Факты | Иерархия компьютерной памяти

Компьютерная грамотность с Надеждой

Стационарные компьютеры и мобильные устройства (ноутбуки, планшеты, мобильные телефоны) могут быть в двух состояниях:

  1. когда устройство включено и работает,
  2. либо когда устройство выключено и не работает.

Непрерывно работать, вообще никогда не отключаясь, компьютеры и смартфоны не могут. Поэтому при каждом включении компьютер или мобильный телефон должен каким-то образом «вспомнить» свое состояние до выключения. И восстановить это состояние.

Иначе компьютеры и мобильные устройства были бы «одноразовыми». Они работали бы только до момента их первого выключения. А затем они навсегда бы «забывали» все то, что умели делать до выключения.

Какой бывает компьютерная память и в каких устройствах она используется?

Компьютерная память

Все виды компьютерной памяти можно разделить на две большие категории. Энергозависимая и энергонезависимая память. Энергозависимая память теряет все данные при отключении системы. Это происходит потому, что такая память требует постоянной энергетической подпитки и, как только подача электричества прекращается, она перестает функционировать. Энергонезависимая память сохраняет данные вне зависимости от того, включен ваш компьютер или нет. К примеру, большинство типов оперативной памяти относятся к энергозависимой категории.

Наиболее известные представители энергонезависимой категории это ПЗУ (постоянная память) и флеш-память, получившая в последнее время немалое распространение. В частности, карты памяти CompactFlash и SmartMedia.

Прежде всего просто перечислим основные виды компьютерной памяти и только потом начнем их рассматривать:

  • Оперативная память. Оперативное запоминающее устройство. ОЗУ, RAM
  • Постоянная память. Постоянное запоминающее устройство. ПЗУ, ROM
  • Кеш-память, Cache
  • Динамическая оперативная память. Dynamic RAM, DRAM
  • Статическая оперативная память. Static RAM, SRAM
  • Флеш-память, Flash memory
  • Память типа Memory Sticks в виде карт памяти для цифровых фотоаппаратов
  • Виртуальная память, Virtual memory
  • Видеопамять, Video memory
  • Базовая система ввода-вывода, БСВВ, BIOS

Как мы уже писали, память применяется не только в компьютерах, но и в иных цифровых устройствах. Тех «компьютероподобных» устройствах, которые для удобства изложения материала мы будем считать компьютерами, не отвлекаясь на постоянные обсуждения различий между ними. В частности, планшеты многие аналитики относят к компьютерам. Речь идет в том числе и о:

  • Сотовых телефонах
  • Смартфонах
  • Планшетах
  • Игровых консолях
  • Автомобильных радиоприемниках
  • Цифровых медиаплеерах
  • Телевизорах

Прежде, чем разбираться в том, как функционирует каждый вид памяти, поинтересуемся тем, как она вообще работает.

Внутренняя память

Понимание строения внутренней памяти ПК позволит нам лучше понять, что такое память в целом. Можно выделить следующие типы внутренней памяти персонального компьютера.

  • ПЗУ, или постоянное запоминающее устройство. Однако обычно его называют просто БИОС. Базовая система ввода-вывода. ПЗУ содержит в себе основные настройки персонального компьютера, необходимые для его работоспособности и запуска. Первые версии ПЗУ были действительно «постоянными» и не могли быть перезаписаны. Однако с развитием компьютерных технологий возникла необходимость перепрограммирования ПЗУ в условиях эксплуатации, что и было в конце концов реализовано.
  • Следующий тип также отвечает на вопрос: «Что такое память ОЗУ на компьютере?» Оперативное запоминающее устройство служит для хранения данных программ, в настоящее время выполняемых на вашем персональном компьютере. Также в ней содержатся данные промежуточных вычислений. Этот тип памяти неотрывно связан с другим вопросом: «Что такое память RAM?» Random access memory — другое название оперативной памяти. Она получила такое название из-за того, что центральный процессор может получить доступ к каждой ячейке памяти в любой момент времени.
  • КЭШ-память имеет небольшой объём и служит для хранения наиболее часто используемых процессором данных. Она намного меньше оперативной памяти, но и намного быстрее.
  • Видеопамять служит для хранения графической информации, приготовленной к выводу на экран.

что такое память ram

Компьютер тормозит. У меня мало памяти?

Компьютер может тормозить по множеству причин. Вот какие причины могут быть связаны с памятью:

  • Всю оперативную память заняла прожорливая или плохо оптимизированная программа.
  • На жёстком диске не хватает места для временных файлов.
  • SSD заполнен почти полностью, отчего он начинает естественным образом тормозить.

Что делать: перезагрузить, очистить корзину, поискать лишние большие файлы.

Трансляция адреса

Адресная трансляция — это формулировка, за которой скрывается некая магическая техника. Аппаратное обеспечение (ММУ)транслирует каждый виртуальный адрес программы уровня пользователя в правильный физический адрес. Таким образом, операционная система помнит для каждой задачи соответствие между его виртуальными адресами и физическими. И это является сложной задачей. Операционная система управляет всей памятью задач на уровне пользователя для каждого требования доступа к памяти, обеспечивая тем самым полную иллюзию процессу. Таким образом, операционная система преобразует всю физическую память в полезную, мощную и простую абстракцию.

Давайте подробно рассмотрим простой сценарий:
Когда процесс запускается, операционная система бронирует фиксированную область физической памяти, скажем, 16KB. Затем сохраняет начальный адрес этого пространства в специальную переменную, называемую базой. Потом устанавливает другую специальную переменную, называемую границами (или пределом) ширины пространства — 16КB. Далее операционная система сохранит эти два значения в таблице процессов, называемой PCB (Process Control Block).
А вот как выглядит процесс виртуального адресного пространства:

image

А вот его физическое изображение:

image

ОС решила сохранить его в физической памяти в диапазоне адресов от 4K до 20K. Таким образом, базовый адрес устанавливается в 4K, а предел установлен на 4 + 16 = 20К. Когда этот процесс планируется (учитывая некоторое время процессора), операционная система считывает обратно предельные значения из PCB и копирует их в конкретные регистры процессора. Когда CPU во время работы попытается загрузить, например, виртуальный адрес 2K (что-то в его куче), CPU добавит этот адрес базы, полученный от операционной системы. Таким образом, процесс доступа памяти приведет к физическому местоположению 2K + 4K = 6К.

Физический адрес = виртуальный адрес + предел

Если полученный физический адрес (6К) находится вне границ (-4K | 20K-), это означает, что процесс попытался получить доступ к неправильному участку памяти, которым он не владеет. Процессор сгенерирует исключение, и поскольку в ОС есть обработчик исключений для этого события, ОС активируется процессором и будет знать, что исключение памяти только что произошло на CPU. Затем ОС по умолчанию передаст сигнал поврежденному процессу “SIGSEGV”. Ошибка сегментации, которая по умолчанию (это может быть изменено) завершит задачу с сообщением — “Произошел сбой в работе с недопустимым доступом к памяти”.

Оперативная память компьютера

Оперативная память (англ. RAM — Random Access Memory) — память с произвольным доступом — это быстрое запоминающее устройство, непосредственно связанное с процессором и предназначенное для записи, считывания и хранения выполняемых программ и данных.

Оперативная и кэш-память является энергозависимыми — данные хранятся в них временно — до выключения электропитания компьютера, причем для динамической памяти (в отличие от статической) требуется постоянное обновление (регенерация) данных.

Наиболее распространенным типом схем памяти являются DRAM (динамическая память). В этих воспоминаниях значение каждого бита хранится в крошечном конденсаторе. Эти конденсаторы разряжаются — и очень быстро, примерно через 1 мс — поэтому их содержимое может быть потеряно. Для предотвращения этого специальные цепи периодически перезаряжают конденсаторы. Название памяти, «динамическая», происходит от этого непрерывного процесса перезарядки.

Оперативная память современного компьютера разделена на несколько типов. Хотя в основе всех типов памяти лежит обычная ячейка памяти, представляющий собой комбинацию из транзистора и конденсатора, благодаря различным внешним интерфейсам и устройствам взаимодействия с компьютером модули памяти они все же отличаются друг от друга.

Это наиболее дешевый способ производства ячеек памяти. Состояние конденсатора определяет, содержит ячейка «0» или «1», но само наличие конденсатора является причиной некоторых ограничений динамической памяти.

Заряженный конденсатор эквивалентен логической «1», разряженный — логическому «0». Однако впоследствии конденсатор разряжается, и поэтому необходимо время от времени обновлять его заряд. Необходимый для этого ток очень мал, так что нужно немного времени, чтобы конденсатор небольшой емкости был заряжен снова. Но во время этого процесса к ячейке памяти обращаться нельзя. Производители динамической памяти говорят, что подобное восстановление должно проводиться каждые 64мс. Но самая большая проблема с оперативной памятью в том, что при операции считывания из ячейки конденсатор теряет свой заряд, то есть считывание деструктивное, и ячейка после считывания информации должна быть восстановлена.

Таким образом, каждый раз при считывании информации должна проводиться и его запись. В результате увеличивается время циклического доступа, и повышается латентность.

Латентность — это простой в работе или это время, затрачиваемое на считывание из памяти одного слова данных (восьми байт) (измеряется в циклах). Чем ниже латентность оперативной памяти, тем меньше центральный процессор будет находиться в состоянии простоя. Полная латентность состоит из программной и аппаратной составляющих.

В модулях статической памяти такая проблема отсутствует. Одна ячейка статической памяти состоит из 4 транзисторов и двух резисторов, и в ячейке SRAM сохраняют данные не путем емкостной зарядки (как в DRAM), а путем переключения транзисторов в нужное состояние, подобно транзисторам в CPU. В отличие от динамической памяти — статическая память не является деструктивной. Ячейка статической памяти (кэш памяти) состоит из 4-х транзисторов и 2-х резисторов.

Массовое распространение получили следующие виды оперативной памяти DDR (уже не пользуется большим спросом), DDR2, DDR3, DDR4.

Внешний вид модулей памяти DDR, DDR2, DDR3

Внешний вид модулей памяти DDR, DDR2, DDR3

В каждом модуле оперативной памяти содержится также специальная микросхема SPD. В этой микросхеме хранятся данные о модуле памяти: дата изготовления модуля, основные характеристики модуля и тому подобное.

Кэш память

Персональные компьютеры также имеют скрытую память. Фактически, из-за разницы в скорости процессоров и схем основной памяти, большинство персональных компьютеров имеют два разных типа кэша, известных как «Уровень 1» (уровень 1 или L1) и «Уровень 2». Уровень 2 или L2 кэш).

L1 кэш-память

Кэш-память уровня 1 — это не что иное, как память в самом процессоре. Первым процессором, который содержал кэш-память, был Intel 80486, 8 Кб. Тогда все процессоры персональных компьютеров содержали латентную память размером до 32 Кб. Внутри кэш L1 делится на 16 или 32 байта.

Кэш L1 содержит адреса памяти, которые соответствуют данным и машинным командам. Он часто делится на два раздела для этих двух типов адресов. Машинные команды, выполняемые внутри процессора, особенно полезно кэшировать, когда процессор имеет конвейерную архитектуру, которая обрабатывает несколько команд одновременно.

Кэш-память второго уровня

Кэш уровня 2 больше по размеру, чем L1, но не так быстр, и находится на материнской плате компьютера. Как мы уже говорили, его схемы в основном состоят из статической памяти. Кэш-память уровня 2 обычно имеет размер до 1 Мб, но его максимальный размер также зависит от материнской платы.

Память DDR

Память DDR отличается от предыдущих видов памяти одним важным нововведением: теперь данные (но не адреса) можно получать и передавать два раза за такт — по убыванию и нарастающем фронтах сигнала. Для памяти DDR общепринятыми являются несколько обозначений: например DDR-266 или РС-2100.

Обозначения имеют разные смыслы: первое указывает частоту, с которой передаются данные (в нашем случае 266 МГц, при этом модуль работает на частоте 133MГц), второе — теоретическую пропускную способность модуля памяти (2100MBps). Второе обозначение используется чаще из маркетинговых соображений.

Схема передачи данных в микросхеме памяти DDR-400 (а), DDR2-800 (б), DDR3-1600 (в): Memory Cell Array — массив ячеек памяти; I / OBuffers — буфер ввода вывода данных; Data Bus — шина данных

Память DDR2

Память этого стандарта использовалась в платформе Socket 775. По сути DDR2 память не имеет кардинальных отличий от DDR. Однако в то время как DDR осуществляет две передачи данных по шине за такт, DDR2 выполняет четыре таких передачи. При этом, построена DDR2 из таких же ячеек памяти, как и DDR, а для удвоения пропускной способности используется техника мультиплексирования.

Само по себе ядро чипов памяти продолжает работать на той же самой частоте, на которой оно работало в DDR. Увеличивается только частота работы буферов ввода-вывода данных, а также расширяется шина, связывающая ядро памяти с буферами ввода/вывода данных ( I/O Buffers). На буфера ввода / вывода возлагается задача мультиплексирования. Данные, поступающие из ячеек памяти по широкой шине, уходят из них по шине обычной ширины, но с частотой, вдвое превышает частоту шины DDR. Таким способом достигается возможность очередного увеличения пропускной способности памяти без увеличения частоты работы самих ячеек памяти. То есть, фактически, ячейки памяти DDR2-400 работают с той же частотой, что ячейки памяти DDR200 или PC100 SDRAM. Однако столь простой метод увеличения пропускной способности памяти имеет и свои отрицательные стороны. В первую очередь — это рост латентности. Очевидно, что латентность не определяется ни частотой работы буферов ввода / вывода, ни шириной шины, по которой данные поступают из ячеек памяти.

Память DDR3

Передача данных по-прежнему осуществляется по обоим полупериодах синхросигнала на удвоенной «эффективной» частоте относительно собственной частоты шины памяти. Только рейтинги производительности выросли в 2 раза, по сравнению с DDR2. Типичными скоростными категориями памяти нового стандарта DDR3 являются разновидности от DDR3-800 до DDR3-1600 и выше. Очередное увеличение теоретической пропускной способности компонентов памяти в 2 раза вновь связано со снижением их внутренней частоты функционирования во столько же раз. Поэтому отныне, для достижения темпа передачи данных со скоростью 1 бит / такт по каждой линии внешней шины данных с «эффективной» частотой в 1600 МГц используемые 200-МГц микросхемы должны передавать по 8 бит данных за каждый свой такт. То есть,

Однако у данного типа памяти есть свои недостатки:

  • наряду с ростом пропускной способности выросла также и латентность памяти;
  • высокая цена модулей памяти.

Память DDR 4

На сегодня это основной тип памяти, который приобрел массовое применение. Первые тестовые образцы DDR4 были представлены в середине 2012 года фирмами Hynix, Micron и Samsung.

Micron выпустила первые опытные модули памяти, работающие на частоте 2400 МГц. Микросхемы от Hynix были созданы с использованием 38-нм техпроцесса. Модели работают на тактовой частоте 2400 МГц при напряжении питания 1,2 В. Подобная память может обрабатывать до 19,5 Гб данных в секунду.

Благодаря 30 нм техпроцессу память DDR4 от Samsung имела объем 8 и 16ГБ и тактовую частоту 2133 МГц. 16 ГБ планки имеют два ряда чипов памяти, в отличие от привычного одного ряда. К тому же, они располагаются на печатной плате ближе друг к другу, что позволяет вместить ее два дополнительных чипа памяти с каждой стороны. Samsung обещает, что с переходом на передовой 20 нм техпроцесс, появится возможность создания модулей памяти объемом 32 ГБ. Модули памяти DDR4 от Samsung, работают с напряжением 1,2 В, в отличие от DDR3 планок, которые работают на 1,35 В. Это небольшая разница, позволяет экономить энергию на 40%.

Рекомендации по выбору модулей памяти:

При производстве модулей памяти, как правило, одна фирма выпускает микросхемы (чипы), а другая делает сами модули (монтаж и пайка). Производителей чипов в мире насчитывается не более 10. Крупные производители чипов: Samsung, Mиcron, LG, Hynиx, Toshиba, Nec, Texas Instruments проводят тщательное тестирование готовой продукции, но полный цикл тестирования проходят далеко не все чипы. Исходя из этого, продукцию этих компаний можно условно разделить на три категории: класса А, В и С.

Первая — готовы микросхемы, прошедшие полный цикл тестирования (т.н. чипы класса A, примерно 10% от всей продукции) — считаются чипами высшего качества и самые надежные. Они также и самые дорогие, поскольку обеспечивают надежную работу в любых условиях. Эта категория чипов используется известными производителями модулей памяти.

Вторая (чипы класса B) — модули памяти с небольшими дефектами, на этапе тестирования которых были обнаружены ошибки. Эти чипы в большом количестве поставляются производителям дешевых модулей памяти, попадая затем на свободный рынок. Вполне может случиться, что модули, изготовленные на основе микросхем класса B, будут быстро и надежно работать, однако в системах, где нужна, прежде всего, надежность, подобные модули не применяются.

Третья (чипы класса C), которые вообще не тестировались производителем на скорость и надежность. Понятно, что на рынке такая продукция имеет наименьшую стоимость, поскольку вся ответственность за тестирование ложится на производителей модулей. Именно такие микросхемы используют производители дешевой памяти класса noname, а стабильность работы этих изделий вызывает большие сомнения. Надежность готового модуля памяти определяется совокупностью многих факторов. В частности, это количество слоев печатной платы (PCB), качество электронных компонентов, грамотное разведение цепей, а также технология производственного процесса. Мелкие производители модулей для снижения цены готовых изделий экономят на мелких компонентах, зачастую просто не впаянных на модуль.

Основная память на ПК организована в цепи типа SIMM или DIMM. Существуют различные виды таких схем, которые отличаются скоростью доступа к данным в памяти.

На персональном компьютере имеется кэш память на двух уровнях: первый уровень быстрее и меньше по размеру и расположен внутри процессора, а второй — на материнской плате.

Виды сменной памяти

  1. Стримеры.
  2. Магнитные дискеты и «болванки».
  3. Оптические диски.
  4. HDD, SSD и «флешки».
  5. Карты памяти.

Это понятие ввел в прошлом веке Нейман, предложивший архитектуру ЭВМ и обозначивший, что такое принцип хранимой программы, дошедший до наших дней. Каждая из них вместе со всеми данными должна прописываться и исполняться в ОЗУ.

Для быстрого доступа к любому блоку программы был введен термин адресуемость. Он обозначает принцип ввода информации в определенное место памяти, ее сохранение и извлечение оттуда.

Все отдельные файлы разбиты на маленькие блоки, которые записываются в свободные ячейки, имеющие соответствующий адрес, хранимый в какой-либо части памяти. Он сразу распознается компьютером при последующем обращении к этому файлу. Адресуемость позволяет влиять на быстродействие ПК.

Выводы

Основные характеристики памяти компьютера трудно обобщить, поскольку устройства в системе очень разные. Видимо, поэтому еще не разработали универсальный механизм, который объединял бы в себе и ОЗУ, и ПЗУ, и SSD и даже флеш-память.

С другой стороны, это было бы не совсем удобно для пользователя. Поэтому каждый девайс обзавелся своими характеристиками, на которые влияет производитель, стоимость, популярность и другие факторы.

Так, оперативная память имеет объем, частоту работы, напряжение и тип. Похожие характеристики и у внешних дисков (HDD и SSD). Покупатель смотрит на форм-фактор, интерфейсы, объем и общую работоспособность. Даже флеш-накопитель имеет похожие параметры, среди которых есть снова-таки объем, формат, скорость работы.

Несмотря на такую схожесть в технических характеристиках, эти устройства отвечают за свои конкретные задачи. ОЗУ хранит временную информацию о процессах на ПК. А вот жесткий и твердотельный накопитель сохраняет личную информацию пользователя и системы. Флешка также сохраняет любые данные, но может являться «переносчиком» их на другие устройства.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector