Сравнение новых технологий энергонезависимой памяти
Новейшие технологии энергонезависимой памяти уже вторглись в области применения, где много лет доминируют Flash, SRAM и DRAM. Предлагаем проанализировать, какая из них имеет наибольшие шансы успешно конкурировать с массовыми типами памяти и вытеснить их со временем.
Новейшие технологии энергонезависимой памяти уже вторглись в области применения, где много лет доминируют Flash, SRAM и DRAM. Предлагаем проанализировать, какая из них имеет наибольшие шансы успешно конкурировать с массовыми типами памяти и вытеснить их со временем.
Нет необходимости доказывать, что неспособность сохранять информацию после выключения питания сделала бы практически бесполезными миллиарды электронных приборов, будь то компьютер, сотовый телефон, автомобильный электронный прибор, любой промышленный контроллер — их функциональность определяется содержимым энергонезависимой памяти. Подавляющее число электронных приборов сегодня используют в качестве энергонезависимой памяти Flash. В компьютере она управляет загрузкой и обеспечивает взаимодействие большинства узлов. В сотовом телефоне Flash-память хранит программы, настройки, телефонную книжку…
Наряду с энергонезависимостью, главным свойством Flash-памяти является программируе-мость — способность к многократному изменению хранимой информации. Операция записи в Flash-память сравнительно сложна, количество циклов модификации данных не превышает 1 миллион, а для большинства компонентов Flash это десятки или сотни тысяч циклов. Может показаться, что это большое число, однако, его достаточно лишь для устройств со сравнительно редким изменением данных — несколько раз в день — как, например, в мобильных телефонах или переносных накопителях данных. Использование Flash-памяти, например, в качестве основной памяти компьютера привело бы ее в негодность максимум за неделю. Да и по скорости записи Flash-память слишком медленна для оперативных данных.
Какой бывает компьютерная память и в каких устройствах она используется?
Все виды компьютерной памяти можно разделить на две большие категории. Энергозависимая и энергонезависимая память. Энергозависимая память теряет все данные при отключении системы. Это происходит потому, что такая память требует постоянной энергетической подпитки и, как только подача электричества прекращается, она перестает функционировать. Энергонезависимая память сохраняет данные вне зависимости от того, включен ваш компьютер или нет. К примеру, большинство типов оперативной памяти относятся к энергозависимой категории.
Наиболее известные представители энергонезависимой категории это ПЗУ (постоянная память) и флеш-память, получившая в последнее время немалое распространение. В частности, карты памяти CompactFlash и SmartMedia.
Прежде всего просто перечислим основные виды компьютерной памяти и только потом начнем их рассматривать:
- Оперативная память. Оперативное запоминающее устройство. ОЗУ, RAM
- Постоянная память. Постоянное запоминающее устройство. ПЗУ, ROM
- Кеш-память, Cache
- Динамическая оперативная память. Dynamic RAM, DRAM
- Статическая оперативная память. Static RAM, SRAM
- Флеш-память, Flash memory
- Память типа Memory Sticks в виде карт памяти для цифровых фотоаппаратов
- Виртуальная память, Virtual memory
- Видеопамять, Video memory
- Базовая система ввода-вывода, БСВВ, BIOS
Как мы уже писали, память применяется не только в компьютерах, но и в иных цифровых устройствах. Тех «компьютероподобных» устройствах, которые для удобства изложения материала мы будем считать компьютерами, не отвлекаясь на постоянные обсуждения различий между ними. В частности, планшеты многие аналитики относят к компьютерам. Речь идет в том числе и о:
- Сотовых телефонах
- Смартфонах
- Планшетах
- Игровых консолях
- Автомобильных радиоприемниках
- Цифровых медиаплеерах
- Телевизорах
Прежде, чем разбираться в том, как функционирует каждый вид памяти, поинтересуемся тем, как она вообще работает.
Эволюция технологий ячеек NVM-накопителей — первые четыре десятилетия
В 1960-х начались исследования двух основных технологий проектирования полупроводниковых NVM-ячеек. В ячейке с «плавающим затвором» заряд хранится на электроде, не подключённом к внешней цепи. «Захват заряда», чаще всего называемый «нитридным захватом», позволяет хранить заряд в слое нитрида кремния, подключённого к активной цепи. Обе технологии обещали значительные преимущества и снижение затрат на производство, простоту использования и сохранение данных для различных областей применения.
Коммерческие компоненты и системы с использованием обеих технологий начали появляться в 1970-х. Изделия на основе захвата заряда чаще всего называли EAROM (Electrically Erasable Read Only Memory), а первые устройства с плавающим затвором — EPROM (Erasable Programmable ROM).
К 1980-м годам доминирующей на рынке технологией стала память с плавающим затвором. EPROM и их усовершенствованные версии, в том числе и первые флэш-продукты, стали составлять значительный процент от мировой прибыли полупроводниковой отрасли. В 1990-х технология Flash обеспечила создание новых возможностей для NVM-устройств, их начали использовать в твердотельных накопителях и потребительских цифровых устройствах.
Проблема времени в компьютере
В первых компьютерах не было микросхемы RTS (Real Time Clock, часы реального времени).
Это было неудобно, и потом ее начали устанавливать.
Проблема, которая возникла с RTC в самом начале, заключалась в том, что компьютер работает не 24 часа в сутки. Он включается пользователем в начале рабочего дня и выключается в его конце. Пока компьютер был включен, он «помнил» время, как только его выключали, он время «забывал».
Каждый раз устанавливать время заново было бы очень неудобно. Неудобно было бы и каждый раз возобновлять и другие системные настройки (тип винчестера, источник загрузки и другие). Поэтому придумали встроить в общий корпус микросхему RTC, которая помнила не только время, но и все настройки BIOS Setup, и источник питания – батарею гальванических элементов.
Ячейки памяти RTC представляли собой, по сути, оперативную память (RAM). Такую память также отнесли к энергонезависимой, так как она не зависела от источника внешнего напряжения. Она была энергонезависимой до тех пор, пока встроенная батарея не «садилась». Такая память была сделана на основе КМОП структур, поэтому потребляла в статическом режиме (режиме хранения) очень небольшой ток, порядка единиц микроампер.
Поэтому встроенной батареи хватало на несколько лет. После чего весь модуль подлежал замене. Существовали конструкции материнских плат с разъемом под такой модуль. И можно было легко выполнить его замену. Но затем технический прогресс продолжил свой неумолимый бег. Число микросхем на материнской плате уменьшалось, а степень их интеграции увеличивалась.
В конце концов пришли к чипсету (набору микросхем), состоящему из 1-2 корпусов, который включал в себя почти все подсистемы материнской платы.
Встраивать в тот же корпус (куда напихано уже много всего) еще и источник напряжения посчитали нецелесообразным.
Такой корпус имеет много выводов. Установка его в разъем усложнила бы конструкцию, увеличила бы ее стоимость и снизила бы надежность.
Поэтому источник питания (3 V литиевый элемент) стали устанавливать отдельно. Это упростило и удешевило плату, так как теперь надо менять только элемент, а не все сразу. Следует отметить, что вначале в качестве источника резервного питания использовались никель-кадмиевые аккумуляторы.
После длительной эксплуатации они могли потечь. И вытекший электролит мог повредить проводники материнской платы. Современные литиевые элементы не текут даже при очень глубоком разряде.
Технология изменилась, но название структуры, хранящей настройки BIOS Setup, осталось прежним – NVRAM. Но теперь, в строгом смысле, она не является энергонезависимой. Ведь ее «энергонезависимость» обеспечивается внешним источником напряжения.
Напомним, что первым признаком того, что элемент 2032 исчерпал свой ресурс, является сброс времени и даты при включении компьютера. Напряжение свежего элемента составляет величину около 3,3 В. По мере истощения его ЭДС падает. И, как только оно снизится (ориентировочно) менее 2,8 В, структура, хранящая настройки, «забудет» их. Заряду литиевые элементы не подлежат.
Виды (типы) оперативной памяти
В наше время оперативная память может быть двух типов: статической (SRAM) и динамической (DRAM). Статические ОЗУ по сравнению с динамическими являются более быстрыми из-за своей технологии производства, но в то же время и более дорогими. Такой тип зачастую используется в качестве кэш-памяти процессора. Для массового производства модулей оперативной памяти используют технологию DRAM. Существует несколько типов такой памяти. Те, которые сейчас можно встретить:
- DDR SDRAM — синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных (Double Data Rate Synchronous Dynamic Random Access Memory) первого поколения;
- DDR2 SDRAM— второе поколение DDR SDRAM;
- DDR3 SDRAM — третье поколение DDR SDRAM;
- DDR4 SDRAM — четвертое поколение DDR SDRAM;
- DDR5 SDRAM — пятое поколение DDR SDRAM;
Как можно догадаться, DDR SDRAM — самый старый тип оперативной памяти, который сейчас встретить очень трудно. DDR5 — самый новый, который в продаже пока отсутствует, но уже выпущены тестовые образцы. На сегодняшний день самым распространенным является DDR4. Различаются эти типы памяти между собой производительностью и внешним видом.
Чтобы ненароком нельзя было вставить планку с одним типом оперативной памяти в разъем, предназначенный для другого, в группе контактов есть специальный ключ (пропил), а в разъеме на материнской плате в том же месте выступ. У каждого вида памяти он разный.
Кроме того, с помощью этого ключа вы не сможете вставить модуль ОЗУ наоборот.
Назначение энергонезависимой памяти CMOS
Микропрограммы в $BIOS$ считывают данные об оборудовании ПК из микросхемы $BIOS$, после чего они выполняют обращение к жесткому или гибкому диску и передают управление тем программам, которые там записаны.
Набор микропрограмм, которые составляют $BIOS$, хранятся в постоянной памяти ПК, которая располагается на системной плате. Параметры $BIOS$ зашиты компанией-разработчиком, но пользователи при надобности могут вносить необходимые изменения в эти параметры. Для этого служит связанная с $BIOS CMOS$-память, которая хранит настройки системы, в частности, вводимые пользователем через программу $BIOS Setup.$ Общий объем $CMOS$-памяти составляет всего $256$ байт.
К примеру, изготовители $BIOS$ не могут ничего знать о параметрах установленных на определенный ПК жестких или гибких дисков. Для обеспечения работы с таким оборудованием программы, которые входят в состав $BIOS$, должны знать, где можно найти нужные параметры. Но по известным причинам их нельзя хранить ни в оперативной памяти, ни в постоянном запоминающем устройстве (ПЗУ).
Готовые работы на аналогичную тему
Для хранения подобных данных используется энергонезависимая $CMOS$-память. От оперативной памяти она отличается тем, что ее содержимое не удаляется после выключения ПК, а от ПЗУ – тем, что данные в нее можно заносить и изменять самостоятельно, в соответствии с тем, какое оборудование входит в состав системы. Микросхема $CMOS$-памяти питается от батарейки, которая расположена на системной плате. Заряда батарейки достаточно для того, чтобы микросхема не теряла данные даже в случае, если ПК не будут включать несколько лет.
Рисунок 2. Расположение батарейки CMOS-памяти
$CMOS$ используется для хранения информации о конфигурации, составе оборудования ПК и его параметрах, таких как данные о дисковых накопителях, о ЦП, тип видеоадаптера, наличие сопроцессора и других данных, а также о режимах его работы и информации, необходимой при запуске ПК (например, о порядке загрузки ПК). Микросхема $CMOS$-памяти также содержит электронные часы, которые указывают текущую дату и время.
Содержимое $CMOS$-памяти изменяется специальной программой $SETUP$, находящейся в $BIOS$. Тот факт, что ПК четко отслеживает время и дату (даже при выключенном питании), тоже связан с тем, что показания системных часов постоянно хранятся (и изменяются) в $CMOS$.
Виды динамической памяти
Асинхронная динамическая память — первый тип DRAM, появившийся в конце 1960-х годов. Активно применялся до 1997 года, пока не был заменен синхронной DRAM. Память названа асинхронной вследствие того, что доступ к ней не синхронизируется с тактовым сигналом компьютерной системы.
Синхронная динамическая память нашла широкое применение в современных механизмах. Данный вид энергозависимой памяти компьютера отвечает на сигналы чтения и записи синхронно с сигналом системного тактового генератора. Синхронная память работает на более высоких скоростях по сравнению с асинхронной. С 1993 года этот тип является преобладающим в персональных компьютерах пользователей по всему миру.
Изначально синхронная динамическая память называлась SDRAM. В дальнейшем скорость передачи данных увеличилась в 2 раза и на рынке память появилась под названием DDR1. В дальнейшем были выпущены DDR2, DDR3 и DDR4. Последнее поколение (DDR4) было создано во второй половине 2014 года. В марте 2017 года началась разработка энергозависимых устройств памяти DDR5.
Заключение
В большинстве микропроцессорных устройств требуется как энергонезависимая, так и энергозависимая память. Однако выбор оптимального типа памяти зависит от особенностей конкретного приложения.
Память оказывает большое влияние на производительность, стоимость и энергопотребление. По этой причине выбор оптимального типа памяти является очень важной задачей.
Как и в случае со всеми инженерными задачами, разработка электронных устройств очень часто требует поиска компромиссных решений. Теперь, когда вы знаете о достоинствах и недостатках различных типов памяти, вы сможете выбрать оптимальный тип памяти для вашего нового устройства.
Энергонезависимая память — [SOIC-8-3.9]; Тип: EEPROM; Интерфейс: I2C; Объём: 64 кбит; Организация: 8Kx8; Скорость: 400kHz; Напряжение: 2.5. 5.5 В
Оперативная память — [DIP-28]; Тип: NVSRAM; Интерфейс: Parallel; Объём: 64 кбит; Организация: 8Kx8; Скорость: 70; Напряжение: 4.5. 5.5 В
SRAM 256K 32K X 8 5V 45NS, 62C256; Memory Type:SRAM; Interface Type:Asynchronous; Memory Size:256Kbit; Memory Configuration:32K x 8bit; Time, Access:45ns; Voltage, Memory Vcc:5V; Voltage, Memory Vccq:5V; Voltage, Supply Min:4.5V; Voltage, Supply Max:5.5V; Termination Type:SMD; Case Style:SOP; Pins, No.…