Как устроен и зачем нужен квантовый компьютер

Квантовый компьютер — что это простыми словами, принцип действия

Очередной привет всем читателям моего блога! Вчера в новостях проскочила в очередной раз пара сюжетов о «квантовом» компьютере. Мы из школьного курса физики знаем, что квант — это некая одинаковая порция энергии, еще есть словосочетание «квантовый скачок», то есть мнгновенный переход с некоего уровня энергии на еще более высокий уровень.. Давайте вместе разбираться, что такое квантовый компьютер, и что нас всех ожидает, когда появится эта чудо машина

Я впервые начал интересоваться этой темой при просмотре фильмов про Эдварда Сноудена. Как известно, этот американский гражданин собрал несколько терабайт конфиденциальной информации (компромата) о деятельности спецслужб США, хорошенько зашифровал ее и выложил в Интернет. «Если, сказал он, со мной что-нибудь случиться, информация будет расшифрована и станет таким образом доступна для всех.»

Расчет был на то, что информация эта «горячая», будет актуальна еще лет десять. А расшифровать ее можно современными вычислительными мощностями то же не меньше, чем через десять или больше лет. Квантовый же компьютер по ожиданиям разработчиков справится с этой задачей минут за двадцать пять.. Криптографы в панике. Вот такой «квантовый» скачок нас скоро ожидает, друзья.

Все решения уже известны

Ещё одна особенность кубитов — зависимость значения от измерения. Это значит, что программист не узнает значение кубита до тех пор, пока его не измерит, а сам факт измерения тоже влияет на значение кубита. Звучит странно, но это особенность квантовых частиц.

Именно благодаря тому, что кубит находится во всех состояниях одновременно до тех пор, пока его не измерили, компьютер мгновенно перебирает все возможные варианты решения, потому что кубиты связаны между собой. Получается, что решение становится известно сразу, как только введены все данные. Суперпозиция и даёт ту параллельность в вычислениях, которая ускоряет работу алгоритмов в разы.

Вся сложность в том, что результат работы квантового компьютера — это правильный ответ с какой-то долей вероятности. И нужно строить алгоритмы таким образом, чтобы максимально приблизить вероятность правильного ответа к единице.

Рабочая температура внутри таких компьютеров — минус 273 градуса по Цельсию

Как работает квантовый компьютер

Квантовые компьютеры для вычислений используют такие свойства квантовых систем, как суперпозиция и запутанность. В суперпозиции квантовые частицы представляют собой комбинацию всех возможных состояний, пока не произойдет их наблюдение и измерение. Запутанные кубиты образуют единую систему и влияют друг на друга. Измерив состояние одного кубита, возможно сделать вывод об остальных. С увеличением числа запутанных кубитов экспоненциально растет способность квантовых компьютеров обрабатывать информацию.

Биты и кубиты

Базовым элементом, выполняющим логические операции в классическом компьютере, является вентиль. Для работы квантового компьютера используются квантовые вентили, собранные из кубитов. Они бывают однокубитные и двухкубитные. Также существуют универсальные наборы вентилей, с помощью которых можно выполнить любое квантовое вычисление

Кроме того, квантовые компьютеры не могут работать со стандартным софтом вроде Windows. Для них требуется своя операционная система и приложения. Некоторые технологические гиганты уже предлагают организациям опцию квантовых вычислений в облаке. Облачные квантовые вычисления обеспечивают прямой доступ к эмуляторам, симуляторам и квантовым процессорам.

Квантовые вычисления в облаке

Поставщики также предоставляют платформы разработки и документацию для языков и инструментов вычислений. IBM уже представила программную платформу для квантовых вычислений с открытым исходным кодом под названием Qiskit. А Microsoft выпустила инструмент бесплатного разработчика вычислительной техники на языке Q# и симулятор квантовых вычислений. Над разработкой ПО для квантовых компьютеров работают также 1QBit, Cambridge Quantum Computing, QSimulate, Rahko, Zapata и другие компании.

Для работы квантовых компьютеров требуются квантовые алгоритмы. Из наиболее известных квантовых алгоритмов можно выделить три:

    (разложения числа на простые множители) (решение задачи перебора, быстрый поиск в неупорядоченной базе данных) (ответ на вопрос, постоянная или сбалансированная функция)

Квантовый компьютер работает на вероятностном принципе. Его результатом работы является распределение вероятностей возможных ответов, наиболее вероятный ответ обычно является лучшим решением.

Квантовые кубиты в физической реализации бывают нескольких типов: сверхпроводниковые, зарядовые, ионные ловушки, квантовые точки и другие.

Настоящий уровень развития технологий позволяет создать большое количество кубитов, сложность возникает с устойчивостью такой системы. Как и все квантовые системы, кубиты легко теряют заданное квантовое состояние при взаимодействии с окружением (происходит их декогеренция). При этом в работе квантового компьютера растет количество ошибок вычислений. Чтобы обеспечить ее устойчивость при проведении вычислений, требуется оградить систему от любого фонового шума, например, в случае сверхпроводниковых систем, охлаждая их до температур, близких к нулю по Кельвину (-273,1 °C). Разработчики используют сверхтекучие жидкости, чтобы добиться такого охлаждения.

Фото:НИТУ

Как объяснил Руслан Юнусов, исторически сверхпроводники считались наиболее перспективным направлением благодаря хорошей масштабируемости, стабильности во времени, контроле параметров и относительной легкости управления ими. Именно на этой платформе построены квантовые компьютеры IBM, Google и Rigetti. Однако, по его словам, в последнее время все большую популярность приобретают альтернативные квантовые платформы: ионы, демонстрирующие высочайшие на сегодняшний день показатели стабильности и точности операций (Honeywell, IonQ), и фотоны, преимуществами которых являются малый размер фотонного процессора и возможность работы при комнатных температурах (Xanadu, PsiQuantum, Quix).

Кроме того, развиваются новые концепции: системы на поляритонах или магнонах, системы бозе-эйнштейновских конденсатов, когерентные машины Изинга, когерентные CMOS-архитектуры. Так, в поляритонной архитектуре битом служит поляритон — квазичастица, сочетающая свойства света и вещества. Теоретически, поляритонный квантовый компьютер сможет работать при комнатной температуре, что снизит его стоимость и упростит изготовление. В настоящее время изучением поляритонных структур занимается Сколтех.

Язык программирования квантовых вычислений

Квантовые алгоритмы предоставляют возможность анализировать данные и создавать модели на основе данных. Эти алгоритмы написаны на квантово-ориентированном языке программирования. Исследователи и технологические компании разработали несколько квантовых языков.

Вот некоторые из языков программирования квантовых вычислений:

  • QISKit: Quantum Information Software Kit от IBM – это библиотека полного стека для написания, моделирования и запуска квантовых программ.
  • Q#: язык программирования, включенный в Microsoft Quantum Development Kit. Комплект разработчика включает в себя квантовый симулятор и библиотеки алгоритмов.
  • Cirq: квантовый язык, разработанный Google, который использует библиотеку python для написания схем и запуска этих схем в квантовых компьютерах и симуляторах.
  • Forest: среда разработки, созданная Rigetti Computing, которая используется для написания и запуска квантовых программ.

Со скоростью света

Квантовые вычисления на фотонах на данный момент находятся дальше всего от практического применения по сравнению с конкурирующими платформами. Если на холодных атомах, ионах и сверхпроводниках созданы уже десятки кубитов, то с фотонами дело обстоит несколько по-иному. «Тем не менее платформа невероятно привлекательна, – утверждает старший научный сотрудник группы «Квантовая оптика» Александр Уланов. – По двум причинам. Во-первых, фотон – идеальный переносчик информации в квантовом мире, так как практически не взаимодействует с окружающей средой. Во-вторых, он перемещается со скоростью света. Это гигантское преимущество для квантовых коммуникаций».

Уникальность фотонов еще в том, что они допускают кодирование информации двумя способами – дискретным, при помощи поляризации, и непрерывным, поэтому российская дорожная карта подразумевает как развитие дискретных вычислений, так и непрерывные симуляции на фотонах.

Но есть и проблемы, связанные с этой технологией. Они частично объясняют ее отставание от других платформ. Первая – фотонами сложно управлять. Однокубитные операции делать довольно легко, а вот двухкубитные – сложнее, по словам Александра. Так устроена природа: одну частицу можно изолировать и делать с ней очень точные манипуляции. Если частиц две, то их нужно не просто изолировать, но и заставить взаимодействовать, обмениваться квантовой информацией. Еще одна проблема – квантовая память для света. Если у нас есть какое-то квантовое состояние фотона, то сохранить его, а потом извлечь с большой эффективностью и точностью – очень сложная задача, и практически она еще не решена.

Если математическая модель, которая используется для вычислений с помощью сверхпроводников, ионов и атомов, понятна, то у фотонов гораздо большее многообразие способов квантовых вычислений. Этот потенциал приковывает к ним большой интерес. Фотоны – подарок природы. На это направление возлагаются большие надежды, поскольку школа, которая стоит за фундаментальной оптикой, в России достаточно сильная. «В эту гонку можно смело вклиниться, – считает Александр Уланов. – Здесь наше отставание от мировых лабораторий не является катастрофическим. Все проходится за разумные сроки при выполнении условий, одно из которых – наличие собственного производства фотонных интегральных схем».

Читайте также

Идея этой задачи какая? Мы определенным образом выставляем с кубитами однокубитные операции — которые воздействуют только на один кубит, и двухкубитные — которые воздействуют на два кубита. Кубитов достаточно много, около 50, и операций с ними выполняется тоже достаточно много. В случае эксперимента Google суммарно это полторы тысячи операций. А раз операций так много, то будет сложно предсказать распределение результатов на выходе.

— Если мы будем совершенствовать суперкомпьютеры, давать им похожие задачи, чтобы они учились, то время будет сокращаться?

— Да, если будем по-другому использовать ресурсы для того, чтобы моделировать квантовые системы. Специалисты IBM заявили, что можно сократить разрыв до нескольких дней, Alibaba — что до двадцати дней. Хотя всё равно разница существенная — сотни секунд и дни.

Пока мы говорим про абстрактное превосходство, оно было показано только на одной задаче, но следующий шаг в мире квантовых вычислений — перейти к демонстрации квантового превосходства в полезных и востребованных задачах. По словам Скотта Ааронсона , сейчас мы наблюдаем битву квантового Давида и классического Голиафа. Масштаб их сил именно такой.

Квантовые нейроны

Основная задача нейросети, будь она классической или квантовой – распознавать закономерности. Она создана по образу человеческого мозга и представляет собой решётку из базовых вычислительных единиц – «нейронов». Каждый из них может быть не сложнее переключателя вкл/выкл. Нейрон отслеживает выход множества других нейронов, будто бы голосующих по определённому вопросы, и переключается в положение «вкл» если достаточно много нейронов проголосовали «за». Обычно нейроны упорядочиваются в слои. Первый слой принимает ввод (к примеру, пиксели изображения), средние слои создают различные комбинации ввода (представляя такие структуры, как грани и геометрические фигуры), а последний слой выдаёт вывод (высокоуровневое описание того, что содержится на картинке).

Глубинные нейросети обучаются, регулируя веса их связей так, чтобы наилучшим образом передавать сигналы через несколько слоёв к нейронам, связанным с нужными обобщёнными концепциями

Что важно, вся эта схема не проработана заранее, а адаптируется в процессе обучения методом проб и ошибок. Например, мы можем скармливать сети изображения, подписанные «котёнок» или «щенок». Каждой картинке она присваивает метку, проверяет, правильно ли у неё получилось, и если нет – подправляет нейронные связи. Сначала она работает почти случайно, но затем улучшает результаты; после, допустим, 10 000 примеров она начинает разбираться в домашних животных. В серьёзной нейросети может быть миллиард внутренних связей, и всех их необходимо подстроить.

На классическом компьютере эти связи представлены баснословной матрицей чисел, а работа сети означает выполнение матричных вычислений. Обычно эти операции с матрицей отдают на обработку особому чипу – к примеру, графическому процессору. Но никто не справляется с матричными операциями лучше квантового компьютера. «Обработка больших матриц и векторов на квантовом компьютере происходит экспоненциально быстрее», — говорит Сет Ллойд, физик из Массачусетского технологического института и пионер квантовых вычислений.

Для решения этой задачи квантовые компьютеры способны воспользоваться преимуществами экспоненциальной природы квантовой системы. Большая часть информационной ёмкости квантовой системы содержится не в её отдельных единицах данных – кубитах, квантовых аналогах битов классического компьютера – но в совместных свойствах этих кубитов. У двух кубитов совместно есть четыре состояния: оба вкл, оба выкл, вкл/выкл и выкл/вкл. У каждого есть определённый вес, или «амплитуда», которая может играть роль нейрона. Если добавить третий кубит, можно представить уже восемь нейронов; четвёртый – 16. Ёмкость машины растёт экспоненциально. По сути, нейроны размазаны по всей системе. Когда вы изменяете состояние четырёх кубитов, вы обрабатываете 16 нейронов одним махом, а классическому компьютеру пришлось бы обрабатывать эти числа по одному.

Ллойд оценивает, что 60 кубитов хватит для кодирования такого количества данных, которое человечество производит за год, а 300 могут содержать классическое информационное наполнение всей Вселенной. У самого большого из имеющихся на сегодня квантовых компьютеров, построенного IBM, Intel и Google, порядка 50 кубитов. И это только если принять, что каждая амплитуда представляет один классический бит. На самом деле амплитуды – величины непрерывные (и представляют комплексные числа), и с точностью, подходящей для решения практических задач, каждая из них может хранить до 15 битов, говорит Ааронсон.

Но способность квантового компьютера хранить информацию в сжатом виде не делает его быстрее. Нужно иметь возможность использовать эти кубиты. В 2008 Ллойд, физик Арам Хэрроу из MIT и Авинатан Хассидим, специалист по информатике из Университета имени Бар-Илана в Израиле показали, как можно выполнить важную алгебраическую операцию по инвертированию матрицы. Они разбили её на последовательность логических операций, которые можно выполнять на квантовом компьютере. Их алгоритм работает для огромного количества технологий МО. И ему не требуется так много шагов, как, допустим, разложению большого числа на множители. Компьютер способен быстро выполнить задачу по классификации до того, как шум – крупный ограничивающий фактор современных технологий – сможет всё испортить.

«До того, как у вас будет полностью универсальный, устойчивый к ошибкам квантовый компьютер, у вас может появиться просто некое квантовое преимущество», — сказал Кристан Темм из Исследовательского центра им. Томаса Уотсона компании IBM.

Существуют ли настоящие квантовые компьютеры?

— Они уже есть, и вполне настоящие. Их покупают и продают. Канадская компания «Ди-вэйв» (D-Wave) с 2011 года продает процессоры на нескольких сотнях и более кубитов. Одним из покупателей является аэрокосмическая корпорация «Локхид Мартин» (Lockheed Martin), приобретшая один из первых 128-кубитных процессоров за $11 млн. В начале прошлого года «Ди-вэйв» выпустила устройство с 2000 кубитов.

Правда, на стол в каждой отдельной семье квантовый компьютер поставить трудно — это ящик трехметровой высоты стоимостью $15 млн, внутри которого холоднее, чем в открытом космосе, нагретом реликтовым излучением до 2,725 Кельвина или -270,425 градусов по Цельсию. [Компьютер D-Wave работает при температуре -273 градуса по Цельсию, тогда как на орбите Земли средняя температура абсолютно черного тела составит +4 градуса — прим. Onliner.by]. И даже если оставить сомнения в истинной квантовости компьютера «Ди-вэйв», выгода от него — лишь для отдельных специализированных задач.

В начале прошлого года D-Wave выпустила устройство с 2000 кубитов, которое работает при температуре −273 градуса по Цельсию

В некоторых случаях речь идет о задачах по оптимизации функции затрат по принципу квантового отжига. Например, компании Google это позволило в одном из таких алгоритмов добиться в 100 млн раз большего быстродействия по сравнению с обычным компьютером.

А летом прошлого года группа физиков под руководством профессора Гарварда и сооснователя Российского квантового центра Михаила Лукина смогла создать 51-кубитный квантовый компьютер для моделирования квантовых систем, то есть квантовый симулятор. «Наш симулятор обладает достаточно хорошей когерентностью и довольно большим количеством кубитов, но все это есть и у других систем. Что важно — нам удалось сделать систему с высокой степенью программируемости», — говорил Михаил Лукин в интервью РБК. Квантовый симулятор, по мнению американского ученого Кристофера Монро, это то, что можно запрограммировать под выполнение лишь определенного вида задач и со временем превратить в универсальный квантовый компьютер, когда станет возможно программировать симулятор произвольным образом. Михаил Лукин отмечает, что на данном этапе исследований грань между компьютером и симулятором очень размыта.

Компания Intel в октябре прошлого года объявила о выпуске экспериментального 17-кубитного квантового процессора. Разработчики утверждают, что применили новую архитектуру, которая позволила повысить надежность, улучшить температурные характеристики и изоляцию от помех из-за совместной работы кубитов.

Работы ведутся. Как в середине прошлого века ученые предполагали, что на весь мир хватит и пяти компьютеров, так в нынешнем столетии хочется надеяться, что и задач для квантовых компьютеров станет больше, и для их производства найдутся эффективные и масштабируемые технологии. Пока же есть загвоздки.

Когда можно будет купить квантовый компьютер

Купить квантовый компьютер сегодня для обычного человека недоступно. Но, это не означает, что их не существует. Эти машины уже собраны и работают. Их разрабатывают и собирают уже сейчас такие крупные компании, как Гугл, Майкрософт и др.

Во многих научно-исследовательских институтах сегодня есть группы, занимающиеся разработкой квантовых технологий и созданием на их основе супербыстрых компьютеров.

Компания IBM уже сделала заявление, что в 2023 г она выпустит первый квантовый компьютер коммерческого назначения. Уже сейчас IBM предоставляет возможность желающим испытать на практике подобные устройства. Они создали специальный облачный сервис IBM Quantum Experience.

Супермощный и быстрый квантовый компьютер – это кардинально новая система. Она отлична от привычной нам фундаментально. По сути, эти две системы несравнимы, как, например, счеты и суперкомпьютер. И, по большому счету, неважно, как скоро они появятся на полках магазинов. Они смогут работать в крупных дата-центрах, которые, несомненно, сделают нашу жизнь более комфортной.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector