Какие типы памяти есть в компьютере

Что нужно знать при выборе оперативной памяти для компьютера

Оперативная память (озу, ram, оперативка) — это запоминающее устройство в виде планки с микросхемами для компьютера или микросхемы для других устройств, которое предназначено для хранения данных, исполняемых в текущий момент программ, игр, приложений и другого программного кода, который обрабатывает процессор.

Является энергозависимой, что означает, при отключении питания — все данные на ней стираются. На английском расшифровывается полностью — Random Access Memory. Скорость чтения и записи у ОЗУ намного выше, чем у не энергонезависимой ПЗУ, например, чем у жесткого диска.

1]Жесткий диск (HDD) или твердотельный накопитель (SSD)

Типы памяти в компьютере

Когда дело доходит до общей компьютерной памяти, жесткий диск, скорее всего, находится в верхней части списка. Если вы хотите хранить данные в течение длительного времени, то жесткий или твердотельный диск — один из лучших вариантов для выбора.

Жесткий диск больше похож на пластинку из-за его вращательного движения. У него есть голова и несколько рук, которые соприкасаются в разных точках. Когда головка диска находится в определенном месте, информация или данные либо удаляются с жесткого диска, либо записываются.

Что касается твердотельных накопителей, они в некоторых отношениях идентичны жестким дискам. Они предназначены для хранения информации, но основным отличием является отсутствие движущихся частей. Вместо головы и рук он полагается на интегральную схему для постоянного хранения данных.

Не говоря уже о том, что они основаны на флэш-памяти, а это значит, что твердотельные накопители всегда будут быстрее, чем жесткие диски. Однако мы полагаем, что у них разная долговечность. Если вы много работаете на своем компьютере, где вам необходимо записывать и удалять данные, то используйте быстрый жесткий диск для большинства задач и твердотельные накопители для наиболее важных.

Читать: Гибридный накопитель против SSD против HDD.

Основные характеристики

К основным характеристикам ОЗУ относятся внешние и внутренние особенности. От первых зависит физический размер и&nbspконфигурация чипов на модуле (форм-фактор, поколение DDR). Вторые отвечают за эффективность работы, на которую влияет объем, тактовая частота, пропускная способность и различные «фишки».

Выбор оперативной памяти

Оперативная память бывает статической (SRAM) и динамической (DRAM). Первая имеет высокую скорость реагирования и, соответственно, цену, вторая является компромиссным вариантом, поэтому используется для массового производства.

DRAM, в свою очередь, делят на несколько типов: от DDR до DDR4. Цифра после букв означает поколение «оперативки»: чем больше цифра, тем моложе и лучше ОЗУ. От поколения к поколению улучшается энергопотребление, пропускная способность и охлаждение.

Отметим, что у каждой DDR свой уникальный «ключ» с определенным расположением прорезей. Если слот на «материнке» предназначен под DDR3, то DDR4 вставить в него не получится. Или получится, но работать ОЗУ все равно не&nbspбудет, а слот повредится!

Особняком стоит планка DDR3L. Она представляет собой модифицированную карту памяти третьего поколения и зачастую может работать на слотах предыдущих поколений.

Лайфхак: тип памяти вашего компьютера можно узнать через BIOS или сторонний софт, например, AIDA 64.

Жесткий магнитный диск

Накопитель на жёстких магнитных дисках или НЖМД ( англ. Hard (Magnetic) Disk Drive), жёсткий диск — устройство хранения информации , основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров .

Информация в НЖМД (рисунок 20) записывается на жёсткие ( алюминиевые , керамические или стеклянные) пластины , покрытые слоем ферромагнитного материала, чаще всего двуокиси хрома . В НЖМД используется от одной до нескольких пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров , а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной зоне, где исключён их нештатный контакт с поверхностью дисков.

Рисунок 20 — Устройство НЖМД

Основные характеристики жестких дисков:

Интерфейс ( англ. interface) — совокупность линий связи, сигналов, посылаемых по этим линиям, технических средств, поддерживающих эти линии, и правил (протокола) обмена. Серийно выпускаемые жёсткие диски могут использовать интерфейсы ATA (он же IDE и PATA), SATA , SCSI , SAS , FireWire , USB , SDIO и Fibre Channel .

Ёмкость ( англ. capacity) — количество данных, которые могут храниться накопителем. Ёмкость современных устройств достигает 2000 Гб (2 Тб). В отличие от принятой в информатике системы приставок, обозначающих кратную 1024 величину, производителями при обозначении ёмкости жёстких дисков используются величины, кратные 1000. Так, ёмкость жёсткого диска, маркированного как «200 ГБ», составляет 186,2 ГБ .

Физический размер ( форм-фактор ) ( англ. dimension). Почти все современные накопители для персональных компьютеров и серверов имеют ширину либо 3,5, либо 2,5 дюйма . Также получили распространение форматы 1,8 дюйма, 1,3 дюйма, 1 дюйм и 0,85 дюйма. Прекращено производство накопителей в форм-факторах 8 и 5,25 дюймов.

Время произвольного доступа ( англ. random access time) — время, за которое винчестер гарантированно выполнит операцию чтения или записи на любом участке магнитного диска. Диапазон этого параметра невелик — от 2,5 до 16 мс .

Скорость вращения шпинделя ( англ. spindle speed) — количество оборотов шпинделя в минуту. От этого параметра в значительной степени зависят время доступа и средняя скорость передачи данных. В настоящее время выпускаются винчестеры со следующими стандартными скоростями вращения: 4200, 5400 и 7200 (ноутбуки), 5400, 7200 и 10 000 (персональные компьютеры), 10 000 и 15 000 об/мин (серверы и высокопроизводительные рабочие станции).

Надёжность ( англ. reliability) — определяется как среднее время наработки на отказ (MTBF).

Количество операций ввода-вывода в секунду — у современных дисков это около 50 оп./с при произвольном доступе к накопителю и около 100 оп./с при последовательном доступе.

Потребление энергии — важный фактор для мобильных устройств.

Уровень шума — шум, который производит механика накопителя при его работе. Указывается в децибелах . Тихими накопителями считаются устройства с уровнем шума около 26 дБ и ниже. Шум состоит из шума вращения шпинделя (в том числе аэродинамического) и шума позиционирования.

Сопротивляемость ударам ( англ. G-shock rating) — сопротивляемость накопителя резким скачкам давления или ударам, измеряется в единицах допустимой перегрузки во включённом и выключенном состоянии.

Скорость передачи данных ( англ. Transfer Rate) при последовательном доступе:

— внутренняя зона диска: от 44,2 до 74,5 Мб/с;

— внешняя зона диска: от 60,0 до 111,4 Мб/с.

Объём буфера — буфером называется промежуточная память, предназначенная для сглаживания различий скорости чтения/записи и передачи по интерфейсу. В современных дисках он обычно варьируется от 8 до 64 Мб.

Жёсткий диск состоит из гермозоны и блока электроники.

Гермозона включает в себя корпус из прочного сплава, собственно диски (пластины) с магнитным покрытием, блок головок с устройством позиционирования, электропривод шпинделя .

Блок головок — пакет рычагов из пружинистой стали (по паре на каждый диск). Одним концом они закреплены на оси рядом с краем диска. На других концах (над дисками) закреплены головки.

Диски (пластины), как правило, изготовлены из металлического сплава. Хотя были попытки делать их из пластика и даже стекла, но такие пластины оказались хрупкими и недолговечными. Обе плоскости пластин, подобно магнитофонной ленте, покрыты тончайшей пылью ферромагнетика — окислов железа , марганца и других металлов. Точный состав и технология нанесения держатся в секрете. Большинство бюджетных устройств содержит 1 или 2 пластины, но существуют модели с бо́льшим числом пластин.

Диски жёстко закреплены на шпинделе. Во время работы шпиндель вращается со скоростью несколько тысяч оборотов в минуту. При такой скорости вблизи поверхности пластины создаётся мощный воздушный поток, который приподнимает головки и заставляет их парить над поверхностью пластины. Форма головок рассчитывается так, чтобы при работе обеспечить оптимальное расстояние от пластины. Пока диски не разогнались до скорости, необходимой для «взлёта» головок, парковочное устройство удерживает головки в зоне парковки. Это предотвращает повреждение головок и рабочей поверхности пластин. Шпиндельный двигатель жёсткого диска трехфазный, что обеспечивает стабильность вращения магнитных дисков, смонтированных на оси (шпинделе) двигателя. Статор двигателя содержит три обмотки, включенные звездой с отводом посередине, а ротор — постоянный секционный магнит. Для обеспечения малого биения на высоких оборотах в двигателе используются гидродинамические подшипники.

Устройство позиционирования головок состоит из неподвижной пары сильных неодимовых постоянных магнитов , а также катушки на подвижном блоке головок. Вопреки расхожему мнению, внутри гермозоны нет вакуума . Одни производители делают её герметичной (отсюда и название) и заполняют очищенным и осушенным воздухом или нейтральными газами, в частности, азотом ; а для выравнивания давления устанавливают тонкую металлическую или пластиковую мембрану. (В таком случае внутри корпуса жёсткого диска предусматривается маленький карман для пакетика силикагеля , который абсорбирует водяные пары, оставшиеся внутри корпуса после его герметизации). Другие производители выравнивают давление через небольшое отверстие с фильтром, способным задерживать очень мелкие (несколько микрометров ) частицы. Однако в этом случае выравнивается и влажность, а также могут проникнуть вредные газы. Выравнивание давления необходимо, чтобы предотвратить деформацию корпуса гермозоны при перепадах атмосферного давления и температуры, а также при прогреве устройства во время работы.

Пылинки, оказавшиеся при сборке в гермозоне и попавшие на поверхность диска, при вращении сносятся на ещё один фильтр — пылеуловитель.

В ранних жёстких дисках управляющая логика была вынесена на MFM или RLL контроллер компьютера, а плата электроники содержала только модули аналоговой обработки и управления шпиндельным двигателем, позиционером и коммутатором головок. Увеличение скоростей передачи данных вынудило разработчиков уменьшить до предела длину аналогового тракта, и в современных жёстких дисках блок электроники обычно содержит: управляющий блок, постоянное запоминающее устройство (ПЗУ), буферную память, интерфейсный блок и блок цифровой обработки сигнала .

Интерфейсный блок обеспечивает сопряжение электроники жёсткого диска с остальной системой.

Блок управления представляет собой систему управления , принимающую электрические сигналы позиционирования головок, и вырабатывающую управляющие воздействия приводом типа « звуковая катушка », коммутации информационных потоков с различных головок, управления работой всех остальных узлов (к примеру, управление скоростью вращения шпинделя), приёма и обработки сигналов с датчиков устройства (система датчиков может включать в себя одноосный акселерометр, используемый в качестве датчика удара, трёхосный акселерометр , используемый в качестве датчика свободного падения, датчик давления, датчик угловых ускорений, датчик температуры).

Блок ПЗУ хранит управляющие программы для блоков управления и цифровой обработки сигнала, а также служебную информацию винчестера.

Буферная память сглаживает разницу скоростей интерфейсной части и накопителя (используется быстродействующая статическая память ). Увеличение размера буферной памяти в некоторых случаях позволяет увеличить скорость работы накопителя.

Блок цифровой обработки сигнала осуществляет очистку считанного аналогового сигнала и его декодирование (извлечение цифровой информации). Для цифровой обработки применяются различные методы, например, метод PRML (Partial Response Maximum Likelihood — максимальное правдоподобие при неполном отклике). Осуществляется сравнение принятого сигнала с образцами. При этом выбирается образец, наиболее похожий по форме и временным характеристикам с декодируемым сигналом.

На заключительном этапе сборки устройства поверхности пластин форматируются — на них формируются дорожки и секторы. Конкретный способ определяется производителем и/или стандартом, но, как минимум, на каждую дорожку наносится магнитная метка, обозначающая её начало.

С целью адресации пространства поверхности пластин диска делятся на дорожки — концентрические кольцевые области (рисунок 21). Каждая дорожка делится на равные отрезки — секторы.

Цилиндр — совокупность дорожек, равноотстоящих от центра, на всех рабочих поверхностях пластин жёсткого диска. Номер головки задает используемую рабочую поверхность (то есть конкретную дорожку из цилиндра), а номер сектора — конкретный сектор на дорожке.

Рисунок 21 — Геометрия магнитного диска

При способе адресации CHS сектор адресуется по его физическому положению на диске 3 координатами — номером цилиндра, номером головки и номером сектора

При способе адресации LBA адрес блоков данных на носителе задаётся с помощью логического линейного адреса.

CMOS-RAM

Специально выделенный участок внутренней памяти персонального компьютера для хранения его конфигурации. Своё название он получил от одноимённой технологии, которая обладает невысоким энергопотреблением. Эта память считается энергонезависимой, поскольку информация в ней не теряется при отключении питания ПК. Однако это не совсем так. Если вы вдруг забыли свой пароль от компьютера, вам достаточно снять крышку с системного блока, найти на материнской плате батарейку-таблетку и вынуть её. Без этого аккумулятора все настройки компьютера, включая пароль, будут обнулены.

Ещё одна внутренняя память персонального компьютера, служащая для хранения графической информации. В персональном компьютере существует 2 способа её реализации.

Первый — это встроенная видеокарта. В этом случае память реализуется на материнской плате. Второй вариант реализации видеопамяти — на встраиваемой видеокарте. Как и при работе с оперативкой, от объёма зависит количество информации, обрабатываемой центральным процессором, и скорость её вывода на экран. От объёма видеопамяти зависит быстродействие мощных графических редакторов, высококачественного видео и современных игр.

Жесткий диск

Это постоянная энергонезависимая память вашей системы. Именно на жестком диске хранится вся операционная система вместе с пользовательскими данными. Редко, но бывает, что жесткий диск выходит из строя. В таком случае, восстановить систему и всю ту информацию, которая на нем хранилась, удастся только вашими молитвами. Точнее, восстановление вполне может получиться как частично, так и полностью, но сама его возможность зависит от того, что именно и как сломалось в винчестере. Новичкам, скорее всего, понадобится помощь более опытных пользователей. Здесь станет очень уместным напоминание о регулярном резервном копировании важной для вас информации.

Понятно, что жесткие диски характеризуются своим объемом, но еще одна немаловажная характеристика – это скорость вращения. Жесткий диск – это круглый магнит, который в прямом смысле этого слова приклеивает к себе информацию. Эту информацию считывают специальные неподвижные головки, которым жесткий диск вращаясь с определенной скоростью подставляет свои ячейки с хранящимися там необходимыми для чтения битами и байтами данных. Конечно, чем быстрее крутится жесткий диск, тем быстрее читается информация, тем быстрее копируются и вставляются файлы и пр. полезности. Одним словом, это полезный бонус для быстродействия вашего компьютера и комфорта работы. Если вы разберете старый хард, то все это хозяйство увидите собственными глазами. Если разберете новый, то тоже увидите, но восстановить сам диск или информацию, которая там хранилась не помогут даже молитвы.

sam28aprl

Подводим итог

В этой статье мы кратко узнали все подробности, как в теории, так и на практике, касающиеся оперативного запоминающего устройства и их классификации, а также рассмотрели, в чем разница между ОЗУ и ПЗУ.

Также наш материал будет особенно полезен тем пользователям ПК, которые хотят узнать свой тип ОЗУ, установленный в компьютере, или узнать какую оперативку нужно применять для различных конфигураций.

Надеемся, наш материал окажется интересным для наших читателей и позволит им решить множество задач, связанных с оперативной памятью.

Как узнать какая оперативная память нужна вашему компьютеру

Чтобы узнать, какая оперативная память нужна на вашем компьютере, сначала нужно определить ее размер, а также ее стандарт. Для этого проще всего открыть компьютер, чтобы увидеть память, которую Вы используете в настоящее время. Понять DIMM это или SODIMM, довольно просто — достаточно посмотреть на ее размер.

Чтобы сказать, что это за стандарт, нужно посмотреть на контакты, которые подключаются к материнской плате. В памяти DDR4 используются 288 контактов, в то время как в памяти DDR3 только 240.

Стандарты оперативной памяти

Вы также можете отличить их по положению выемки — зазору, который всегда находится между двумя рядами контактов. Выемка памяти DDR3 расположена ближе к одному краю, в то время как в памяти DDR4 она находится по центру.

И, наконец, тип оперативной памяти можно определить по высоте модулей. Так DDR4 обычно на миллиметр выше DDR3. Ширина обычно одинаковая у всех типов, хотя все эти параметры также могут варьироваться в зависимости от некоторых моделей.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector