В 1951 году был создан первый компьютер предназначенный для коммерческого использования униак
Китайская разновидность абака — суаньпань — появилась в VI веке нашей эры; современный тип этого счётного прибора был создан позднее, по-видимому, в XII столетии.
Суаньпань представляет собой прямоугольную раму, в которой параллельно друг другу протянуты проволоки или верёвки числом от девяти и более. Перпендикулярно этому направлению суаньпань перегорожен на две части.
Постепенно абак эволюционировал. В 15-м – 16-м веках линии счета на абаке были заменены натянутыми веревками с нанизанными на них косточками (или бусинками). Так появился «дощаный счет» (на Русь он был завезён западными купцами в 15-м веке, один экземпляр той эпохи хранится в Историческом музее города Москвы). Верхние десять рядов служили для выполнения операций над целыми числам. Счет велся так же, как и на современных счетах, и начинался со старших разрядов. Ряды, содержащие меньше девяти косточек, использовались для операций с дробями. Ряд, содержащий четыре костяшки, использовался для счета четвертей, ряд, содержащий три костяшки – для счета третей, пять – для счета пятых частей, шесть – для счета шестых частей. Ряды, содержащие по одной (две) костяшки, представляли половину той дроби, под которой они находятся.
В 1614-м году шотландский математик Джон Непер (1550–1617) опубликовал в Эдинбурге сочинение под названием «Описание удивительной таблицы логарифмов, где давалось краткое описание логарифмов и их свойств, а также восьмизначные таблицы логарифмов с шагом 1′. Это колоссально упростило жизнь математиков, астрономов и инженеров, так как позволило свести операцию умножения чисел к сложению их логарифмов, а операцию деления – к вычитанию. Изобретение логарифмов послужило, в свою очередь, основой для создания нового вычислительного инструмента — счётной, или «логарифмической линейки». Это произошло, по разным данным, между 1620-м – 1630-ми годами.
Одним из этапов развития счётных приборов стало изобретение в 17-м веке суммирующих машин. Разработка одной из наиболее ранних и интересных моделей принадлежит французу, основателю математического анализа и проективной геометрии, автору основного закона гидростатики, Блезу Паскалю.
Большой вклад в развитие вычислительной техники был сделан выдающимся английским математиком Чарльзом Бэббиджем (1791 – 1871). Помимо того, что он сконструировал «праматерь» современного компьютера – аналитическую машину (1834), ему принадлежат такие изобретения, как машина для табулирования (1822), малая и большая разностная машины (1822 – 1834), изобретение спидометра, труды по теории функций и многое другое.
В 1890-м году петербургский механик В. Т. Однер наладил серийное производство русских счётных машин – «арифмометров Однера». Его прибор пользовался заслуженной популярностью в двадцатом веке и послужил прототипом для всех последующих моделей арифмометров
Первое поколение настоящих ЭВМ появилось в 1948 – 1958-х годов. Тогда были реализованы основные логические принципы построения («архитектуры») и функционирования ЭВМ, оформленные в 1945-м году в отчёте для Баллистической Лаборатории Армии США («Первый проект отчёта о EDVAC»). На документе значилось имя математика Джона фон Неймана, которому удалось обобщить научные разработки и открытия многих других ученых. Отсюда в профессиональной среде появился термин «архитектура фон Неймана». Он касается работы ЭВМ по вводимой в память компьютера программе (команды) и исходным данным (числам).
Элементной базой машин второго поколения (начиная с 1955-го до 1965 года) стали транзисторы. Транзистор (от английских слов transfer ‘переносить’ + resistor ‘сопротивление’) – это полупроводниковый прибор для усиления, генерирования и преобразования электрических колебаний. Он делается на основе монокристаллического полупроводника, который содержит, как минимум, три области с различной проводимостью. Первый транзистор был создан в 1947-м году в лаборатории Bell Telephone Laboratories (Д. Бардином, У. Бременом и У. Шокли), а первая транзисторная ЭВМ появилась в 1956-м году.
Третье поколение ЭВМ, по разным версиям, охватывает период с конца 60-х по 1980-й год. Процесс создания компьютерной техники шел непрерывно в разных странах, при участии множества людей, поэтому календарно установить, когда закончилось второе поколение и началось третье (так же, как и установить границу между третьим и четвертым) не представляется возможным. В конце 60-х – начале 70-х годов 20-го века, с появлением интегральных технологий в электронике, были созданы микроэлектронные устройства, содержащие несколько десятков транзисторов и резисторов на одной небольшой (площадью порядка 1 см2) кремниевой подложке. Без пайки на них «выращивались» электронные схемы, выполняющие функции основных логических узлов ЭВМ (триггеры, сумматоры, дешифраторы, счетчики и т.д.). Именно это позволило перейти к третьему поколению ЭВМ, техническая база которого – интегральные схемы (или «микросхемы»).
Четвертое поколение ЭВМ приходится на конец 70-х – начало 80-годов и продолжается, по общепринятым рамкам, до настоящего времени. Конструктивно-технологической основой компьютеров четвертого поколения являются большие (БИС) и сверхбольшие (СБИС) интегральные схемы, содержащие от десятков тысяч до миллионов транзисторов на одном кристалле.
Электронная энциклопедия «Компьютер»
Логические схемы создавались на дискретных радиодеталях и электронных вакуумных лампах с нитью накала. В оперативных запоминающих устройствах использовались магнитные барабаны, акустические ультразвуковые ртутные и электромагнитные линии задержки, электронно-лучевые трубки (ЭЛТ). В качестве внешних запоминающих устройств применялись накопители на магнитных лентах, перфокартах, перфолентах и штекерные коммутаторы.
Программирование работы ЭВМ этого поколения выполнялось в двоичной системе счисления на машинном языке, то есть программы были жестко ориентированы на конкретную модель машины и «умирали» вместе с этими моделями.
В середине 1950-х годов появились машинно-ориентированные языки типа языков символического кодирования (ЯСК), позволявшие вместо двоичной записи команд и адресов использовать их сокращенную словесную (буквенную) запись и десятичные числа. В 1956 году был создан первый язык программирования высокого уровня для математических задач — язык Фортран, а в 1958 году — универсальный язык программирования Алгол.
ЭВМ, начиная от UNIVAC и заканчивая БЭСМ-2 и первыми моделями ЭВМ «Минск» и «Урал», относятся к первому поколению вычислительных машин.
29 апреля 1952 г. появилась первая ЭВМ фирмы IBM. В качестве памяти использовался магнитный барабан. Емкость ОЗУ — 20480 байт Производительность 8000 операций в секунду.
Второе поколение ЭВМ: 1960-1970-е годы
Логические схемы строились на дискретных полупроводниковых и магнитных элементах (диоды, биполярные транзисторы, тороидальные ферритовые микротрансформаторы). В качестве конструктивно-технологической основы использовались схемы с печатным монтажом (платы из фольгированного гетинакса). Широко стал использоваться блочный принцип конструирования машин, который позволяет подключать к основным устройствам большое число разнообразных внешних устройств, что обеспечивает большую гибкость использования компьютеров. Тактовые частоты работы электронных схем повысились до сотен килогерц.
Стали применяться внешние накопители на жестких магнитных дисках и на флоппи-дисках — промежуточный уровень памяти между накопителями на магнитных лентах и оперативной памятью.
В 1964 году появился первый монитор для компьютеров — IBM 2250. Это был монохромный дисплей с экраном 12 х 12 дюймов и разрешением 1024 х 1024 пикселов. Он имел частоту кадровой развертки 40 Гц.
Создаваемые на базе компьютеров системы управления потребовали от ЭВМ более высокой производительности, а главное — надежности. В компьютерах стали широко использоваться коды с обнаружением и исправлением ошибок, встроенные схемы контроля.
В машинах второго поколения были впервые реализованы режимы пакетной обработки и телеобработки информации.
Первой ЭВМ, в которой частично использовались полупроводниковые приборы вместо электронных ламп, была машина SEAC (Standarts Eastern Automatic Computer), созданная в 1951 году. В начале 60-х годов полупроводниковые машины стали производиться и в СССР.
Пример: IBM 360-40
Изготовлена в 1964 г. Для разных моделей комбинируется из 19 блоков центрального процессора и 40 типов периферии. Емкость ОЗУ 256 Кбайт. Производительность 246 тыс. опер/сек.
Третье поколение ЭВМ: 1970-1980-е годы
В 1958 году Роберт Нойс изобрел малую кремниевую интегральную схему, в которой на небольшой площади можно было размещать десятки транзисторов. Эти схемы позже стали называться схемами с малой степенью интеграции (Small Scale Integrated circuits — SSI). А уже в конце 60-х годов интегральные схемы стали применяться в компьютерах.
Логические схемы ЭВМ 3-го поколения уже полностью строились на малых интегральных схемах. Тактовые частоты работы электронных схем повысились до единиц мегагерц. Снизились напряжения питания (единицы вольт) и потребляемая машиной мощность. Существенно повысились надежность и быстродействие ЭВМ.
В оперативных запоминающих устройствах использовались миниатюрнее ферритовые сердечники, ферритовые пластины и магнитные пленки с прямоугольной петлей гистерезиса. В качестве внешних запоминающих устройств широко стали использоваться дисковые накопители.
Появились еще два уровня запоминающих устройств: сверхоперативные запоминающие устройства на триггерных регистрах, имеющие огромное быстродействие, но небольшую емкость (десятки чисел), и быстродействующая кэш-память.
Начиная с момента широкого использования интегральных схем в компьютерах, технологический прогресс в вычислительных машинах можно наблюдать, используя широко известный закон Мура. Один из основателей компании Intel Гордон Мур в 1965 году открыл закон, согласно которому количество транзисторов в одной микросхеме удваивается через каждые 1,5 года. Ввиду существенного усложнения как аппаратной, так и логической структуры ЭВМ 3-го поколения часто стали называть системами.
Так, первыми ЭВМ этого поколения стали модели систем IBM (ряд моделей IBM 360) и PDP (PDP 1). В Советском Союзе в содружестве со странами Совета Экономической Взаимопомощи (Польша, Венгрия, Болгария, ГДР и др1.) стали выпускаться модели единой системы (ЕС) и системы малых (СМ) ЭВМ.
В вычислительных машинах третьего поколения значительное внимание уделяется уменьшению трудоемкости программирования, эффективности исполнения программ в машинах и улучшению общения оператора с машиной. Это обеспечивается мощными операционными системами, развитой системой автоматизации программирования, эффективными системами прерывания программ, режимами работы с разделением машинного времени, режимами работы в реальном времени, мультипрограммными режимами работы и новыми интерактивными режимами общения. Появилось и эффективное видеотерминальное устройство общения оператора с машиной — видеомонитор, или дисплей.
Большое внимание уделено повышению надежности и достоверности функционирования ЭВМ и облегчению их технического обслуживания. Достоверность и надежность обеспечиваются повсеместным использованием кодов с автоматическим обнаружением и исправлением ошибок (корректирующие коды Хеммин-га и циклические коды).
Модульная организация вычислительных машин и модульное построение их операционных систем создали широкие возможности для изменения конфигурации вычислительных систем. В связи с этим возникло новое понятие «архитектура» вычислительной системы, определяющее логическую организацию этой системы с точки зрения пользователя и программиста
Четвертое поколение ЭВМ: 1980-1990-е годы
Революционным событием в развитии компьютерных технологий третьего поколения машин было создание больших и сверхбольших интегральных схем (Large Scale Integration — LSI и Very Large Scale Integration — VLSI), микропроцессора (1969 г.) и персонального компьютера. Начиная с 1980 года практически все ЭВМ стали создаваться на основе микропроцессоров. Самым востребованным компьютером стал персональный.
Логические интегральные схемы в компьютерах стали создаваться на основе униполярных полевых CMOS-транзисторов с непосредственными связями, работающими с меньшими амплитудами электрических напряжений (единицы вольт), потребляющими меньше мощности, нежели биполярные, и тем самым позволяющими реализовать более прогрессивные нанотехнологии (в те годы — масштаба единиц микрон).
Оперативная память стала строиться не на ферритовых сердечниках, а также на интегральных CMOS-транзисторных схемах, причем непосредственно запоминающим элементом в них служила паразитная емкость между электродами (затвором и истоком) этих транзисторов.
Первый персональный компьютер создали в апреле 1976 года два друга, Стив Джобе (1955 г. р.) — сотрудник фирмы Atari, и Стефан Возняк (1950 г. р.), работавший на фирме Hewlett-Packard. На базе интегрального 8-битного контроллера жестко запаянной схемы популярной электронной игры, работая вечерами в автомобильном гараже, они сделали простенький программируемый на языке Бейсик игровой компьютер «Apple», имевший бешеный успех. В начале 1977 года была зарегистрирована Apple Сотр., и началось производство первого в мире персонального компьютера Apple
Пятое поколение ЭВМ: 1990—…
Переход к компьютерам пятого поколения предполагал переход к новым архитектурам, ориентированным на создание искусственного интеллекта.
Считалось, что архитектура компьютеров пятого поколения будет содержать два основных блока. Один из них — собственно компьютер, в котором связь с пользователем осуществляет блок, называемый «интеллектуальным интерфейсом». Задача интерфейса — понять текст, написанный на естественном языке или речь, и изложенное таким образом условие задачи перевести в работающую программу.
Основные требования к компьютерам 5-го поколения: Создание развитого человеко-машинного интерфейса (распознавание речи, образов); Развитие логического программирования для создания баз знаний и систем искусственного интеллекта; Создание новых технологий в производстве вычислительной техники; Создание новых архитектур компьютеров и вычислительных комплексов.
Новые технические возможности вычислительной техники должны были расширить круг решаемых задач и позволить перейти к задачам создания искусственного интеллекта. В качестве одной из необходимых для создания искусственного интеллекта составляющих являются базы знаний (базы данных) по различным направлениям науки и техники. Для создания и использования баз данных требуется высокое быстродействие вычислительной системы и большой объем памяти. Универсальные компьютеры способны производить высокоскоростные вычисления, но не пригодны для выполнения с высокой скоростью операций сравнения и сортировки больших объемов записей, хранящихся обычно на магнитных дисках. Для создания программ, обеспечивающих заполнение, обновление баз данных и работу с ними, были созданы специальные объектно ориентированные и логические языки программирования, обеспечивающие наибольшие возможности по сравнению с обычными процедурными языками. Структура этих языков требует перехода от традиционной фон-неймановской архитектуры компьютера к архитектурам, учитывающим требования задач создания искусственного интеллекта.
Пример: IBM eServer z990. Изготовлен в 2003 г.
Физические параметры: вес 2000 кг., потребляемая мощность 21 КВт., площадь 2,5 кв. м., высота 1,94 м., емкость ОЗУ 256 ГБайт, производительность — 9 млрд. инструкций/сек.
Шестое и последующие поколения ЭВМ
Электронные и оптоэлектронные компьютеры с массовым параллелизмом, нейронной структурой, с распределенной сетью большого числа (десятки тысяч) микропроцессоров, моделирующих архитектуру нейронных биологических систем.
В 1951 году был создан первый компьютер предназначенный для коммерческого использования униак
+7 (499) 444-90-36 Отдел заботы о пользователях
Москва, Ленинский проспект, дом 6, строение 20
- Участник Skolkovo
- Премии Рунета 2018, 2019, 2020
Пользуясь нашим сайтом, вы соглашаетесь с тем, что мы используем cookies ?
Механизм Лео да Винчи 4
Следующий шаг сделал всем знакомый Лео да Винчи. В своих дневниках он описал 13-разрядное устройство с десятью кольцами для суммирования. Аналогичный механизм был разработан позднее, лишь в XX-веке по чертежам Лео.
Тюбингенский профессор Вильгельм Шиккард создал вычислительное устройство с зубчатыми шестеренками, названное — считающие часы. Они позволяли делать сложения и вычитание шестирязрадных 10-ных чисел. Еще механизм делал умножение.
Первый компьютер для коммерческого использования
Первый компьютер, который был создан исключительно для коммерческого назначения, можно назвать UNIVAC-1.
UNIVAC 1
Данная машина стала популярна после того, как она провела вычисления на основании опроса одного процента населения и сделала вывод, что выиграет Эйзенхауэр. После того, как широкая общественность осознала возможности подобных компьютеров, спрос на них вырос.
Эпоха интегральных схем
В декабре 1961 года специальный комитет фирмы IBM, изучив техническую политику фирмы в области разработки вычислительной техники, представил план-отчёт создания ЭВМ на микроэлектронной основе. Во главе реализации плана встали два ведущих разработчика фирмы — Д. Амдал и Г. Блау. Работая с проблемой производства логических схем, они предложили при создании семейства использовать гибридные интегральные схемы, для чего при фирме в 1963 году было открыто предприятие по их выпуску.
В начале апреля 1964 года фирма IBM объявила о создании шести моделей своего семейства IBM-360 («System-360»), появление которого ознаменовало появление компьютеров третьего поколения. За 6 лет существования семейства фирма IBM пустила более 33 тыс. машин. Затраты на научно-исследовательские работы составили примерно полмиллиарда долларов (по меркам того времени — сумма была просто огромной). При создании семейства «System-360» разработчики встретились с трудностями при создании операционной системы, которая должна была отвечать за эффективное размещение и использование ресурсов ЭВМ. Первая из них, универсальная операционная система называлась DOS, предназначенная для малых и средних ЭВМ, позже была выпущена операционная система OS/360 — для больших. До конца 60-х гг. фирма IBM в общей сложности выпустила более 20 моделей семейства IBM-360. В модели 85 впервые в мире была применена кэш-память (от фр. cache — тайник), а модель 195 стала первой ЭВМ на монолитных схемах.
В конце 1970 года фирма IBM стала выпускать новое семейство вычислительных машин — IBM-370, которое сохранило свою совместимость с IBM-360, но и имело ряд изменений: они были удобны для комплектования многомашинных и многопроцессорных вычислительных систем, работающих на общем поле оперативной памяти.
Почти одновременно с IBM компьютеры третьего поколения стали выпускать и другие фирмы. В 1966—1967 гг. их выпускали фирмы Англии, ФРГ и Японии. В Англии фирмой ICL был основан выпуск семейства машин «System-4» (производительность от 15 до 300 тыс. оп/с). В ФРГ были выпущены машины серии 4004 фирмы Siemens (машины этого семейства полностью копировали ЭВМ семейства «Spectra-70»), а в Японии — машины серии «Hytac-8000», разработанные фирмой Hitachi (это семейство являлось модификацией семейства «Spectra-70»). Другая японская фирма Fujitsu в 1968 году объявила о создании серии ЭВМ «FACOM-230». В Голландии фирма Philips Gloeilampenfabriken, образованная в 1968 году для выпуска компьютеров, стала выпускать компьютеры серии P1000, сравнимой с IBM-360.
В декабре 1969 года ряд стран (НРБ, ВНР, ГДР, ПНР, СССР и ЧССР, а также в 1972 году — Куба, а в 1973 году — СРР) подписали Соглашение о сотрудничестве в области вычислительных технологий. На выставке «ЕСЭВМ-73» (1973 г.) были показаны первые результаты этого сотрудничества: шесть моделей компьютеров третьего поколения и несколько периферийных устройств, а также четыре ОС для них. С 1975 года начался выпуск новых модернизированных моделей ЕС-1012, ЕС-1022, ЕС-1032, ЕС-1033, имеющих наилучшее соотношение производительность/стоимость, в которых использовались новые логические схемы и схемы полупроводниковой памяти. Вскоре появились машины второй серии сотрудничества. Наиболее ярким представителем его была мощная модель ЕС-1065, представлявшая собой многопроцессорную системы, состоящую из четырёх процессоров и имевшую память 16 Мбайт. Машина была выполнена на интегральных схемах ИС-500 и имела производительность 4—5 млн оп/с.
С машинами третьего поколения связано ещё одно значительное событие — разработка и внедрение визуальных устройств ввода-вывода алфавитно-цифровой и графической информации с помощью электронно-лучевых трубок — дисплеев, использование которых позволило достаточно просто реализовать возможности вариантного анализа. История появления первых прототипов современных дисплеев относится к послевоенным годам. В 1948 году Г. Фуллер, сотрудник лаборатории вычислительной техники Гарвардского университета, описал конструкцию нумероскопа. В этом приборе, под руководством ЭВМ, на экране электронно-лучевой трубки появлялась цифровая информация. Дисплей принципиально изменил процесс ввода-вывода данных и упростил общение с компьютером.
В 1970-х годах благодаря появлению микропроцессоров стало возможным осуществлять буферизацию как данных, принимаемых с экранного терминала, так и данных, передаваемых ЭВМ. Благодаря чему регенерацию изображения на экране удалось реализовать средствами самого терминала. Появилась возможность редактирования и контроля данных перед их передачей в ЭВМ, что уменьшило число ошибок. На экране появился курсор — подвижная метка, инициализирующая место ввода или редактирования символа. Экран дисплея стал цветным. Появилась возможность отображения на экране сложных графических изображений — это дало возможность для создания красочных игр (хотя первые компьютерные игры появились ещё в 1950-е годы, но были псевдографическими) и предназначенных для работы с графикой программ.