Как устроен блок питания для компьютера и из чего состоит

Устройство компьютерных блоков питания и методика их тестирования

Эта статья послужит справочником, к которому вы сможете обратиться, встретив что-то непонятное в обзорах. Мы расскажем о принципе работы импульсных преобразователей напряжения, устройстве БП стандарта ATX и назначении его отдельных компонентов. А также о том, как мы тестируем блоки питания и как интерпретировать результаты измерений

  • Линейный и импульсный источники питания
  • Общая схема блока питания стандарта ATX
  • Фильтр ЭМП
  • Входной выпрямитель
  • Блок активного PFC
  • Основной преобразователь
  • Вторичная цепь
  • Дежурное питание +5VSB
  • Методика тестирования блоков питания

Назначение блока питания

Даже полный «чайник» знает, что БП подает ток. Однако такое утверждение фактически почти ничего не объясняет. Блок питания выполняет три основные функции:

  • Понижает напряжение в сети от 220 В (возможны и другие значения) до рабочего напряжения, необходимого для подачи к потребителям энергии – 3.3, 5 и 12 В, в том числе и с отрицательными значениями.
  • Выпрямляет переменный ток с частотой 50 Гц, делая его постоянным.
  • Стабилизирует рабочее напряжение.

Такие функции требуют соответствующей электрической схемы. БП для системного блока – вовсе не простая конструкция, как можно ошибочно подумать. Рассмотрим более детально его строение – какие логические блоки спрятаны там внутри, и как работает каждый из них.

Распределение нагрузки и возможные неисправности

Напряжение, выдаваемое источником питания, предназначено для различных нагрузок. Таким образом, в зависимости от конфигурации конкретного ПК, потребление энергии в каждой цепи источника питания может меняться. Именно поэтому в технических характеристиках БП указывается не только общая мощность устройства, но и максимальное потребление электротока для каждого типа выходного напряжения.

Апгрейд блока питания ПК

При апгрейде «железа» ПК следует помнить об этом факте. Например, установка мощного современного видеоускорителя приводит к резкому повышению нагрузки в цепи 12 В. Чтобы ПК работал корректно, возможно потребуется и замена блока питания. Чаще всего неполадки с работой БП связаны со старением элементов его конструкции либо существенным недостатком мощности.

Не стоит забывать и о том, что перегрев выходного каскада может быть связан с накоплением большого количества пыли внутри блока питания. Электролитические конденсаторы, установленные в сетевом выпрямителе и выходных каскадах, больше других деталей склонны к старению.

В первую очередь это касается продукции малоизвестных брендов, использующих дешевые комплектующие. По сути, именно элементная база и качество деталей отличает хорошие устройства от дешевых. Провести ремонт БП самостоятельно может только человек, имеющий определенный набор знаний в области электроники. Однако современные устройства, изготовленные известными брендами, отличаются высокой надежностью. При соблюдении правил обслуживания ПК, проблемы с ними возникают очень редко.

Фильтрация

Первое, что блок питания делает с сетевым электричеством, это не выпрямление и не понижение, а выравнивание входного напряжения. Поскольку в наших домах, офисах и на предприятиях имеется множество электрических устройств и приборов, постоянно включающихся-выключающихся, а также излучающих электромагнитные помехи, переменный ток в сети часто бывает «скомканный» и со случайными скачками и перепадами (частота также не постоянна). Это не только затрудняет блоку питания выполнять преобразования, но может вывести из строя некоторые элементы внутри него.

Наш БП имеет две ступени так называемых входных фильтров (transient filter), первая из которых построена сразу на входе с помощью трёх конденсаторов. Она выполняет роль, похожую на роль «лежачего полицейского» на дороге – только вместо скорости, этот фильтр гасит внезапные скачки входного напряжения.

Источник фото techspot.com

Вторая ступень фильтра более сложная, но в сущности делает то же самое.

Желтые кирпичики – это снова конденсаторы, а вот зеленые кольца, обмотанные медным проводом, это индуктивные катушки (хотя при таком использовании их обычно называют дросселями). Катушки накапливают электрическую энергию в магнитном поле, но энергия при этом не теряется, а за счет самоиндукции плавно возвращается обратно. Таким образом, внезапно появившийся высокий импульс (скачок) поглощается магнитным полем дросселя, чтобы на выходе дать ровное напряжение без всяких скачков.

Два маленьких синих диска – ещё одни представители многообразия конденсаторов, а чуть ниже них (зелёный, с длинными ножками, обтянутыми черными изоляторами) – металлооксидный варистор (MOV). Они также используются для защиты от скачков входного напряжения. Подробнее о различных типах входных фильтров можно прочитать здесь.

Источник фото techspot.com

По этому узлу блока питания часто можно определить, насколько производитель сэкономил, или к какому бюджетному классу принадлежит девайс. Более дешевые будут иметь упрощённую фильтрацию входа, а самые дешёвые и вовсе не иметь таковой (избегайте таких!).

Теперь, когда напряжение выровнено и причёсано, ему дозволяется идти дальше – собственно, к преобразованию.

Узел выпрямления

С вторичной обмотки трансформатора поступает переменное напряжение, но для питания аппаратуры требуется постоянное, поэтому блок питания должен быть со схемой выпрямления. Обычно она выполняется на полупроводниковых диодах, синхронные выпрямители применяются крайне редко – сопротивление потерь трансформатора больше, чем теряется на p-n переходе диодов и смысл усложнения схемы отсутствует. В трансформаторном блоке питания чаще всего применяются два схемных решения – мост или полумост с удвоенным количеством обмоток.

Данное схемное решение означает применение четырех диодов:

289x145 2 KB

Диоды открываются парами, D1 — D3 для положительной полуволны и D2 – D4 для отрицательной, в результате на выходе получается напряжение одной полярности, хоть и с непостоянной амплитудой.

289x145 2 KB 289x145 2 KB

Для сглаживания выходного напряжения применяется конденсатор довольно большой емкости (С1).

Такое построение выпрямительного узла несколько напоминает «мост», но у него в два раза меньше диодов и удвоено количество выходных обмоток трансформатора:

289x145 2 KB

Что сразу бросается в глаза – две вторичные обмотки вместо одной. На элементы в сером прямоугольнике пока не обращайте внимания. Выходные обмотки (выводы «3»-«5» и «1»-«4») включены в противофазе, напряжение на выводе «3» равно напряжению на выводе «4», но противоположно по знаку. Иначе говоря, когда на одной обмотке «+», то на другой «-».

289x145 2 KB 289x145 2 KB

Принцип работы схемы примерно такой же, как у ранее рассмотренной – при положительной полуволне «+» формируется на выводе «3», открывается диод D1 и на выход следует положительное напряжение. При отрицательной полуволне на выводе «3» получается «-», а на выводе «4» становится «+», диод D2 открывается и на выходе также получается положительное напряжение. В такой схеме используются всего лишь два диода, что должно (бы) уменьшить потери на выпрямительном узле и получить более стабильное выходное напряжение.

Увы, это далеко не так, применение подобного решения для получения одного напряжения неизбежно проиграет «мосту» — при удваивании числа обмоток их внутреннее сопротивление возрастает (примерно в два раза), что приведет к большим потерям, чем еще один p-n переход в мостовом выпрямителе. Подробнее вопрос будет рассмотрен в разделе расчета блока питания. Запомните главное – крайне не рекомендуется использовать полумостовой выпрямитель в трансформаторных блоках питания. Какой же смысл, зачем в разделе вообще идет речь о такой конструкции выпрямительного узла, если он проигрывает «мосту»?

Все просто – на «мосте» можно получить только одно напряжение и всё, а «полумост» способен предоставить как положительное, так и отрицательное напряжение, всё с тех же обмоток. Посмотрите еще раз на схему, в «сером» прямоугольнике изображены элементы, необходимые для получения отрицательного напряжения, причем той же величины, что и положительного. Эта часть работает точно так же, как и рассмотренная ранее, только диоды проводят в противоположной полярности и на выходе формируется отрицательное напряжение.

Небольшой вывод – если аппаратура требует однополярное выходное напряжение, то необходимо применять мостовую схему выпрямления, а если двухполярное – сдвоенную полумостовую. Кстати, если посмотреть на схему внимательнее, то окажется, что двойной полумост представляет собой мост, который работает с удвоенным напряжением, при этом две выходные обмотки трансформатора выполняют роль симметрирующего элемента для деления выходного напряжения на две равные «половинки».

Какие разновидности ставят в ПК

Все компьютерные блоки питания строятся в соответствии со стандартом ATX. Предыдущий стандарт AT отжил свое еще в 90-е годы прошлого столетия. Основное отличие устройства импульсного блока питания компьютера ATX – наличие дежурного напряжения, которое позволяет включить компьютер без коммутации силовых цепей БП.

Строение импульсных источников питания (ИИП), описание схемотехнических решений будет дано ниже, а чтобы изначально сориентироваться в разновидностях БП, надо знать общие принципы классификации устройств.

В первую очередь ИИП для компьютеров делят по мощности, причем параллельно с развитием ПК этот параметр постоянно растет. Если 20 лет назад блока питания мощностью в 250 ватт было достаточно, чтобы закрыть любые потребности, то на текущий момент не всегда достаточно и 550 ватт.

Также многие обращают внимание на наличие сертификата 80PLUS, означающего повышенный КПД блока питания. С технической точки зрения это важно, но с экономической надо понимать, что разница в стоимости компенсирует выигрыш в электроэнергии не раньше, чем за несколько десятков лет. Хотя имеется еще один момент – БП, сертифицированные по высшим категориям 80+ (Gold, Titanium и т.п.), не имеют вентилятора, а это означает практическую бесшумность в работе. Обратной стороной медали является то, что безвентиляторные БП часто выполняются с внешним радиатором, который выступает за габариты корпуса ПК. Это может привести к проблемам с установкой компьютера.

Нагрузка на БП

Необходимо предупредить, что включение импульсных БП без нагрузки существенно сокращает их срок службы и даже может стать причиной поломки. Поэтому мы рекомендуем собрать простой блок нагрузок, его схема показана на рисунке.

Схема блока нагрузки

Схема блока нагрузки

Схему желательно собирать на резисторах марки ПЭВ-10, их номиналы: R1 – 10 Ом, R2 и R3 – 3,3 Ом, R4 и R5 – 1,2 Ом. Охлаждение для сопротивлений можно выполнить из алюминиевого швеллера.

Подключать в качестве нагрузки при диагностике материнскую плату или, как советуют некоторые «умельцы», HDD и СD привод нежелательно, поскольку неисправный БП может вывести их из строя.

Супервизор

Микросхема обеспечивает функционирование основных защит в блоке (превышения выходных напряжений, превышение выходного тока и прочее), управляет включением и выключением блока по сигналам с материнской платы.

Супервизор Sitronix ST9S313A. Видны зеленый (PC_ON) и серый (Power Good) провода.

Теперь вы представляете, как обстоит дело со схемотехникой в наши дни. А что нас ждет в будущем? В мае 2020 года компания Интел выпустила новый ATX12VO (12 V Only) Desktop Power Supply Disign Guide в котором описывает совершенно новые БП: у блока осталось только одно напряжение — 12 В. Нужные напряжения будет преобразовывать материнская плата. Дежурный источник питания с напряжения 5 В перейдет на 12 В. При этом размеры блоков АТХ остаются такими же. Это сделано для того, чтобы сохранить совместимость со старыми корпусами. Правда, пока производители не торопятся переходить на этот формфактор.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector