Как устроен и зачем нужен квантовый компьютер

Со скоростью света. Как квантовые компьютеры изменят мир и жизнь россиян?

Компьютерные технологии неустанно развиваются. Обычные смартфоны теперь способны выполнять задачи, на решение которых в прошлом требовалась мощность огромных вычислительных машин. Впрочем, человечество стоит на пороге куда более масштабного технологического скачка. Он произойдет с появлением полноценного квантового компьютера. Всего за несколько минут он сможет решить задачу, на которую даже у самых мощных суперкомпьютеров уйдут десятилетия и даже столетия вычислений. Пока существуют только прототипы квантовых компьютеров, однако технологии с каждым годом совершенствуются. «Лента.ру» и Homo Science рассказывают, что такое квантовые технологии и каким образом они могут изменить мир.

Одним из первых о создании квантового компьютера заговорил американский физик Ричард Фейнман в 1982 году. По мысли ученого, такие машины способны моделировать сложные квантовые системы, например, атомы, что не по силам обычному, классическому компьютеру, которому для этого требуется колоссальный объем вычислительных ресурсов. Стало ясно, что квантовые компьютеры — хотя на тот момент не существовало даже их прототипов — способны на то, на что не способны даже мощнейшие суперкомпьютеры.

В 1996 году американский математик Лов Гровер предложил квантовый алгоритм решения задачи перебора, который теоретически способен ускорить поиск внутри гигантских баз неупорядоченных данных. Этот алгоритм был реализован в 1998 году с помощью компьютера, состоящего из двух кубитов на базе ядерного магнитного резонанса (ЯМР) — того же самого явления, что стало основой для магнитно-резонансных томографов. Годом позже было показано, что ЯМР-компьютеры не имеют никакого преимущества перед обычными компьютерами, поскольку в них не реализуется особый феномен, называемый квантовой запутанностью.

Пока одни ученые искали алгоритмы, которые можно реализовать на квантовом компьютере, другие занимались физической реализацией квантовых вычислений. В 1995 году физики Сирак и Цоллер предложили ионную ловушку для создания кубитов, а в 1999 году японский физик Ясунобу Накамура продемонстрировал рабочий кубит на основе сверхпроводников.

Технологии стремительно развивались, и в 2009 году была опубликована работа, в которой исследователи использовали два запутанных фотона для вычисления энергии молекулы водорода, что слишком сложно для классических компьютеров. Это была первая демонстрация того, что квантовые вычисления способны привести к полезному результату.

Спустя десять лет, в 2019 году, Google объявила о достижении квантового превосходства: всего за 200 секунд их компьютер выполнил серию вычислений, на которую у суперкомпьютера ушло бы десять тысяч лет. А всего через год о достижении квантового превосходства сообщили китайские ученые: их компьютер на запутанных фотонах Jiuzhang за 200 секунд решил задачу, которая потребовала бы у самого мощного суперкомпьютера до 2,5 миллиардов лет вычислений.

Сейчас уже ведется работа по подготовке человеческого общества к появлению полноценных квантовых компьютеров: разрабатываются новые стандарты, создаются дорожные карты, стратегии выхода на рынок и сфера применения квантовых вычислений.

В России дорожная карта развития квантовых вычислений разработана совместными усилиями Росатома и Российского квантового центра.

На создание квантовых компьютеров и облачной платформы для доступа к ним планируется потратить 23,6 миллиарда рублей.

Все решения уже известны

Ещё одна особенность кубитов — зависимость значения от измерения. Это значит, что программист не узнает значение кубита до тех пор, пока его не измерит, а сам факт измерения тоже влияет на значение кубита. Звучит странно, но это особенность квантовых частиц.

Именно благодаря тому, что кубит находится во всех состояниях одновременно до тех пор, пока его не измерили, компьютер мгновенно перебирает все возможные варианты решения, потому что кубиты связаны между собой. Получается, что решение становится известно сразу, как только введены все данные. Суперпозиция и даёт ту параллельность в вычислениях, которая ускоряет работу алгоритмов в разы.

Вся сложность в том, что результат работы квантового компьютера — это правильный ответ с какой-то долей вероятности. И нужно строить алгоритмы таким образом, чтобы максимально приблизить вероятность правильного ответа к единице.

Рабочая температура внутри таких компьютеров — минус 273 градуса по Цельсию

Зачем это нужно?

Сразу скажем, что квантовый компьютер вряд ли сможет заменить обычный, да он и не предназначен для этого. Его удел — решение вполне определённых задач. Например, при помощи так называемого алгоритма Шора квантовый компьютер может очень быстро раскладывать числа на простые множители, что позволяет щёлкать как орешки многие современные криптографические системы. Это обстоятельство уже привело к появлению такого направления, как квантовая криптография. А квантовый алгоритм Гровера показывает квадратичный прирост скорости при поиске в базе данных. Наконец, квантовый компьютер будет весьма полезен при моделировании квантовых систем: если взять квантовую систему всего лишь из 100 элементов, то для её моделирования на классическом компьютере нам понадобятся 2 100 переменных и соответствующее количество памяти для их хранения (для сравнения, один терабайт — это всего лишь 2 40 степени байт). Именно поэтому у Фейнмана в своё время возникли определённые проблемы. Однако такая система может быть смоделирована на 100-кубитном квантовом компьютере.

Стоит отметить, что задача построения квантового компьютера в настоящее время не решена, существуют только ограниченные его варианты (до 512 кубит). Первые квантовые компьютеры (7-кубитные) были построены в лабораториях IBM и использовали принцип ядерного магнитного резонанса для воздействия на спин отдельных атомов. Сейчас наиболее перспективным считается использование сверхпроводящих элементов или твердотельных квантовых точек на полупроводниках.

Самым громким именем в области квантовых вычислений сейчас является компания D-Wave. Стоит сказать, что её изделия не являются «настоящими» квантовыми компьютерами, так как они используют не универсальные логические блоки, а принцип квантовой нормализации, который подходит для решения только крайне ограниченного количества задач. В частности, упомянутый выше алгоритм Шора к их числу не относится.

Мнения независимых экспертов о квантовых компьютерах D-Wave крайне противоречивы. С одной стороны, было продемонстрировано, что на определённых задачах они заметно (иногда — на три порядка) быстрее, чем классические вычислительные машины. С другой — на многих задачах классические компьютеры, использующие алгоритмы симуляции квантовой нормализации, способны значительно обогнать 128-кубитный D-Wave One. Не слишком впечатляющий результат, особенно если учесть, что D-Wave One является специализированной машиной, «заточенной» конкретно под решение задач дискретного программирования (например, комбинаторной оптимизации), в то время как обычный компьютер можно использовать для чего угодно. Более того, исследователи из IBM и Калифорнийского университета в Беркли утверждают, что машины D-Wave вообще не являются квантовыми компьютерами. В общем, всё как у классика: кто на ком стоял — непонятно.

Чем квантовый компьютер превосходит обычный?

Принцип суперпозиции, при котором базовая единица информации может существовать более чем в одном состоянии одновременно, позволяет квантовому компьютеру хранить и обрабатывать одновременно гораздо больше данных, чем любому другому. При этом большими объемами данных можно управлять одновременно с помощью концепции, известной как квантовый параллелизм. Имея возможность вычислять и анализировать разные состояния данных одновременно, а не по одному, квантовые системы могут давать результаты с очень высокой скоростью.

Принцип суперпозиции, при котором базовая единица информации может существовать более чем в одном состоянии одновременно, позволяет квантовому компьютеру хранить и обрабатывать одновременно гораздо больше данных, чем любому другому.

Внутреннее устройство квантового компьютера

Квантовые системы можно было бы применить для того, чтобы решить проблему коммивояжера — задачу, которая требует нахождения кратчайшего маршрута между множеством городов, прежде чем вернуться домой. А решение этой задачи позволило бы более грамотно выстраивать навигацию и планировать маршруты по всему миру, что удешевило бы и упростило перемещения людей и грузов. Подобного рода исследования уже проводит Volkswagen совместно с D-Wave и Google.

Фото:Reuters

Квантовый компьютер способен обрабатывать огромные объемы финансовых, фармацевтических или климатологических данных, чтобы найти оптимальные решения проблем в этих отраслях.

Наконец, квантовые системы способны найти новые методы шифрования и легко взламывать даже самые сложные шифры.

IBM Quantum уже работает с клиентами над решением подобных проблем. Компания помогает разработать новое поколение электромобилей на технологии квантовых батарей с Daimler; технологию снижения выбросов углерода в атмосферу с помощью открытия экологичных материалов с ExxonMobil: ищет истоки зарождения Вселенной вместе с CERN. А Google использовала Sycamore для точного моделирования химической реакции.

История идеи

Идею квантовых вычислительных устройств впервые высказал в 1980 году советский математик Юрий Манин. В книге «Вычислимое и невычислимое», рассуждая о сложности процесса считывания и записи биологической информации с молекул ДНК, он заметил, что для моделирования этого процесса могли бы подойти квантовые устройства. Здесь же Манин указал указал на главное их преимущество — рост числа состояний таких устройств идет по степенному закону:

Годом позже, в мае 1981 года, идею квантового компьютера сформулировал физик и нобелевский лауреат Ричард Фейнман в докладе, посвященном возможности моделирования физических процессов.

Ученый подчеркнул, что все явления подчиняются квантовым законам (а классическая физика — только приближение). Если поведение одиночного квантового объекта достаточно легко поддается моделированию с помощью компьютера, то нарастание количества элементов ведет к экспоненциальному росту сложности вычислений.

Из этого следовало два выхода, говорил Фейнман: первый — признать, что квантовые системы не поддаются моделированию с помощью компьютеров, и второй — построить вычислительную машину из квантовых элементов, подчиняющихся тем же квантовым законам, что и моделируемая система.

В своем докладе Фейнман впервые сформулировал понятие квантового симулятора — квантовой системы, воспроизводящей поведение какой-то другой квантовой системы, а также универсального квантового компьютера — такой квантовой системы, которую можно перенастроить (перепрограммировать) так, чтобы она была способна моделировать поведение многих других систем.

Наконец, Фейнман также впервые описал пример работы системы из кубитов, созданных из фотонов с определенной поляризацией.

Работа одного из элементов квантового компьютера в представлении Фейнмана

В 1985 году Дэвид Дойч из Оксфордского университета разработал теорию универсального квантового компьютера как квантовой машины Тьюринга.

Однако первый в мире квантовый компьютер мог появиться намного раньше, еще до статей Манина и Фейнмана, в 1950-е годы. Тогда японский ученый Гото Эйичи экспериментировал с низкотемпературной электроникой для разработки миниатюрного магнитно-управляемого бита, то есть системы, способной находиться в двух состояниях и служить, как и обычный полупроводниковый транзистор, основным элементом компьютера.

Эйичи назвал свой бит параметроном, и его первый прототип был создан в 1958 году в Токийском университете. Ниже представлен схематический чертеж оригинального устройства Гото.

Гото Эйичи и его команда повысить энергетический барьер между двумя состояниями битов, чтобы их гарантированно можно было различить. Иначе говоря, японские ученые хотели, чтобы устройство ни в коем случае не оказывалось в бистабильном состоянии, то есть в состоянии квантовой суперпозиции.

Такое состояние рассматривалось ими как нечто, вызывающее неуправляемый и нежелательный шум, в то время как квантовые эффекты могли дать им принципиально новый метод вычислений. Если бы не стремление японских специалистов к избавлению от ошибок, квантовые симуляторы, возможно, появились бы на полвека раньше.

Что значит квантовая революция для IT-индустрии

Пока что ничего. Мы находимся в так называемой эре NISQ — Noisy Intermediate-Scale Quantum technology. Это значит, что сейчас нет таких квантовых устройств, которые могли бы соперничать с классическими компьютерами. Пока нельзя создать квантовую систему, которая по всем параметрам превзойдет классическую: достаточно небольшую, универсальную и изолированную. Пока получаются только системы, которые выполняют узкоспециальные задачи определенного сорта лучше, чем вычислительный кластер. Квантовые технологии пока непрактичны. Хотелось бы использовать этот огромный потенциал для своих ежедневных задач, но неизвестно, как это сделать.

У квантовых технологий огромный «подрывной потенциал». Если научиться хорошо решать хотя бы одну из оптимизационных задач, о которых говорилось выше, это изменит одну конкретную индустрию, как минимум. Надеюсь, что через 5-10 лет в некоторых направлениях ситуация изменится.

Многие компании создают прообразы настоящих квантовых компьютеров — они уже что-то умеют делать, но пока этого недостаточно.

В Сколтехе мы пытаемся ответить на главный вопрос — как и для чего можно использовать квантовый компьютер. С моими коллегами Владимиром Антоновым и Олегом Астафьевым трудимся над проектом, в рамках которого работаем над маленьким квантовым компьютером. К сожалению, часть архитектурных и дизайнерских вопросов еще не решены, потому что мы все еще не уверены, какие именно задачи должен будет решать этот компьютер. Если этот вопрос вам интересен, приглашаю его обсудить.

То, с каким интересом участники HighLoad++ восприняли доклад о квантовых компьютерах и АЭС, натолкнуло нас на мысль уделить большее внимание подобным темам на наших конференциях. Поэтому на РИТ++ в мае в онлайне у нас будут секции научпопа и применения IT в смежных областях. И это только малая часть новинок фестиваля «Российские интернет-технологии» — подробнее смотрите на сайте и в рассылке.

Мы не ожидаем, что кванты полностью заменят классические компьютеры. Но, возможно, в будущем в каждом доме будет доступ к квантовому процессору, который при необходимости сможет промоделировать молекулу или обработать изображение, графику намного быстрее классического. То есть нужно будет не в макбук квантовые процессоры вставлять, а подключаться к облачному доступу.

И в этом случае вам не нужен дорогой квантовый компьютер дома. Уже сейчас есть готовые системы, через облако которых мы можем запускать необходимые задачи.

Мир будущего — это мир разных процессоров для разных типов задач. Даже квантовые процессоры, вероятнее всего, будут разных типов.

Хотя прогнозировать развитие технологий крайне сложно. В интернете есть подборка ошибочных предсказаний в отношении классических компьютеров. Например, что миру будет достаточно пяти компьютеров. Или что нет причин, по которой компьютер должен быть персональным.

Произошла революция, масштабы которой было крайне сложно предсказать, находясь в самой первой фазе развития. Сегодня квантовые компьютеры переживают эту фазу: они только-только создаются, но уже начинают менять наш мир и индустрии. Масштаб этих изменений будет понятен со временем, но уже очевидно, что он колоссален.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector