удобной, красивой. Даже по его просьбе была выбита медаль в честь этой «диадической» системы (так называли тогда двоичную систему счисления).

Двоичная система счисления наиболее проста и удобна для автоматизации.

Наличие в системе всего лишь двух символов упрощает их преобразование в электрические сигналы.

Из любой системы счисления можно перейти к двоичному коду.

Почти все ЭВМ используют либо непосредственно двоичную систему счисления, либо двоичное кодирование какой-либо другой системы счисления.

Но двоичная система имеет и недостатки:

— ею пользуются только для ЭВМ для внутренней и внешней работы;

— быстрый рост числа разрядов, необходимых для записи чисел.

Библиографический список

1. Нестеренко А.В. ЭВМ и профессия программиста. М.: Просвещение, 1990.

2. Решетников В.Н., Сотников А.Н. Информатика – что это? М.: Радио и связь, 1989.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector