Сравнение характеристики поколений эвм
Очередное революционное событие в электронике произошло в 1971 году, когда американская фирма Intel объявила о создании микропроцессора. Микропроцессор — это сверхбольшая интегральная схема, способная выполнять функции основного блока компьютера — процессора. Первоначально микропроцессоры стали встраивать в различные технические устройства: станки, автомобили, самолеты. Соединив микропроцессор с устройствами ввода-вывода, внешней памяти, получили новый тип компьютера: микроЭВМ. МикроЭВМ относятся к машинам четвертого поколения. Существенным отличием микроЭВМ от своих предшественников являются их малые габариты (размеры бытового телевизора) и сравнительная дешевизна. Это первый тип компьютеров, который появился в розничной продаже.
Самой популярной разновидностью ЭВМ сегодня являются персональные компьютеры (ПК). Первый ПК появился на свет в 1976 году в США. С 1980 года «законодателем мод» на рынке ПК становится американская фирма IBM. Ее конструкторам удалось создать такую архитектуру, которая стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC (Personal Computer). Появление и распространение ПК по своему значению для общественного развития сопоставимо с появлением книгопечатания. Именно ПК сделали компьютерную грамотность массовым явлением. С развитием этого типа машин появилось понятие «информационные технологии», без которых уже становится невозможным обойтись в большинстве областей человеческой деятельности.
Другая линия в развитии ЭВМ четвертого поколения, это — суперкомпьютер. Машины этого класса имеют быстродействие сотни миллионов и миллиарды операций в секунду. Суперкомпьютер – это многопроцессорный вычислительный комплекс.
Характеристики | Поколения ЭВМ | |||
I | II | III | IV | |
Годы применения | 1948-1958 | 1959-1967 | 1968-1973 | 1974-1982 |
Элементная база | Лампы | Транзистор | МИС | БИС |
Размеры | Значительные | Меньше размеров I поколения ЭВМ | Меньше размеров I и II поколений ЭВМ | Компактные |
Количество ЭВМ в мире | Десятки | Тысячи | Десятки тысяч | Миллионы |
Быстродействие | 10-20 тыс. операций в секунду | 100-1000 тыс. операций в секунду | 1-10 млн. операций в секунду | 10-100 млн. операций в секунду |
Объём оперативной памяти | 2 Кбайта | 2-32 Кбайта | 64 кбайта | 2-5 мбайт |
Типичные модели | МЭСМ, БЭСМ-2 | БЭСМ-6, Минск-2 | IBM-360, IBM-370, ЕС ЭВМ, СМ ЭВМ | IBM-PC, Apple |
Носители информации | Перфокарта, перфолента | Магнитная лента | Диск | Гибкий и лазерный диски |
«Сравнительные характеристики поколений ЭВМ»
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Студент – человек, постоянно откладывающий неизбежность. 10824 – | 7386 – или читать все.
Появлению современных компьютеров, которыми мы привыкли пользоваться, предшествовала целая эволюция в развитии вычислительной техники. Согласно распространенной теории, развитие индустрии ЭВМ шло на протяжении нескольких отдельных поколений.
Современные эксперты склонны считать, что их шесть. Пять из них уже состоялись, еще одно – на подходе. Что именно под термином «поколение ЭВМ» понимают IT-специалисты? Каковы принципиальные различия между отдельными периодами развития вычислительной техники?
Классификация эвм по этапам создания
1-е поколение, 50-е годы. ЭВМ на электронных вакуумных лампах.
2-е поколение, 60-е годы. ЭВМ на дискретных полупроводниковых приборах.
3-е поколение, 70-е годы. ЭВМ на полупроводниковых интегральных микросхемах малой и средней степени интеграции (сотни — тысячи элементов на кристалл).
4-е поколение, 80-е годы. ЭВМ на больших и сверхбольших интегральных схемах.
5-е поколение 90-е годы. ЭВМ с многими десятками параллельно работающих микропроцессоров. ЭВМ на сверхсложных микропроцессорах с параллельно-векторной структурой.
6-е и последующее поколения, оптоэлектронные ЭВМ с массовым параллелизмом и нейронной структурой – с распределенной сетью большого числа не сложных микропроцессоров, моделирующих архитектуру нейронных биологических систем.
Рабочая станция
Рабочая станция (англ. Workstation) — комплекс технических и программных средств, предназначенных для решения определенного круга задач.
- Рабочая станция — как место работы специалиста представляет собой полноценный компьютер или компьютерный терминал (устройство ввода / вывода информации, отделенные часто отдаленные от управляющего компьютера), набор необходимого программного обеспечения, при необходимости может дополняться вспомогательным оборудованием: принтер, внешнее устройство хранения данных на магнитных и / или оптических носителях, сканер штрих-кода и др.
- Также термином «рабочая станция» обозначают компьютер в составе локальной вычислительной сети относительно сервера. Компьютеры в локальной сети подразделяются на рабочие станции и серверы. На рабочих станциях пользователи решают прикладные задачи (работают в базах данных, создают документы, выполняют расчеты). Сервер обслуживает сеть и предоставляет собственные ресурсы всем узлам сети, в том числе и рабочим станциям.
Существуют достаточно устойчивые признаки конфигураций рабочих станций, предназначенных для решения определенного круга задач, позволяет отделять их в отдельный профессиональный подкласс: мультимедиа (обработка изображений, видео, звука), САПР (системы автоматизированного проектирования и т.д.).
Каждый такой подкласс может иметь присущие ему особенности и уникальные компоненты, например:
- большой размер монитора и / или несколько мониторов (САПР),
- быстродействующая графическая плата (обработка видео и мультипликация, компьютерные игры),
- большой объем накопителей данных,
- наличие сканера (работа с изображением),
- защищенное исполнение (вооруженные силы, секретные базы данных) и другие.
Класс больших компьютеров
Изучив эту тему, вы узнаете:
— о группе серверов и их назначении;
— о группе суперкомпьютеров и их назначении.
История развития компьютерной техники началась с создания большой ЭВМ. Элементная база больших ЭВМ прошла большой путь от электронно-вакуумных ламп до сверхбольших интегральных схем (СБИС). В этом классе выполнить четкое разделение на подклассы в настоящее время несколько затруднительно. И вот почему.
В связи с развитием и внедрением во все сферы нашей жизни компьютерных сетей происходит смещение акцентов по приоритетам и назначению в классе больших компьютеров. Особенно явно наметилась тенденция использования больших компьютеров в сетях, что в недалеком будущем, скорее всего, несколько изменит представление о сфере использования сверхмощных ЭВМ.
На сегодняшний день в данном классе можно выделить две группы — серверы и суперкомпьютеры.
Серверы
Сервер (server) представляет собой мощный компьютер, используемый в вычислительных сетях, который обеспечивает обслуживание подключенных к нему компьютеров и выход в другие сети. На сервере хранятся большие объемы информации, которыми пользуются подключенные к нему компьютеры. В наши дни это направление компьютерной техники интенсивно развивается.
Группа серверов насчитывает множество моделей разного уровня мощности. Некоторые из них можно отнести к классу малых машин, другие настолько мощны, что представляют собой суперкомпьютеры. Сервером может быть любой компьютер, оснащенный необходимыми программами и устройствами. Например, сервер средней производительности можно создать из компонентов персональных компьютеров. При этом его цена окжется вполне приемлемой и места он займет не больше, чем обычный компьютер.
К серверу предъявляются повышенные требования по быстродействию и надежности работы. В нем должна быть предусмотрена возможность резервирования всей хранимой информации. Профилактические и ремонтные работы должны проводиться без его остановки и отключения других компьютеров.
Нередко серверы специализируются на обслуживании рабочих станций в какой-то определенной области. Например, одни из них выделяются для создания и управления базами и архивами данных, другие — для поддержки факсимильной связи и электронной почты, третьи — для управления многопользовательскими принтерами, плоттерами и др.
В зависимости от назначения выделяют такие типы серверов: сервер приложений, файл-сервер, архивационный сервер, факс-сервер, почтовый сервер, сервер печати, сервер телеконференций.
Сервер приложений обрабатывает запросы от всех станций вычислительной сети и предоставляет им доступ к общим системным ресурсам (базам данных, библиотекам программ, принтерам, факсам и др.).
Файл-сервер (File Server, Data Server) — для работы с базами данных, для использования хранящейся на нем информации. Он имеет надежные отказоустойчивые дисковые накопители с большими объемами (до терабайта).
Архивационный сервер (Storage Express System) — для резервного копирования информации в крупных многосерверных сетях. Он использует накопители на магнитной ленте (стримеры) со сменными картриджами емкостью до 5 Гбайт. Обычно выполняет ежедневное автоматическое архивирование информации от подключенных серверов и рабочих станций.
Факс-сервер (Net SatisFaxion)— для организации эффективной многоадресной факсимильной связи, с несколькими фак- смодемными платами, со специальной защитой информации от несанкционированного доступа в процессе передачи, с системой хранения электронных факсов.
Почтовый сервер (Mail Server) — то же, что и факс-сервер, но для организации электронной почты, с электронными почтовыми ящиками.
Сервер печати (Print Server, Net Port) — для эффективного использования системных принтеров.
Сервер телеконференций — компьютер, имеющий программу обслуживания пользователей телеконференциями и новостями, он также может иметь систему автоматической обработки видеоизображений и др.
Как вы знаете, назначение всякого компьютера определяется программным обеспечением. Поэтому любой компьютер, если установить на нем соответствующее сетевое программное обеспечение, может стать сервером. Кроме того, один компьютер способен одновременно выполнять несколько функций — быть, к примеру, почтовым сервером, сервером новостей, сервером приложений и т. д.
В этой группе компьютеров можно выделить суперсерверы. Они нужны, когда данные требуется хранить централизованно, но в то же время информация должна быть доступна большому числу пользователей. Суперсерверы по своим характеристикам приближаются к суперкомпьютерам.
Суперкомпьютеры
Первые суперкомпьютеры (модели Cray) стала выпускать компания Cray Research в середине 70-х годов (рисунок 26.1). Их быстродействие составляло порядка нескольких десятков или сотен миллионов операций в секунду, что по тем временам воспринималось как чудо. Это стало новой вехой на пути развития вычислительной техники, так как была предложена иная, по сравнению с существующей фон-неймановской, архитектура и организация работы всех устройств.
Идея построения суперкомпьютера базировалась на том, что надо уменьшить расстояние между всеми электронными компонентами, а также организовать работу не на одном процессоре, а сразу на нескольких — параллельно. В компьютерах фон-неймановской архитектуры каждая операция, необходимая для решения задачи, находится в ожидании своей очереди занять процессор. Вспомните, что такое последовательный (линейный) алгоритм, и вам станет понятна суть такой организации работы.
В суперкомпьютерах используется иной мультипроцессорный (многопроцессорный) принцип обработки информации.
Основная идея создания мультипроцессорной обработки — разделение решаемой задачи на несколько параллельных подзадач или частей. Каждая часть решается на своем процессоре. За счет такого разделения существенно увеличивается производительность. Параллельное вычисление особенно эффективно в тех задачах, где применяется большое количество операций с таблицами. Так, например, при суммировании чисел в таблице скорость расчетов может возрасти более чем в десять раз по сравнению с однопроцессорным компьютером.
В том случае, когда мультипроцессорную систему используют для решения задач, которые не удается разделить на части, возможен другой принцип организации структуры — конвейерный.
Рис. 26.1. Суперкомпьютер Cray
Поясним этот принцип на понятном каждому примере. Представим себе работу обычного конвейера на сборке, скажем, автомобиля. Технология сборки состоит из выполнения определенных операций каждым рабочим на своем месте. Кто-то прикру чивает колеса, кто-то навешивает двери, кто-то устанавливает двигатель и т. д. Чем проще операции, на которые разбит процесс, тем больше надо рабочих мест, тем выше скорость работы и больше объем выпуска продукции.
Аналогично осуществляется конвейерный принцип и в мультипроцессорной системе. Общая задача разбивается на ряд элементарных участков, каждый из которых будет решаться на своем процессоре. Участков программы столько, сколько процессоров. Каждый из них приступает к действию после окончания работы предыдущего и выполняет только определенную функцию. Управляющая программа определяет, какие и сколько процессоров надо выделить для решения очередной задачи, по какой программе будет работать каждый процессор. В результате для каждой задачи выделяется свой набор процессоров, причем любой из них настроен на выполнение какого-то одного участка работы. Из этого следует, что каждая задача образует свою структуру компьютера. Так возникло понятие виртуальной (условной) машины (VM — virtual machine), архитектура которой определяется структурой задачи.
В ближайшие годы ожидается появление суперкомпьютера с такими характеристиками:
♦ быстродействие порядка 100 ООО МФЛОПС;
♦ объем оперативной памяти — 10 Гбайт;
♦ объем дисковой памяти — от 1 до 10 Тбайт;
♦ разрядность — 64; 128 бит.
По прогнозам аналитиков, потребность в суперкомпьютерах со временем будет сокращаться. Все меньше и меньше находится желающих тратить миллионы долларов на приобретение таких компьютеров. Более дешевые малые компьютеры из года в год постоянно наращивают свои вычислительные мощности и уже во многом не уступают ранним моделям суперкомпьютеров. Это связано с тем, что идеи мультипроцессорной обработки успешно реализуются и в компьютерах других классов. Следует ожидать, что постепенно суперкомпьютеры станут выполнять роль суперсерверов.
Контрольные вопросы и задания
1. По какому признаку из класса больших компьютеров можно выделить две группы?
2. Что такое сервер?
3. Назовите основные типы серверов и их назначение.
4. Может ли один компьютер одновременно выполнять функции нескольких серверов?
5. Что такое суперкомпьютер?
6. Назовите основные идеи, заложенные в основу архитектуры суперкомпьютера.
7. Как вы понимаете принцип конвейерной обработки информации?
8. Как вы понимаете принцип параллельной обработки информации?
9. Что такое виртуальный компьютер?
10. Какие существуют прогнозы относительно направлений развития суперкомпьютеров и серверов?
Список литературы:
А.П. Пятибратов, А.С. Касаткин, Р.В. Можаров. «ЭВМ, МИНИ – ЭВМ и микропроцессорная техника в учебном процессе». – М: Изд-во МГУ, 1997
А.П. Пятибратов, А.С. Касаткин, Р.В. Можаров. «Электронно-вычислительные машины в управлении». – СПб.: «Питер», 1997
В.Э. Фигурнов. IBM PC для пользователя. / Издание 7-е. М. ИНФРА 1997г
А.Н. Салтовский, Ю.А. Первин. Как работает ЭВМ: серия Мир знаний. / М. Просвещение 1986
А.Г. Кушниренко, Г.В. Лебедев, Р.А. Сворень. Основы информатики и вычислительной техники. / М. Просвещение 1991
Классификация компьютерных игр
Классификация компьютерных игр Классификация по жанрам3D Shooter (3D-шутеры, «бродилки»)В играх данного типа игрок, как правило, действуя в одиночку, должен уничтожать врагов при помощи холодного и огнестрельного оружия, выполняя задания уровней. Врагами часто являются:
4.1. Краткая классификация вредоносного ПО По классификации «Лаборатории Касперского» ( www.virusList.com) условно всю разновидность вредоносного программного обеспечения можно разделить на следующие категории:? классические файловые вирусы;? троянские кони;? сетевые черви;?
Классификация Флинна
Классификация М. Флинна [38, 303] является одной из самых ранних и наиболее известных классификацией архитектур вычислительных систем. В основу классификации положено понятие потока. Поток — это последовательность, под которой понимается последовательность данных или команд, обрабатываемых процессором. Рассматривая число потоков данных и потоков команд, М. Флинн предложил рассматривать следующие классы архитектур: MIMD, SIMD, SISD , MISD .
Single Instruction Single Data [stream] — «один поток команд, один поток данных», архитектура SISD ( ОКОД ). Описание архитектуры компьютерной системы, подразумевающее исполнение одним процессором одного потока команд, который обрабатывает данные, хранящиеся в одной памяти (рис. 2.1а.).
Multiple Data stream processing — «один поток команд, много потоков данных», архитектура SIMD ( ОКМД ). Описание архитектуры параллельной компьютерной системы, подразумевающее исполнение одной текущей команды несколькими процессорами. Эта команда выбирается из памяти центральным контроллером SIMD-системы, но работает она над разными элементами данных (чаще всего — элементами массива). Для этого каждый процессор имеет ассоциированную с ним память, где хранятся массивы однородных данных. В эту категорию попадают, в частности, векторные процессоры . (рис. 2.1б.).
Multiple Instruction Single Data [stream] — «много потоков команд, один поток данных», архитектура MISD (МКОД). Одна из четырёх возможных архитектур параллельного компьютера в классификации М. Флинна. В этой архитектуре данные подаются на набор процессоров, каждый из которых исполняет свою программу их обработки. Подобная архитектура ещё никогда не была реализована (рис. 2.1в.).
Multiple Instructions — Multiple Data [stream] — «много потоков команд, много потоков данных», архитектура MIMD (МКМД). Одна из четырёх возможных архитектур параллельного компьютера. В этой архитектуре набор процессоров независимо выполняет различные наборы команд, обрабатывающих различные наборы данных. Системы в архитектуре MIMD делятся на системы с распределённой памятью (слабо связанные системы), к которым относятся кластеры, и системы с совместно используемой памятью ( shared-memory multiprocessors ). К последним относятся симметричные мультипроцессорные системы.
В класс SISD входят однопроцессорные последовательные компьютеры. Векторно-конвейерные компьютеры также могут быть отнесены к этому классу, если рассматривать вектор как одно неделимое данное для машинной команды. Это отмечают критики этой классификации.
К классу SIMD относятся классические процессорные матрицы. В них множество процессорных элементов контролируется общим управляющим устройством. Все процессорные элементы одновременно получают от устройства одинаковые команды и обрабатывают свои локальные данные. Если рассматривать каждый элемент вектора как отдельный элемент потока данных, то к этому классу можно отнести и векторно-конвейерные компьютеры .
Класс MIMD включает в себя все многообразие многопроцессорных систем. Если рассматривать конвейерную обработку как выполнение множества команд не над одиночным векторным потоком данных, а над
множественным скалярным потоком, то в этот класс могут быть включены векторно-конвейерные компьютеры .
Классификация Флинна широко используется и сегодня для начального описания вычислительных систем.
У этой классификации есть очевидные недостатки:
- в нее четко не вписываются отдельные нашедшие применение архитектуры. Например, векторно-конвейерные компьютеры и компьютеры, управляемые потоками данных;
- класс MIMD очень перегружен: в него вошли все многопроцессорные системы. При этом они существенно отличаются по ряду признаков (числом процессоров, природе и топологией и видами связей между ними, способами организации памяти и технологиями программирования).
Несколько классификаций, предложенных позже, расширяют классификацию М. Флинна. Примером такой классификации может служить классификация Ванга и Бригса.
ГЛАВА II . ОБЛАСТИ ПРИМЕНЕНИЕ ЭВМ В НАРОДНОМ ХОЗЯЙСТВЕ.
Персональный компьютер быстро вошел в нашу жизнь. Еще несколько лет назад было редкостью увидеть какой-нибудь персональный компьютер – они были, но были очень дорогие, и даже не каждая фирма могла иметь у себя в офисе компьютер. Теперь же в каждом третьем доме есть компьютер, который уже глубоко вошел в жизнь человека.
Современные вычислительные машины представляют одно из самых значительных достижений человеческой мысли, влияние которого на развитие научно-технического прогресса трудно переоценить. Область применения ЭВМ огромна и непрерывно расширяется.
Даже 30 лет назад было только около 2000 различных сфер применения микропроцессорной техники. Это управление производством (16%), транспорт и связь (17%), информационно-вычислительная техника (12%), военная техника (9%), бытовая техника (3%), обучение (2%), авиация и космос (15%), медицина (4%), научное исследование, коммунальное и городское хозяйство, банковский учёт, метрология, и другие области.
Компьютеры в учреждениях . Компьютеры в буквальном смысле совершили революцию в деловом мире. Секретарь практически любого учреждения при подготовке докладов и писем производит обработку текстов. Учрежденческий аппарат использует персональный компьютер для вывода на экран дисплея широкоформатных таблиц и графического материала. Бухгалтеры применяют компьютеры для управления финансами учреждения и введение документации.
Компьютеры на производстве . Компьютеры находят применение при выполнении широкого круга производственных задач. Так, например, диспетчер на крупном заводе имеет в своём распоряжении автоматизированную систему контроля, обеспечивающую бесперебойную работу различных агрегатов. Компьютеры используются также для контроля за температурой и давлением при осуществлении различных производственных процессов. Также управляются компьютером роботы на заводах, скажем, на линиях сборки автомобилей, включающие многократно повторяющиеся операции, например затягивание болтов или окраску деталей кузова.
Компьютер – помощник конструктора . Проекты конструирования самолета, моста или здания требуют затрат большого количества времени и усилий. Они представляют собой один из самых трудоёмких видов работ. Сегодня, в век компьютера, конструкторы имеют возможность посвятить своё время целиком процессу конструирования, поскольку расчёты и подготовку чертежей машина «берёт на себя». Пример: конструктор автомобилей исследует с помощью компьютера, как форма кузова влияет на рабочие характеристики автомобиля. С помощь таких устройств, как электронное перо и планшет, конструктор может быстро и легко вносить любые изменения в проект и тут же наблюдать результат на экране дисплея.
Компьютер в магазине самообслуживания . Представьте себе, что идёт 1979 год и вы работаете неполный рабочий день в качестве кассира в большом универмаге. Когда покупатели выкладывают отобранные ими покупки на прилавок, вы должны прочесть цену каждой покупки и ввести её в кассовый аппарат. А теперь вернёмся в наши дни. Вы по-прежнему работаете кассиров и в том же самом универмаге. Но как много здесь изменилось. Когда теперь покупатели выкладывают свои покупки на прилавок, вы пропускаете каждую из них через оптическое сканирующее устройство, которое считывает универсальный код, нанесённый на покупку, по которому компьютер определяет, цену этого изделия, хранящуюся в памяти компьютера, и высвечивает ее на маленьком экране, чтобы покупатель мог видеть стоимость своей покупки. Как только все отобранные товары прошли через оптическое сканирующее устройство, компьютер немедленно выдаёт общую стоимость купленных товаров.
Компьютер в банковских операциях . Выполнение финансовых расчётов с помощью домашнего персонального компьютера – это всего лишь одно из его возможных применений в банковском деле. Мощные вычислительные системы позволяют выполнять большое количество операций, включая обработку чеков, регистрацию изменения каждого вклада, приём и выдачу вкладов, оформление ссуды и перевод вкладов с одного счёта на другой или из банка в банк. Кроме того, крупнейшие банки имеют автоматические устройства, расположенные за пределами банка. Банковские автоматы позволяют клиентам не выстаивать длинных очередей в банке, взять деньги со счета, когда банк закрыт. Всё, что требуется, — вставить пластмассовую банковскую карточку в автоматическое устройство. Как только это сделано, необходимые операции будут выполнены.
Компьютер в медицине . Как часто вы болеете? Вероятно, у вас была простуда, ветрянка, болел живот? Если в этих случаях вы обращались к доктору, скорее всего он проводил осмотр быстро и достаточно эффективно. Однако медицина – это очень сложная наука. Существует множество болезней, каждая из которых имеет только ей присущие симптомы. Кроме того, существуют десятки болезней с одинаковыми и даже совсем одинаковыми симптомами. В подобных случаях врачу бывает трудно поставить точный диагноз. И здесь ему на помощь приходит компьютер. В настоящее время многие врачи используют компьютер в качестве помощника при постановке диагноза, т.е. для уточнения того, что именно болит у пациента. Для этого больной тщательно обследуется, результаты обследования сообщаются компьютеру. Через несколько минут компьютер сообщает, какой из сделанных анализов дал аномальный результат. При этом он может назвать возможный диагноз.
Компьютер в сфере образования . Сегодня многие учебные заведения не могут обходиться без компьютеров. Достаточно сказать, что с помощью компьютеров: трехлетние дети учатся различать предметы по их форме;
шести- и семилетние дети учатся читать и писать; выпускники школ готовятся к вступительным экзаменам в высшие учебные заведения; студенты исследуют, что произойдёт, если температура атомного реактора превысит допустимый предел. «Машинное обучение» – термин, обозначающий процесс обучения при помощи компьютера. Последний в этом случае выступает в роли «учителя». В этом качестве может использоваться микрокомпьютер или терминал, являющийся частью электронной сети передачи данных. Процесс усвоения учебного материала поэтапно контролируется учителем, но если учебный материал даётся в виде пакета соответствующих программ ЭВМ, то его усвоение может контролироваться самим учащимся.
Компьютеры на страже закона . Вот новость, которая не обрадует преступника: «длинные руки закона» теперь обеспечены вычислительной техникой. «Интеллектуальная» мощь и высокое быстродействие компьютера, его способность обрабатывать огромное количество информации, теперь поставлены на службу правоохранительных органов для повышения эффективности работы. Способность компьютеров хранить большое количество информации используется правоохранительными органами для создания картотеки преступной деятельности. Электронные банки данных с соответствующей информацией легко доступны государственным и региональным следственным учреждениям всей страны. Так, федеральное бюро расследования (ФБР) располагает общегосударственным банком данных, который известен как национальный центр криминалистической информации. Компьютеры используются правоохранительными органами не только в информационных сетях ЭВМ, но и в процессе розыскной работы. Например, в лабораториях криминалистов компьютеры помогают проводить анализ веществ, обнаруженных на месте преступления. Заключения компьютера-эксперта часто оказываются решающими в доказательствах по рассматриваемому делу.
Компьютер как средство общения людей . Если на одном компьютере работают хотя бы два человека, у них уже возникает желание использовать этот компьютер для обмена информацией друг с другом. На больших машинах, которыми пользуются одновременно десятки, а то и сотни человек, для этого предусмотрены специальные программы, позволяющие пользователям передавать сообщения друг другу. Стоит ли говорить о том, что как только появилась возможность объединять несколько машин в сеть, пользователи ухватились за эту возможность не только для того, чтобы использовать ресурсы удаленных машин, но и чтобы расширить круг своего общения. Создаются программы, предназначенные для обмена сообщениями пользователей, находящихся на разных машинах. Наиболее универсальное средство компьютерного общения – это электронная почта. Она позволяет пересылать сообщения практически с любой машины на любую, так как большинство известных машин, работающих в разных системах, ее поддерживают. Электронная почта — самая распространенная услуга сети Internet. В настоящее время свой адрес по электронной почте имеют приблизительно 20 миллионов человек. Посылка письма по электронной почте обходится значительно дешевле посылки обычного письма. Кроме того, сообщение, посланное по электронной почте дойдет до адресата за несколько часов, в то время как обычное письмо может добираться до адресата несколько дней, а то и недель.
Internet — глобальная компьютерная сеть, охватывающая весь мир. Сегодня Internet имеет около 15 миллионов абонентов в более чем 150 странах мира. Ежемесячно размер сети увеличивается на 7-10%. Internet образует как бы ядро, обеспечивающее связь различных информационных сетей, принадлежащих различным учреждениям во всем мире, одна с другой.