О разъёмах у блоков питания ПК — как выбрать блок питания
Блок питания — важная составная часть персонального компьютера, без которой тот просто не запустится. Подобрать блок питания не так сложно, если быть внимательным к деталям. Сегодня поговорим о такой вещи, как используемые в блоках питания разъёмы.
Главная ошибка, которую может сделать неосведомлённый покупать блок питания для компьютера — смотреть только на цену и мощность. Безусловно, перед покупкой блока питания нужно прикинуть потребление и даже оставить некоторый запас. Однако, если не обратить внимание на разъёмы, может оказаться так, что Вы не сможете запитать все компоненты Вашего ПК.
К счастью, современный блок питания для персонального компьютера — хорошо стандартизированный продукт. Как правило, подключить что-то неправильно в случае с нынешними блоками питания затруднительно. А вот неправильно подобрать блок питания для своего компьютера вполне возможно. Теперь непосредственно о разъёмах.
Основной разъём для питания материнской платы — ошибиться в данном случае довольно сложно, так как большинство блоков питания идут с универсальным разъёмом 20+4 pin. Это значит, что можно использовать и 20 pin, и 24 pin. Стандарт 20 pin является устаревшим (использовался до появления в материнских платах шин PCI-E), однако производители блоков питания используют схему 20+4 для обратной совместимости со старыми моделями материнских плат. Что касается современных материнских плат, то в них используется разъём 24 pin. В целом, на этот разъём стоит отдельно обратить внимание только если Ваша материнская плата имеет устаревший стандарт питания 20 pin.
Разъём для питания центрального процессора (CPU) — в отношении этого разъёма питания нужно быть внимательнее, нежели в предыдущем случае. Данный разъём имеет несколько конфигураций. Находится он также на материнской плате.
По стандарту ATX12V блок питания должен иметь как минимум коннектор на 4 pin для питания электроэнергией центрального процессора. Следом за разъёмом на 4 pin появился разъём на 8 pin для более «прожорливых» процессоров. 8 pin равномернее распределяют нагрузку.
Внимание! Не используйте для питания CPU разъёмы 6 pin или 6+2 pin. Они предназначены для видеокарт.
На текущий момент в блоках питания зачастую встречаются универсальные разъёмы 4+4 pin, хотя можно встретить и простой разъём 4 pin, и разъём 8 pin, который не разделяется на части. Безусловно, если говорить об универсальности, то разъём 4+4 pin предпочтительнее.
Разъём для питания видеокарты — данный разъём используется в системах с производительной платой для обработки графики. В системах со встроенными видеокартами подобный разъём использоваться не будет. Также подобный разъём не нужен дискретным видеокартам с невысокой производительностью по той причине, что им хватает питания, поступающего через слот PCI-E на материнской плате.
Разъёмы для питания видеокарт бывают двух видов: 6 pin и 8 pin. Очень часто производители блоков питания используют конфигурацию 6+2 pin.
Допустим, мы имеем дело с разъёмом 8 pin, который не разбивается на составные части. Как определить его предназначение? Во-первых, разъёмы блоков питания, как правило, подписываются. Надпись PCI-E означает, что данный коннектор должен подключаться к видеокарте. А надпись CPU говорит, что это разъём для питания процессора. Во-вторых, можно посмотреть распиновку. Это поможет, если коннекторы не подписаны. Обратите внимание на рисунок ниже.
Слева разъём для питания видеокарты, справа разъём для питания центрального процессора.
Разъём для питания SATA-устройств — предназначается для обеспечения электроэнергией жестких дисков, твердотельных накопителей и оптических приводов (DVD, Blu-ray). Подключается непосредственно к устройству, которое нужно запитать. Что-то перепутать в данном случае трудно. Главное — не пытаться подключить разъём «вверх ногами». Хотя это общий совет для любых разъёмов, а не только SATA.
Разъём питания SATA имеет 15 pin, выглядят они по-другому, нежели в предыдущих разъёмах. В стороне от контактного ряда есть ключ, который и указывает, какой стороной нужно вставлять коннектор.
На текущий момент разъём SATA всё больше вытесняет разъём Molex, речь о котором пойдёт ниже. Поэтому лучше заранее посчитать количество устройств с данным разъёмом, которые придётся подключать, и иметь запас в один-два свободных разъёмов.
Molex — данный разъём постепенно выходит из употребления. Тем не менее, производители блоков питания всё ещё размещают пару-тройку разъёмов Molex в своей продукции. Ранее Molex был стандартом для питания жестких дисков и оптических приводов с интерфейсом IDE. Кроме того, через него иногда обеспечивается питания различных плат расширения и вентиляторов.
Своё название разъём Molex получил от своей компании-создателя. Разъём имеет четыре контакта. Блок питания персонального компьютера содержит разъём Molex, который по своему типу относится к розеткам (или, говоря простым языком, «мама»). Устройства, которые нужно запитать, имеют вилку («папа»).
Форма разъёма Molex (скосы на углах одной из сторон) препятствует неправильному подключению коннектора. Следует так же отметить, что и разъём Molex, и разъём SATA (не путать с разъёмом SATA для передачи данных) не имеют каких-либо защелок — фиксация происходит только за счёт силы трения. Всё это говорит о том, что данные интерфейсы не предназначены для частых подключений и отключений устройств.
Кстати, именно фирме Molex мы обязаны за вид вилок и розеток, которые используются для питания материнских плат, процессоров и видеокарт.
Разъём для питания Floppy-устройств — проще говоря, разъём для питания приводов чтения/записи 3,5-дюймовых дискет. По сути, стал уже историей следом за дискетами и предназначенными для них дисководами. Впрочем, если очень нужен, то найти блок питания с ним всё ещё не составляет труда.
Разъём своим появлением обязан компании Berg Electronics Corporation. Имеет четыре контакта и ключ, который подсказывает, как надо подключать коннектор.
Разъём для питания Floppy-дисководов (Floppy Drive Power Connector) был не единственным вкладом Berg Electronics Corporation в конструкцию персонального компьютера, но, конечно, до вклада компании Molex тут далеко. Кроме вышеописанного разъёма Berg Electronics Corporation также запомнилась внедрением в стандарты материнских плат своих разъёмов для подключения элементов лицевой панели системного блока.
Со стандартными разъёмами блоков питания на этом всё. Далее поговорим об экзотике.
Разъёмы для питания материнской платы стандарта AT — сейчас очень редкая экзотика, которую можно отыскать разве что в системах 20-летней и более давности. В современных блоках питания подобные разъёмы отыскать вряд ли получится, на такой случай есть переходники.
Для питания материнских плат стандарта AT используется два коннектора — P8 и P9. Оба имеют шесть контактов и подключаются к разъёму на 12 pin на материнской плате.
Схема подключения разъёмов P8 и P9 на материнской плате.
Напоследок об использовании переходников. При отсутствии необходимого разъёма у блока питания соблазн использовать переходники довольно велик. Но слепо поддаваться этому соблазну не стоит.
К сожалению, тренд последних десятилетий — повсеместное падение качества продукции. И блоки питания тут не исключение. Хотя, конечно, откровенный брак встречается редко. Если же говорить о различного рода переходниках (часто неизвестного происхождения), то гарантировать их качество просто никто не возьмётся. Как правило, качество проводов в данном случае не выдерживает никакой критики. И дело не только в работоспособности оборудования, но и в его безопасности.
Как работают блоки питания персональных компьютеров?
Блок питания — жизненно важная часть компьютера, без которой его функционирование невозможно. Лишенный блока питания компьютер — всего лишь мертвая коробка, наполненная пластиком и металлом.
Блок питания преобразует напряжение сети переменного тока в различные напряжения постоянного тока, необходимые для электропитания компонентов персонального компьютера.
В этой статье рассматривается принцип работы блоков питания ПК и разъясняется, что такое максимально допустимая мощность.
Блоки питания ATX
Блок питания персонального компьютера (ПК) представляет собой металлическую коробку, которую обычно располагают в углу корпуса. Часто он виден с тыльной стороны корпуса, так как содержит гнездо для подключения сетевого шнура и вентилятор охлаждения.
Такие блоки питания часто называют импульсными источниками питания, поскольку для преобразования напряжения сети переменного тока в меньшие напряжения питания постоянного тока в них используются ключевые преобразователи. Как правило, на выходе блока питания ПК имеются следующие напряжения: 3,3 вольта; 5 вольт; 12 вольт.
Напряжения 3,3 и 5 вольт обычно используются для питания цифровых схем, а 12 вольт — для обеспечения работы вентиляторов и электродвигателей дисководов. Основным параметром блока питания является его мощность в ваттах. Мощность в ваттах равна произведению значения напряжения, измеряемого в вольтах, и значения тока, измеряемого в амперах. Пользователи со стажем, наверное, помнят, что в первых компьютерах были большие красные переключатели, от положения которых зависело состояние компьютера. Этими переключателями питание компьютера отключалось вручную. Фактически с их помощью включалась или отключалась подача на блок питания сетевого напряжения 220 вольт.
В современных компьютерах подача питания включается с помощью маленькой кнопки, а отключение машины производится путем выбора соответствующего пункта меню. Такие возможности управления блоками питания появились несколько лет тому назад. Операционная система имеет возможность отправлять на блок питания управляющий сигнал выключения. Нажимная кнопка подает на блок питания команду включения в форме сигнала напряжением 5 вольт. В блоке питания имеется схема, вырабатывающая напряжение питания 5 вольт, которое именуется VSB, для обеспечения наличия «дежурного напряжения» даже в условиях, когда блок питания считается выключенным, благодаря чему может функционировать кнопка включения.
Импульсные преобразователи напряжения
Приблизительно до 1980-х годов источники питания были тяжелые и большие. В них для преобразования напряжения электрической сети 220 вольт частотой 50 герц в напряжения 5 вольт и 12 вольт постоянного тока использовались большие тяжелые трансформаторы и большие конденсаторы (по размеру такие же, как металлические банки для газированной воды).
Использующиеся для этих целей в настоящее время импульсные источники питания значительно меньше и легче. Они преобразуют электрический ток частотой 50 герц (Гц, или колебаний в секунду) в ток более высокой частоты. Благодаря такому преобразованию для понижения напряжения с 220 вольт до напряжений, требующихся для отдельных компонентов компьютера, можно использовать маленький легкий трансформатор. Переменный ток более высокой частоты, поступающий из блока питания, легче выпрямлять и фильтровать, по сравнению с исходным напряжением сети переменного тока 50 Гц, что позволяет уменьшить пульсации питающего напряжения для чувствительных электронных компонентов компьютера.
Импульсный блок питания потребляет от электрической сети лишь столько электричества, сколько необходимо. Выходные напряжения и токи блока питания указываются на прикрепляемой к этому блоку наклейке.
Импульсные преобразователи используются также для получения переменного тока из постоянного, например, в источниках бесперебойного питания и автомобильных инверторах, которые служат для питания от автомобильного аккумулятора устройств, рассчитанных на питание от переменного тока. Импульсный преобразователь автомобильного инвертора преобразует постоянный ток, потребляемый от автомобильного аккумулятора, в переменный ток. Переменный ток используется в трансформаторе инвертора для повышения напряжения до величины, необходимой для питания бытовых приборов (220 вольт переменного тока).
Стандартизация блоков питания
Для персональных компьютеров за всю их историю было разработано по крайней мере шесть различных стандартных блоков питания. В последнее время промышленность по установившейся практике выпускает блоки питания на базе ATX. ATX — промышленная спецификация, устанавливающая такие требования к блокам питания, чтобы они подходили к стандартному корпусу ATX, а их электрические характеристики обеспечивали бы функционирование материнской платы ATX.
В кабелях питания персонального компьютера используются стандартизированные разъемы с ключами, предотвращающими неправильное включение. К тому же производители вентиляторов охлаждения часто снабжают свои изделия такими же разъемами, как у кабелей питания дисководов, чтобы при необходимости их можно было легко подключить к питанию 12 вольт. Благодаря проводке с цветовым кодированием и разъемам, соответствующим промышленным стандартам, пользователю предоставляется широкий выбор при замене блока питания.
Управление энергопотреблением с расширенным набором опций
Управление энергопотреблением с расширенным набором опций (advanced Power Management, APM) предусматривает пять различных состояний, в которых может находиться система. Корпорации Microsoft и Intel разработали APM для пользователей персональных компьютеров, желающих экономить электроэнергию. Чтобы использовать эту возможность, каждый из компонентов системы, включая операционную систему, базовую систему ввода-вывода (BIOS), материнскую плату и присоединенные устройства, должен быть APM-совместимым. Если требуется отключить APM в связи с подозрением в чрезмерном расходовании системных ресурсов или в создании конфликтных ситуаций, лучше всего это сделать в BIOS. В таком случае операционная система не будет пытаться повторно установить этот режим, как это иногда происходит в случае его отключения только в программном обеспечении.
Мощность блока питания
400-ваттный импульсный блок питания не обязательно будет потреблять большую мощность, чем 250-ваттный. Более мощный блок питания может потребоваться в случае, если все имеющиеся слоты материнской платы заполнены платами или все отсеки для накопителей в корпусе компьютера заняты дисковыми накопителями. Не следует использовать 250-ваттный блок питания, если суммарная мощность потребления всех устройств компьютера равна 250 ватт, поскольку блок питания нельзя загружать на 100 процентов его номинальной мощности.
Блоки питания одинакового форм-фактора («форм-фактор» относится к фактической конфигурации материнской платы) как правило, отличаются номинальной мощностью и сроком гарантии.
Проблемы, связанные с блоками питания
Блок питания — самый потенциально ненадежный компонент персонального компьютера. Каждый раз во время работы он разогревается и охлаждается, а при каждом включении компьютера испытывает на себе бросок переменного тока. Часто он выходит из строя из-за остановки вентилятора охлаждения и возникшего вследствие этого перегрева компонентов. Все компоненты персонального компьютера питаются постоянным током, поступающим с блока питания.
Обычно при выходе из строя блока питания ощущается запах гари, после чего компьютер выключается. При выходе из строя такого жизненно важного компонента, как охлаждающий вентилятор, и наступившем вследствие этого перегреве компонентов блока питания может возникнуть и другая проблема. Неисправность проявляется в том, что без определенной закономерности происходит перезагрузка системы или без видимой причины происходит сбой ОС Windows.
При решении проблем, причиной которых мог бы быть неисправный блок питания, следует руководствоваться сопроводительной документацией компьютера. Если вы уже снимали кожух своего персонального компьютера, чтобы установить сетевой адаптер или плату оперативной памяти, вам будет нетрудно заменить и блок питания. Сначала нужно в обязательном порядке отсоединить сетевой шнур, поскольку в блоке питания имеется опасное для жизни напряжение даже тогда, когда компьютер выключен.
Модернизация блоков питания
В современных материнских платах и чипсете предусмотрена функция наблюдения за скоростью вращения вентилятора охлаждения блока питания в БИОС и в приложении, работающем под Windows, которое поставляется производителем материнской платы. Многие конструкторы компьютеров предусматривают такое управление вентилятором, что его скорость вращения регулируется в зависимости от потребностей в охлаждении.
Современные веб-серверы комплектуются запасными блоками питания, которые можно заменять в то время, когда вместо них питающее напряжение на аппаратуру поступает от другого блока питания. В некоторых современных компьютерах, в частности в таких, которые предназначены для использования в качестве серверов, имеются резервируемые блоки питания. Это значит, что в системе имеется два или больше блоков питания, один из которых обеспечивает эту систему электропитанием, а другой (другие) находится в резерве. При отказе основного блока питания резервный блок немедленно берет на себя всю нагрузку Затем, пока аппаратура питается от резервного блока питания, можно произвести замену основного блока питания.
Важен ли блок питания для компьютера
Инструкция по блокам питания
Сообщение отредактировал Мрачный — 27.09.13, 14:29
Что такое — Блок Питания.
Блок питания (англ. power supply unit, PSU) — вторичный источник электропитания, предназначенный для снабжения узлов компьютера электрической энергией постоянного тока, путём преобразования сетевого напряжения до требуемых значений. В некоторой степени блок питания также выполняет функции стабилизации и защиты от незначительных помех питающего напряжения и участвует в охлаждении компонентов персонального компьютера.
Сообщение отредактировал Мрачный — 22.09.13, 14:49
Из чего состоит блок питания.
- выпрямитель сетевой,
- генератор,
- трансформатор,
- выпрямитель низковольтный,
- стабилизатор.
Сообщение отредактировал Мрачный — 22.09.13, 14:34
Принцип работы блока питания.
- Сетевое напряжение сначала выпрямляется.
- Далее заряжает конденсаторы фильтра.
- Очищается от помех блоком PFC и преобразуется в синусоиду с частотой 50-150 килогерц.
- Далее напряжение понижается до 5 и 12 вольт.
Сообщение отредактировал Мрачный — 22.09.13, 14:34
Комфортные напряжения.
- Линия +3V — от 3,20 до 3,45 вольта,
- Линия +5V — от 4,85 до 5,30 вольта
- Линия +12V — от 11,80 до 12,5 вольта.
Сообщение отредактировал Мрачный — 22.09.13, 14:34
Power Factor Correction (PFC).
Современные блоки становятся все мощнее, а провода в розетках не меняются. Это приводит к возникновению импульсных помех – блок питания тоже не лампочка и потребляет, как и процессор, энергию импульсами. Чем сильнее и неравномернее нагрузка на блок, тем больше помех он выпустит в электросеть.
Для борьбы с этим явлением разработан PFC.
Это мощный дроссель, устанавливаемый после выпрямителя до фильтрующих конденсаторов.
Первое, что он делает, это ограничение тока заряда вышеупомянутых фильтров. При включении в сеть блока без PFC очень часто слышен характерный щелчок – потребляемый ток в первые миллисекунды может в несколько раз превышать паспортный и это приводит к искрению в выключателе. В процессе работы компьютера модуль PFC гасит такие же импульсы от заряда разнообразных конденсаторов внутри компьютера и раскрутки моторов винчестеров.
Встречаются два варианта исполнения модулей – пассивный и активный.
Второй отличается наличием управляющей схемы, связанной с вторичным (низковольтным) каскадом блока питания. Это позволяет быстрее реагировать на помехи и лучше их сглаживать.
Сообщение отредактировал Мрачный — 22.09.13, 14:33
Что и по каким линиям питает блок питания.
Блоки питания выдают три базовых напряжения: +3.3, +5 и +12 V.
+3.3 предназначена для питания выходных каскадов системной логики
+5 — питает логику почти всех PCI- и IDE-девайсов
+12 — является базовым напряжением для питания процессора и ядра видеокарты
Сообщение отредактировал Мрачный — 27.09.13, 10:47
VRM, блок регулировки напряжения.
Используется для регулировки напряжения, подаваемого для всех устройств материнской платы. Например, современные процессоры работают на меньшем напряжении, чем остальные компоненты системы. Не для кого не секрет, что новые вычислительные устройства, такие как различные чипы и процессоры, у которых малый размер транзистора, потребляют меньшее питания.
Центральный же процессор работает лучше на высоком напряжении, но хуже при высокой температуре. Выделение тепла процессором — в квадратичной зависимости от уровня напряжения, подаваемого на процессор. Возникает дилемма: при увеличении напряжения процессор должен работать быстрее, но увеличивается его температура, что влечет за собой ухудшение его работы. Излишнее тепло от процессора отводится радиаторами и вентиляторами. Если вольтаж и температура процессора слишком высоки, он может перегреться и сгореть. Именно поэтому разъем для процессора на материнской плате располагают как можно ближе к блоку питания, в котором работает вентилятор на вытяжку. Горячий воздух от процессора (а теперь и с других горячих устройств, таких как видеокарты и некоторые жесткие диски) сразу же вытягивается из корпуса. Некоторые экстремальные оверклокеры настолько разгоняют систему, что появляется необходимость в установке дополнительного вентилятора-вытяжки, место для которого есть уже во всех корпусах.
Для наилучшего соотношения мощности, скорости и напряжения, компания Intel для своих новых процессоров разработала специальный тип регулятора напряжения, который на входе имеет напряжение от блока питания, а на выход подает стабильное напряжение необходимого значения на сам процессор. Кроме того, новый регулятор напряжения — программируемый, который использует 5 VID (voltage identification — определение напряжения) сигналы, с помощью которых регулируется подаваемое на него напряжение. VID контакты, как правило идут прям из процессора. Например, для выполнения особо сложной задачи процессору требуется большая вычислительная мощь. Тогда он посылает запрос на регулятор напряжение, который увеличивает напряжение на то значение, которое «прислал» процессор. Такие возможности очень понравятся оверклокерам, для которых некоторые производители материнских плат разрабатывают применение этой функции.
Сообщение отредактировал Мрачный — 27.09.13, 10:51
Конструкция блока питания.
- Плата управления токовой защитой;
- Дроссель, выполняющий роль как фильтра напряжений +12В и +5В, так и функцию групповой стабилизации;
- Дроссель фильтра напряжения +3,3В;
- Радиатор, на котором размещены выпрямительные диоды выходных напряжений;
- Трансформатор главного преобразователя;
- Трансформатор, управляющий ключами главного преобразователя;
- Трансформатор вспомогательного преобразователя (формирующий дежурное напряжение);
- Плата контроллера коррекции коэффициента мощности;
- Радиатор, охлаждающий диодный мост и ключи главного преобразователя;
- Фильтры сетевого напряжения от помех;
- Дроссель корректора коэффициента мощности (PFC);
- Конденсатор фильтра сетевого напряжения.
Что такое — КПД.
КПД (Коэффициент Полезного Действия) — это отношение полезной работы к затраченной энергии. КПД измеряется в процентах. Чем выше этот коэффициент, тем выше эффективность работы блока питания и тем меньше потери электроэнергии. Снижение потерь, в свою очередь, положительно сказывается на температуре внутри корпуса компьютера и на частоте вращения (шуме) вентиляторов охлаждения.
Типы сертификатов:
Нагрузка на блок питания 20%, 50%, 100%, соответственно.
80 Plus (80%, 80%, 80%)
80 Plus Bronze (81%, 85%, 81%)
80 Plus Silver (85%, 89%, 85%)
80 Plus Gold (88%, 92%, 88%)
80 Plus Platinum (90%, 94%, 91%)
Бывает, что люди задаются вопросом, «если у меня есть блок 550 Вт, то значит он будет выдавать 83% своей мощности?»
Это неправильно. Блок питания будет выдавать 550 Вт, а из розетки брать 550/0.83=662.65 Вт
Чем выше КПД, тем меньшее количество энергии преобразуется в тепло и тем меньше электричества будет брать БП из розетки.
Качественный БП будет выдавать заявленную мощность, независимо от уровня КПД.
Стандарты Блоков питания
Для персональных компьютеров за всю их историю было разработано по крайней мере шесть различных стандартных блоков питания. В последнее время промышленность по установившейся практике выпускает блоки питания на базе ATX. ATX – промышленная спецификация, устанавливающая такие требования к блокам питания, чтобы они подходили к стандартному корпусу ATX, а их электрические характеристики обеспечивали бы функционирование материнской платы ATX.
Стандарт АТ первым использовался в компьютерных блоках питания. Он появился на свет одновременно с первыми IBM-совместимыми компьютерами и применялся вплоть до 1995 года. Блок питания стандарта AT обеспечивал компьютер четырьмя постоянными напряжениями — +5, + 12, -5 и -12 В. Однако по мере развития процессоров и всевозможной периферии, во-первых, росла общая потребляемая компьютером мощность, во-вторых, все больше сказывалось отсутствие в АТ-блоках напряжения +3,3 В, которое приходилось получать непосредственно на системной плате отдельным стабилизатором. Кроме того, формат корпусов AT был не очень удобен для сборки компьютеров и не оптимизирован с точки зрения охлаждения. В блоках питания стандарта AT выключатель питания находится в силовой цепи и обычно выводится на переднюю панель корпуса отдельным проводом. Как следствие, автоматическое включение и выключение компьютера невозможно. Блок питания стандарта AT подключается к материнской плате двумя одинаковыми шестиконтактными разъёмами, включающимися в один 12-контактный разъём на материнской плате. К разъёмам от блока питания идут разноцветные провода, и правильным считается подключение, когда контакты разъёмов с чёрными проводами сходятся в центре разъёма материнской платы. Все это привело к разработке компанией Intel в 1995 г. формата АТХ — нового типа корпусов и блоков питания.
В блоке питания АТХ количество выходных напряжения увеличилось: добавились напряжения +3,3 и +5 В SB (Stand-By). Последнее было введено для реализации таких функций, как «пробуждение» компьютера по сигналу из локальной сети, от модема, по нажатию клавиши на клавиатуре или мыши, а также для реализации «дремлющего» режима S3 Suspend-to-RAM, в котором все текущие данные хранятся в оперативной памяти даже при выключенном компьютере. Очевидно, что напряжение +5 В SB должно присутствовать вне зависимости от того, включен или выключен компьютер (если, конечно, он физически не отключен от розетки), поэтому его стабилизатор — это практически отдельный миниатюрный маломощный блок питания, функционирующий непрерывно. Если в формате AT кнопка включения компьютера снимала с блока питания напряжение 220 В, то в АТХ кнопка включения лишь дает на блок питания команду остановить ШИМ-контроллер основного стабилизатора, но сам блок при этом остается подключенным к сети, и в нем продолжает работать стабилизатор дежурного режима +5 В SB. Для того чтобы отключить блок полностью, требуется либо воспользоваться имеющейся на многих моделях клавишей на задней стенке блока, либо физически отключить его от сети 220 В. Постепенно в стандарт АТХ вносились изменения, но до определенного момента они не оказывали существенного влияния на блок питания. Новой тенденцией, приведшей к заметному с точки зрения пользователя изменению БП, был переход на 12-В питание стабилизатора процессора.
До выпуска компанией Intel процессора Pentium 4 со значительной потребляемой мощностью обычным решением было питание стабилизатора процессора от +5-В шины. Очевидно, что для процессора с потребляемой мощностью, скажем, 50 Вт даже без учета потерь на расположенном на системной плате стабилизаторе (а это еще как минимум 10%) ток при питании от упомянутой шины составит 10 А, что весьма немало. Такие токи, во-первых, осложняют размещение компонентов на системной плате, ибо крупный разъем питания АТХ зачастую трудно расположить в удобном для разработчика печатной платы месте (как можно ближе к стабилизатору питания процессора), а во-вторых, недостаточно плотный контакт в разъеме питания системной платы вызывал перегрев контактов и разъема с дальнейшим ухудшением контакта и более чем вероятными сбоями системы. Выходом из этой ситуации стал переход на питание стабилизатора ЦП от +12-В шины. Известно, что если напряжение в 2,4 раза больше, то ток при той же потребляемой мощности будет в 2,4 раза меньше, а, кроме того, установленный на плате стабилизатор, как и любой преобразователь постоянного тока, увеличивает свой КПД с ростом входного напряжения. Однако возникла другая проблема: поскольку до последнего времени серьезных потребителей +12 В на системной плате не было, то в разъеме ее питания был предусмотрен всего один провод для этого напряжения, что могло привести к перегреву и обгоранию контактов из-за чрезмерно большого тока через них. Эта проблема была решена добавлением еще одного разъема питания системной платы — маленького четырех контактного ATX12V, который не только добавил два дополнительных провода +12 В, но и благодаря своим скромным размерам позволил размещать его рядом со стабилизаторами питания процессора, серьезно упростив работу разработчикам печатных плат. Таким образом, летом 2000 г. компания Intel выпустила инженерное дополнение к стандарту АТХ 2.03, названное «ATX12V». Помимо вышеупомянутого разъема, в нем были ужесточены требования к блоку питания: при той же суммарной выходной мощности, что и раньше, блок должен был обеспечивать большие токи по шинам +12 и +3,3 В. Более того, устанавливалась нижняя граница максимального тока по шине +12 В — 10 А вне зависимости от суммарной мощности БП; блок, не обеспечивающий такого тока, не может считаться соответствующим стандарту ATX12V. Так как физически новые блоки отличались от старых лишь дополнительным разъемом, то в продаже в большом количестве появились различные переходники для адаптации АТХ-блоков питания к стандарту ATX12V. Разумеется, в связи с возросшими требованиями к нагрузочным токам для мощных систем такая адаптация была некорректна, но у систем со сравнительно небольшим энергопотреблением никаких проблем не возникало. Следующее заметное изменение принесла версия 1.2 все того же стандарта ATX12V. Напряжение -5 В, до этого момента обязательное для всех блоков питания, практически уже не использовалось: оно подавалось только на системную плату и разъемы ISA, которые уже канули в Лету. Даже в более старых компьютерах, где еще использовались ISA-платы, это напряжение, как правило, не требовалось. В связи с этим в стандарте ATX12V 1.2 напряжение -5 В стало необязательным, и вскоре на рынке появились БП, у которых в разъеме питания системной платы отсутствовал соответствующий провод. Тем временем наметилась новая тенденция: если раньше потребление по шине +3,3 В росло, то теперь оно, напротив, стало падать, ибо все больше производителей стали использовать на своих платах отдельные стабилизаторы, питающиеся от +5 или чаще +12 В и формирующие необходимые для платы напряжения. Более того, современные графические платы питаются уже не от AGP, а от отдельного разъема питания, на который просто не заводится напряжение +3,3 В. Соответственно, требования к этому напряжению падают, а к нагрузочной способности по шине +12 В, наоборот, увеличиваются, особенно учитывая постоянно растущее энергопотребление процессоров.
Для удовлетворения вышеописанных требований был разработан стандарт ATX12V, версия 2.0 (не путать со стандартом АТХ 2.0; ATX12V 2.0 соответствует версии 2.2 стандарта АТХ). Это не просто косметические улучшения БП: изменения довольно серьезны, и старые блоки питания, хотя и будут частично совместимы с системными платами стандарта ATX12V 2.0, во многих случаях придется заменить. Основное отличие нового стандарта в том, что теперь в блоке питания предусмотрены сразу две шины +12 В. Связано это с тем, что увеличить нагрузочный ток по одной шине выше 20 А нельзя — по требованиям стандартов безопасности мощность цепей, к которым есть открытый доступ для оператора, не должна превышать 240 В-А (12 Вх20 А). При этом заметно уменьшились максимальные нагрузочные токи по шинам +3,3 и +5 В (до полутора раз по сравнению с блоками ATX12V 1.1 той же мощности). Претерпел изменения и разъем питания системной платы. Если раньше это был 20-контактный разъем Molex 39-01-2200, то теперь он заменен на 24-контактный Molex 39-01-2240 — добавилось по одному контакту +12, +3,3, +5 В и «земля». Легко заметить, что двадцать крайних контактов у обоих разъемов совершенно одинаковы, поэтому блок питания ATX12V 2.0 можно использовать в паре с ATX12V 1.1-платой (если сбоку от ее разъема питания есть свободное место для четырех «лишних» контактов разъема) и наоборот, однако в последнем случае надо учитывать, что с мощной системой ATX12V 2.0 с большим энергопотреблением блок питания, соответствующий старому стандарту, может не справиться. Привычный четырех контактный разъем ATX12V, предназначенный для питания стабилизатора процессора, в новом стандарте не изменился, но теперь на него подается напряжение +12 В с другого источника, так что процессор имеет свое собственное питание, до некоторой степени независимое от питания системной платы и различной периферии, что должно положительно сказаться на качестве питающих напряжений. Также из нового стандарта полностью исчезло напряжение -5 В: оно не предусмотрено даже как необязательное. Вместе с ним исчез и появившийся несколькими годами раньше в стандарте АТХ 2.01 разъем AUX для дополнительной подпитки системной платы (на него выводились напряжения +5 и +3,3 В, а сам разъем напоминал разъемы питания системных плат форм-фактора AT); несмотря на рекомендацию использовать его в системах с большим энергопотреблением, на практике системные платы с таким разъемом практически не выпускались. Кроме того, разъемы питания Serial ATA-винчестеров теперь стали обязательны, впрочем, последние модели блоков питания ATX12V 1.1 уже выпускались с ними. Также стоит отметить появление в стандарте рекомендаций по максимальным нагрузочным токам для БП мощностью 350 и 400 Вт — до этого регламентировались токи для блоков питания до 300 Вт включительно, что оставляло производителям более мощных БП больший простор для выбора характеристик, а это, в свою очередь, приводило к тому, что блоки большой мощности сильно различались между собой по возможностям, а некоторые не во всем превосходили даже стандартный 300 Вт блок питания.
Вообще говоря, EPS12V — это стандарт для серверов начального уровня. Достаточно часто встречаются в продаже соответствующие ему блоки питания мощностью 400-500 Вт, которые представляют определенный интерес и для владельцев мощных систем стандарта АТХ. Физически блоки стандарта EPS12V по габаритам и расположению крепежных отверстий совместимы с блоками АТХ, так что ничто не препятствует их установке в обычный АТХ-корпус. Разъем питания системной платы стандарта EPS12V аналогичен таковому в ATX12V 2.0-платах, причем не только физически (это 24-контактный разъем такого же типа), но и по разводке контактов; таким образом, к ЕР512V-блоку питания можно без проблем подключать системные платы ATX12V 2.0 и при наличии физической возможности подключить более крупный разъем также и платы ATX12V 1.1 (при отсутствии такой возможности следует использовать переходник). Разъем питания процессоров у EPS12V собственный, восьми контактный. Однако четыре крайних контакта в точности совпадают с разъемом ATX12V, поэтому его также можно напрямую подключить к обычной ATX12V системной плате, если сбоку от установленного на ней разъема есть свободное место, либо же, если места нет, воспользоваться переходником. Важно, что блоки EPS12V бывают как с одним источником + 12 В, так и с двумя, аналогично ATX12V 2.0. В последнем случае подключать на системной плате ATX12V 1.1 второй источник +12 В блока питания (он выведен на 8-контактный разъем питания процессора) можно, только будучи уверенным, что шины питания процессора и шина +12 В с разъема питания самой системной платы полностью разделены; в противном случае системная плата может выйти из строя. С системными платами стандарта ATX12V 2.0 такой проблемы возникнуть не может — у них шины разделены по определению, ибо используются два раздельных источника питания.