Для долговременного хранения информации служат какие носители? Основные типы современных устройств

ЦП Автоматизированные системы управления и промышленная безопасность

Запоминающее устройство — носитель информации , предназначенный для записи и хранения данных. В основе работы запоминающего устройства может лежать любой физический эффект, обеспечивающий приведение системы к двум или более устойчивым состояниям.

Классификация запоминающих устройств

По устойчивости записи и возможности перезаписи ЗУ делятся на:

· постоянные ЗУ ( ПЗУ ), содержание которых не может быть изменено конечным пользователем (например, DVD — ROM ). ПЗУ в рабочем режиме допускает только считывание информации.

· записываемые ЗУ, в которые конечный пользователь может записать информацию только один раз (например, D VD -R).

· многократно перезаписываемые ЗУ (например, DVD -RW).

· оперативные ЗУ ( ОЗУ ) обеспечивает режим записи, хранения и считывания информации в процессе её обработки.

По типу доступа ЗУ делятся на:

· устройства с последовательным доступом (например, магнитные ленты).

· устройства с произвольным доступом (RAM) (например, оперативная память).

· устройства с прямым доступом (например, жесткие магнитные диски).

· устройства с ассоциативным доступом (специальные устройства, для повышения производительности БД)

По геометрическому исполнению:

· дисковые ( магнитные диски , оптические, магнитооптические);

· ленточные ( магнитные ленты , перфоленты);

· барабанные ( магнитные барабаны );

· карточные ( магнитные карты , перфокарты, флэш-карты, и др.)

· печатные платы (карты DRAM ).

По физическому принципу:

· перфорационные ( перфокарта ; перфолента );

· с магнитной записью (ферритовые сердечники, магнитные диски, магнитные ленты , магнитные карты);

· оптические ( CD , DVD , HD-DVD , Blu-ray Disc );

· использующие эффекты в полупроводниках ( флэш-память ) и другие.

По форме записанной информации выделяют аналоговые и цифровые запоминающие устройства.

Как информация сохранялась раньше

Самый первый метод сохранения информации в виде наскальных рисунков (кстати, графика) известен еще с незапамятных времен.

устройство для долговременного хранения информации

Намного позже с появлением речи сохранение информации стало представлять собой процесс, так сказать, передачи из уст в уста (мифы, легенды, былины). Письменность привела к тому, что стали появляться книги. Не забывались и картины или рисунки. С появлением технологий фотографии, записи звука и видео, на информационном поле появились соответствующие носители. Но все это оказывалось недолговечным.

Как хранили данные раньше

Огромный технологический скачок рассматриваемая сфера совершила в течение последних 60-70 лет. За указанное время люди успели придумать, разработать и выпустить многочисленное количество устройств, применяемых для аккумулирования информации в рамках единого носителя. К их числу относились:

  • магнитные и перфорированные ленты;
  • барабаны;
  • диски;
  • оптические винты;
  • перфокарты.

Каждый прибор характеризовался собственным набором преимуществ и недостатков. Создание любого из них постепенно приближало исследователей к успешно используемой современной аппаратуре.

Носители данных, использующие перфорацию

Самый первый модуль, являющийся прообразом всех нынешних систем, предназначенных для сбора и обработки информационных контейнеров. Их главная особенность – наличие значительного числа отверстий правильной формы, расположенных прямиком на листовом материале. В качестве подложки может приобретаться буквально все, вплоть до специального тонкого картона. Наиболее широко они применялись во второй половине XX века. С течением времени были заменены новыми конструкциями, представленными в виде компактных, быстрых и удобных полупроводниковых, магнитных или оптических носителей.

Перфокарты

Перфорированные элементы – это оборудование, применяемое людьми задолго до изобретения первого компьютера. Они задействовались, например, в ткацких станках, часах-карильонах, обыкновенных шарманках и пр. Первый человек, задумавшийся об использовании таких аппаратов для хранения данных – Герман Холлерит. Он реализовал свою идею для обработки статистики, полученной во время переписи населения. Позже ему удалось перенести информацию на другие приложения – это открытие привело современную группу компаний IBM к периоду благополучия, длящемуся до сих пор.

Перфоленты

На первый взгляд, более практичные носители, которые, к сожалению, в бизнесе и на крупных предприятиях практически не применялись. Основные проблемы устройства (последовательный доступ, небольшая емкость и низкая скорость ввода/вывода) сильно мешали дальнейшему распространению. Узкие 5-колонные ленточки с 1857 года можно было найти на телеграфах, а их широкие аналоги на 24 колонки задействовались в электромеханическом калькуляторе, изобретенном порядка 80 лет назад.

Магнитные ленты

Виды и средства хранения данных начали преобразовываться в 1924 г., с момента создания катушечных магнитных носителей. Такое оборудование обладало сильными преимуществами, выгодно отличаясь от устаревших перфокарт практически по всем фронтам. Побуждением к совершенствованию технологии стало то, что уже в середине восьмидесятых годов прошлого столетия, емкости дисков измерялись гигабайтами, а работать с такими величинами могли исключительно накопители нового формата. За три десятка лет исследователи разработали огромное количество подобных модулей, однако самым распространенным стандартом стал LTO. Именно на такой основе выпускают многие современные картриджи.

Магнитный барабан

Промежуточный вариант способ решения спора между регламентом пошаговой записи и нуждой обеспечения доступа к данным, расположенным во внешнем устройстве. Произведен в 1932 г, а его создателем считается Густав Тучек. Такие конструкции эксплуатировались до 1980 г: ими комплектовались машины ЭВМ БЭСМ-6, а также ее современники.

Гибкие диски

Просуществовали 30 лет, вплоть до конца 90-х. Распространению подобных структур способствовал факт наличия возможностей для передачи информации по сети. Тогда системами переноса обладал практически любой профильный ПК, а дисковые формации было удобно использовать для обмена материалами. Стандарт привычных «кругляшей» появился в 1983 году (он был предложен инженерами компании Sony).

Магнитные накопители.

Накопитель на гибких магнитных дискахГибкий диск, дискета (англ. floppy disk) – устройство для хранения небольших объёмов информации, представляющее собой гибкий пластиковый диск в защитной оболочке. Наиболее распространены – «трехдюймовые дискеты». Дискета 3,5 имеет 2 рабочие поверхности, 80 дорожек на каждой стороне, 18 секторов на каждой дорожке (512 байт – каждый сектор).

Устройство дискеты : Принцип записи на магнитных носителяхоснован на намагниченности отдельных участков магнитного слоя носителя. Информация записывается по концентрическим дорожкам (трекам), которые делятся на секторы. Количество дорожек и секторов зависит от типа и формата дискеты. Сектор хранит минимальную порцию информации, которая может быть записана на диск или считана. Емкость сектора постоянна и составляет 512 байтов.

Примечание

На сегодняшний день дискеты устарели, на смену им «пришли» более надежные, быстродействующие и более емкие носители – оптические диски и карты памяти…

HDD боксы

Существуют HDD боксы, предназначенные для использования в качестве носителя информации обычный жесткий диск (HDD). Такие боксы представляют собой коробку с контроллером USB, к которому подключаются самые простые жесткие диски стационарного компьютера.

Таким образом, вы легко можете переносить информацию непосредственно с жесткого диска вашего компьютера напрямую, без дополнительного копирования и вставки. Такой вариант будет намного дешевле покупки внешнего жесткого диска, особенно если перенести на другой компьютер нужно почти весь раздел жесткого диска.

В общем случае, границы между этими разновидностями носителей довольно расплывчаты и могут варьироваться, в зависимости от ситуации и внешних условий.

Необходима подсказка, как устранить затертость с заднего бампера автомобиля.
Кто-то прижался во дворе и поцарапал. Деньги выкидывать для перекраску элемента нет желания, т.к дорого стоит.

Флеш-память

  • Твердотельные накопители (SSD) – замена для жёстких дисков.
  • Флешки – используются для переноса информации между компьютерами, её хранения, например цифровых ключей.
  • Флеш-карты – применяются для хранения данных на цифровой технике: фотоаппараты, камеры, видеорегистраторы, телефоны, планшеты.

Флеш-память

Преимущества флеш-памяти над HDD:

  • Скорость считывания и записи до десятка раз выше.
  • Надёжность – менее подвержена потерям данных при облучении электромагнитными полями, падении накопителя.
  • Отсутствие механики – не шумит.
  • Экономичность – потребляют меньше энергии.

Из недостатков на данный момент отметим:

  • Стоимость одного гигабайта – обходится дороже HDD в разы, но ситуация постоянно улучшается.
  • Объём – для HDD в основном 1-2 ТБ, для SSD – 256-512 ГБ.

Компактность большой роли не играет. Ограниченный срок службы ячейки ранее относился к недостаткам, с развитием технологий количество циклов перезаписи перестало быть проблемой.

Внешние устройства хранения информации

Внешними являются устройства хранения информации, которые можно отсоединить от ПК и перенести на другой.

Главный недостаток: низкая скорость работы в отличие от внутренних устройств. Внешняя память предназначена для длительного хранения данных.

Накопители на гибких магнитных дисках (НГМД) уходят в прошлое. Выполнены в виде дискет двух форматов: $5.25»$ или $3.5»$. Максимальная емкость дискет формата $5.25» – 1,2$ Мб, в настоящее время не используются. Максимальная емкость дискет формата $3,5» – 2,88$ Мб, но самым распространенным форматом были дискеты емкостью $1,44$ Мб.

Накопители на жестких магнитных дисках (НЖМД) являются наиболее совершенными и сложными устройствами современных ПК. Такие диски могут хранить большие объемы, которую могут передавать с большой скоростью. Несмотря на эволюцию жестких дисков, основные принципы их работы практически не изменились.

Готовые работы на аналогичную тему

Стримеры – устройства, предназначенные для записи информации на магнитную ленту. По принципу действия стримеры очень похожи на кассетный магнитофон: данные записываются на магнитную ленту, которая протягивается мимо головок. Возможности технологии сильно ограничены физическими свойствами носителя по емкости и по скорости.

Недостатки использования стримера:

  • слишком большое время доступа к данным при чтении (во много раз превышает время доступа жестких дисков);
  • емкость не превышает нескольких Гб, что меньше емкости современных жестких дисков.

Оптические диски.

CD (Compact Disc) – оптический носитель информации. Стандартный объем $700$ Мб. Запись и считывание информации осуществляется с помощью лазера.

DVD (Digital Versatile Disk) – оптический многоцелевой цифровой диск. Существуют односторонние и однослойные $DVD$ (стандартный объем $4,7$ Гб), а также двухсторонние или двухслойные диски с удвоенным объемом (объем увеличивается в $4$ раза и составляет более $17$ Гбайт).

BD (Blu-Ray Disc) – оптический носитель цифровых данных, который используется для записи и хранения информации и позволяет хранить видео высокой чёткости с повышенной плотностью.

Магнитно-оптический диск СD-MO (Compact Disk – Magneto Optical) – носитель информации, который сочетает свойства оптических и магнитных накопителей. Ёмкость диска от $128$ Мб до $2,6$ Гб.

Flash-карты – устройства, состоящие из одной микросхемы и не имеющие подвижных частей. Принцип работы основан на использовании кристаллов электрически перепрограммируемой флэш-памяти.

Физический принцип организации ячеек флэш-памяти одинаков для всех существующих устройств, как бы они ни назывались. Отличаются устройства интерфейсом и используемым контроллером, которые обусловливают разницу в емкости, скорости передачи данных и энергопотреблении.

Multimedia Card (MMC) и Secure Digital (SD) выходят из использования из-за небольшой емкости ($64$ Мб и $256$ Мб соответственно) и низкой скорости работы.

SmartMedia – основной формат для карт широкого использования (от банковских и проездных в метро до удостоверений личности). Выполнены в виде тонких пластинок весом $2$ гр и имеют открытые контакты. Для таких размеров имеют относительно значительную емкость (до $128$ Мбайт) и скорость передачи данных (до $600$ Кб/с), которые обусловили их проникновение в сферу цифровой фотографии и $MP3$-устройств.

USB Flash Drive – последовательный интерфейс $USB$ с пропускной способностью $12$ Мбит/с или его современный вариант $USB 2.0$ с пропускной способностью до $480$ Мбит/с.

PC Card (PCMCIA ATA) – карточка флэш-памяти для компактных ПК. Существует 4 формата карточек $PC Card: Type I, Type II, Type III и CardBus$, которые отличаются размерами, разъемами и рабочим напряжением. Емкость карточек достигает $4$ Гб, скорость обмена данными с жестким диском – $20$ Мбит/с.

Miniature Card (MC)– карточка флэш-памяти для карманных ПК, мобильных телефонов и цифровых камер. Стандартная емкость – $64$ Мб и больше.

Приведенный список не является полным, т.к. существуют большое количество самых разнообразных устройств хранения информации. Здесь приведены наиболее часто используемые.

Типы устройств

Когда дело доходит до физического хранилища, рекомендуется использовать различные типы устройств. Каждое устройство предлагает несколько разные преимущества и недостатки с точки зрения надежности и производительности, поэтому важно понимать, как каждое из них работает, как они могут дополнять друг друга.

HDD, или жесткие диски

Самое известное запоминающее устройство, доступное на рынке, – жесткий диск. На HDD информация будет храниться на оптическом и круглом диске. Данные считываются и записываются с помощью сенсорного рычага. Этот принцип очень похож на компакт-диск или проигрыватель. Если нужна более высокая скорость передачи данных, то можно увеличить вращение диска. Таким образом, HDD будет предлагать лучшую производительность.

Однако на самом деле эта скорость ограничена вращением диска. Большинство жестких дисков предлагают до 7000 об/мин. Если использовать дорогие HDD, скорость может достигать 15000 об/мин. Срок их службы – около 3-5 лет. Однако они дешевле по сравнению с другими устройствами.

SSD, или твердотельные накопители

Твердотельные накопители отличаются от HDD, поскольку у них нет вращающихся или движущихся частей. Эти диски используют флэш-память NAND. Твердотельные накопители почти в 4-10 раз быстрее жестких дисков. Они также более долговечны.

Однако SSD дороже по сравнению с HDD. Каждый блок памяти может хранить ограниченные данные, считаются ненадежными для резервных копий.

Ленточные накопители

Самая старая форма приводов, доступных на рынке. Ленточные накопители в основном используются компаниями, которые хранят большой объем архивных файлов, когда не нужно быстро получать к ним доступ. Жизненный цикл большинства цифровых ленточных накопителей составляет более 30 лет. Кроме того, не нужно беспокоиться о его поддержании. Это идеальное решение для резервного копирования.

Хотя сами ленты довольно дешевы, приводная система, необходимая для чтения и записи информации, дорога в обслуживании и сложна в управлении. Многие компании, использующие ответвительные диски для обеспечения отказоустойчивого восстановления после сбоев, предпочитают одну и ту же систему в течение многих лет и избегают перехода на более сложную технологию (или «облако») из-за затрат на миграцию и внедрение.

Пятимерное (5D) хранилище

Представляет собой новую разработку, где используются диски из плавленого кварца, которые могут кодировать данные в трех стандартных измерениях (ширина, длина, глубина) и двух оптических измерениях. Последнее достигается изменением поляризации и интенсивности лазерного света в процессе записи. Это позволяет небольшим стеклянным дискам 5D хранить 360 ТБ. Диски 5D невероятно долговечны и теоретически могут прожить миллиарды лет при комнатной температуре.

Но в качестве экспериментальной технологии 5D по-прежнему не является рентабельным или практичным способом для хранения рабочих и личных файлов. Возникают вопросы о том, сможет ли кварцевый состав поддерживать несколько записей, не говоря уже о том, какое оборудование потребуется для чтения закодированной информации.

Тем не менее, технология является многообещающей в качестве будущего долгосрочного архивного решения для хранения данных благодаря надежности и доступной памяти.

Корпоративные сети и серверная флэш-память

Поставщики корпоративных хранилищ предоставляют интегрированные системы NAS, которые помогают собирать большие объемы информации и управлять ими. Аппаратное обеспечение включает в себя массивы или серверы хранения, оснащенные жесткими дисками, флэш-накопителями или их гибридной комбинацией, а также программное обеспечение для предоставления услуг обработки данных на основе массивов.

С 2011 года все большее число предприятий внедряют массивы all-flash, оснащенные только твердотельными накопителями на базе флэш-памяти NAND, в качестве дополнения или замены дисковых массивов.

В отличие от дисков, устройства флэш-памяти не полагаются на движущиеся механические части, что обеспечивает более быстрый доступ к информации и меньшую задержку. Флэш-память является энергонезависимой, что позволяет информации сохраняться в памяти, даже если система теряет питание. При этом для дисковых систем требуется встроенная резервная батарея или конденсаторы.

Но флэш-память еще не достигла уровня выносливости, эквивалентного диску, что привело к созданию гибридных массивов, объединяющих оба типа носителей.

Существует 3 основных варианта сетевых систем хранения. В своей простейшей конфигурации хранилище с прямым подключением (DAS) включает внутренний жесткий диск отдельного компьютера. На предприятии DAS может быть кластером дисков на сервере или группой внешних дисков, которые подключаются непосредственно к серверу через интерфейс малых компьютерных систем (SCSI), последовательный интерфейс SCSI (SAS), волоконный канал (FC) или Интернет.

NAS – это архитектура, в которой несколько файловых узлов совместно используются пользователями обычно через подключение к локальной сети (LAN) на основе Ethernet. Преимущество NAS в том, что файловым серверам не требуется полнофункциональная операционная система корпоративного хранилища. Устройства NAS управляются с помощью служебной программы на основе браузера, и каждому узлу в сети назначается уникальный IP-адрес.

С горизонтально масштабируемым NAS тесно связано хранилище объектов, которое устраняет необходимость в файловой системе. Каждый объект представлен уникальным идентификатором. Все объекты представлены в едином плоском пространстве имен.

Сеть хранения данных (SAN) может быть спроектирована для охвата нескольких местоположений дата-центров, которым требуется высокопроизводительное блочное хранилище. В среде SAN блочные устройства воспринимаются хостом как локально подключенное хранилище. Каждый сервер в сети может получить доступ к общему хранилищу, как если бы это был диск с прямым подключением.

Достижения в области флэш-памяти NAND в сочетании с падением цен в последние годы проложили путь к программно-определяемым хранилищам. Используя эту конфигурацию, предприятие устанавливает твердотельные накопители по стандартной цене на сервер на базе x86, используя стороннее ПО или собственный открытый исходный код для управления хранилищем.

Энергонезависимая память Express (NVMe) – это развивающийся отраслевой протокол для флэш-памяти. Отраслевые обозреватели ожидают, что NVMe станет стандартом для флэш-хранилищ. NVMe позволит приложениям напрямую взаимодействовать с центральным процессором (ЦП) через каналы связи PCIe, минуя наборы команд SCSI, передаваемые на сетевой адаптер главной шины. NVMe-oF предназначен для ускорения передачи данных между хост-компьютером и целевой флэш-памятью с использованием установленного сетевого подключения Ethernet, FC или InfiniBand.

Энергонезависимый двухрядный модуль памяти (NVDIMM) представляет собой гибридную память NAND и DRAM со встроенным резервным питанием, который подключается к стандартному слоту DIMM на шине памяти. Модули NVDIMM используют только флэш-память для резервного копирования, выполняя обычные вычисления в DRAM.

NVDIMM помещает флэш-память ближе к материнской плате, предполагая, что производитель компьютера модифицировал сервер и разработал базовые драйверы системы ввода-вывода (BIOS) для распознавания устройства. Модули NVDIMM – это способ расширить системную память или добавить высокопроизводительное хранилище, а не увеличить емкость. Текущие модули NVDIMM на рынке достигают максимум 32 ГБ, но плотность в форм-факторе увеличилась с 8 ГБ до 16 ГБ всего за несколько лет.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector