Что явилось основной причиной изобретения компьютера кратко ответ

Что является причиной изобретения компьютера контрольные вопросы

Перечень вопросов, рассматриваемых в теме: Знакомство с историей вычислительной техники. Задачи, стоящие перед научной областью от истоков до текущего момента. Современные тренды применения компьютерных технологий.

Глоссарий по теме: Вычислительные средства, вычислительная техника, компьютеры. мобильные устройства, суперкомпьютеры, робототехника, этапы развития вычислительной техники, поколения ЭВМ.

Основная литература по теме урока:

Л. Л. Босова, А. Ю. Босова. Информатика. Базовый уровень: учебник для 10 класса — М.: БИНОМ. Лаборатория знаний, 2017

Дополнительная литература по теме урока:

Теоретический материал для самостоятельного изучения:

На уроках информатики мы подробно обсуждали основные информационные процессы: хранение, передачу и обработку. Как менялись инструментальные средства, осуществляющие эти процессы, объемы хранения и передач, скорости обработки? Какие перспективы наметило себе человечество в развитии средств вычислительной техники? Об этом пойдет речь на уроке.

Цель урока: анализировать историю и тенденции развития вычислительной техники

— соотносить периоды, содержание и результат пяти информационных революций,

— приводить примеры ЭВМ разных поколений,

— приводить примеры достижений отечественных ученых в области вычислительной техники,

— анализировать тенденции в развитии вычислительной техники.

Первая информационная революция началась примерно 40 тысяч лет назад, когда человек поделился своим жизненным опытом с соплеменником. Зарождение и развитие языка устного общения было характерной особенностью этой революции.

Вторая информационная революция произошла около 5 тысяч лет тому назад, примерно около 3500 года до н. э. Так же она связана с передачей опыта, но теперь уже из поколения в поколение. С появлением письменности стало возможным записать и передавать данные. Исторические сведения об одном из главных хранилищ информации древности, Александрийской библиотеке IV—III в. до н. э разнятся, но невозможно не оценить тот факт, что это создание библиотек для обучения и передачи знаний — важнейшая веха в истории человечества.

Третья информационная революция имеет четкие исторические границы и связана уже с распространением знаний. В 1450 году Иоганн Гуттенберг изобрел наборный шрифт. И обмен знаниями значительно упростился. Сутью третьей информационной революции стало превращение информации в продукт массового потребления.

Четвертая информационная революция в конце XIX века связана с открытием возможности применения электричества и с изобретением средств массовой коммуникации. Ускорением распространения информации, в том числе и возможностью решения задач организации масштабных расчетов. К достижениям четвертой информационной революции можно отнести и появление идеи разностной машины Беббиджа, и реализацию идей Дж. Фон Неймана, и создание вычислительных машин первого и второго поколения.

Задача вычислительных машин того времени заключалась в выполнении объемных расчетов, направленных в основном на научные и военные цели.

Пятая информационная революция потребовала от человечества информационной грамотности и культуры.

Начало ее относят к 70-м годам XX столетия и связывают с появлением микропроцессорной технологии.

В это же время появилась технология Arpanet, которая связывает сегодня весь мир.

Наращивание объемов хранения данных сегодня существенно превышает объемы, накопленные человечеством за всю историю развития.

Обмен данными происходит с все возрастающей скоростью.

Теперь многообразные компьютеры используются во всех областях жизни.

Рассуждения о возможностях вычислительной техники позволят нам повести хронологическое повествование параллельное информационным революциям.

Известно, что автоматизация вычислений началась задолго до появления компьютеров. Устройства быстрого счета появлялись в разных странах независимо друг от друга и теперь в музеях вычислительной техники мы можем сравнивать и удивляться как же они похожи.

Увлекательную и правдивую историю о компьютерах, технологиях и людях можно прочитать в книге Б. Н. Малиновского «История вычислительной техники в лицах».

Расставив хронологические вехи, мы увидим, что автоматизация расчетов во все времена была для изобретателей, ученых и самоучек интересной задачей.

До механических устройств были всевозможные камешки, палочки, известные нам абаки, счеты, которые были у многих народов и счет на них до сих пор дает понимание арифметических действий с количеством.

Эра электронных вычислительных машин началась с методики Дж. фон Неймана описанной в 1945 году в рамках доклада «Первый проект» о вычислительной машине EDVAC. Именно от первых устройств, построенных на архитектуре фон Неймана, отсчитываются поколения ЭВМ. Основным элементом этих вычислительных машин были электронные лампы. Такими были:

— Марк I, разработанный в Манчестерском университете,

— EDSAC, Кембриджского университета,

— Z4 немецкого изобретателя К. Цузе,

— МЭСМ. Созданная в Киевском институте электротехники под руководством С.А. Лебедева,

— Компьютерная информатика в России, в СССР началась с работ И. С. Брука, разрабатывающего совместно с Б. И. Рамеевым и Ю. В. Рогачевым вычислительные машины серии М,

— ЭВМ «Стрела», первый серийный советский компьютер, создаваемый под руководством Ю. Я. Базилевского,

— БЭСМ-1 Институт точной механики и вычислительной техники, под руководством С. А. Лебедева,

— Урал 1,2, 3,4 под руководством Б. И. Рамиева,

— ЭВМ Сетунь, разрабатываемая в МГУ математиком Л. С. Соболевым совместно с инженером Н. П. Брусенцовым.

Событием, ознаменовавшим переход ко второму поколению компьютеров, было изобретение транзистора в 1947 году. Они стали заменой хрупким и энергоёмким лампам. Благодаря транзисторам и печатным платам было достигнуто значительное уменьшение размеров и объёмов потребляемой энергии, а также повышение надёжности.

Кроме того, вычислительные машины на базе транзисторов возможно было создавать промышленными методами.

К компьютеру стало возможно подключать различные периферийные устройства. Этот факт позволил использовать компьютеры в различных областях науки и промышленности.

ЭВМ 5Э92Б использовалась для задач противовоздушной обороны

Лучшая советская ЭВМ БЭСМ-6 в 1975 г. обрабатывала траектории полета космических аппаратов, участвовала в проекте «Союз-Аполлон». К 1964 году в каждом регионе СССР выпускали свои компьютеры: в Ленинграде — УМ-1; Белоруссия — «Минск», «Весна», «Снег»; Армения — «Наири»; в Украине — «Днепр», «МИР». Эти компьютеры разрабатывались под руководством В. М. Глушкова

Третье поколение компьютеров решило проблему качества массового производства компьютеров. Интегральные схемы появились к 60-м годам XX века, когда американская фирма IBM приступила к выпуску системы машин IBM-360. Немного позднее появились машины серии IBM-370.

В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая система ЭВМ) по образцу IBM 360/370. Скорость работы наиболее мощных моделей ЭВМ достигла уже нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств — магнитные диски.

Успехи в развитии электроники привели к созданию больших интегральных схем (БИС), где в одном кристалле размещалось несколько десятков тысяч электрических элементов.

Четвертое поколение компьютеров связано с появлением микропроцессоров. В 1971 году, когда появление больших интегральных схем позволили создать универсальный процессор на одном кристалле.

Среди прорывных технологий этого поколения — возможность соединять мощности разных вычислительных машин в один вычислительный узел.

Развитие ЭВМ четвертого поколения пошло по двум разным путям:

— Дальнейшее развитие на базе БИС микро-ЭВМ и персональных компьютеров.

Термин «суперкомпьютер» еще не обрел четких очертаний и в общем случае это обозначение огромной вычислительной мощности, не сравнимой с компьютерами, доступными большинству пользователей. В настоящее время — это компьютеры, позволяющие решать задачи обработки больших данных, например, прогнозирование погодно-климатических условий, моделирование ядерных испытаний.

Дважды в год в июне и в ноябре выходит рейтинг ТОП500 в котором публикуется актуальный перечень 500 самых мощных общественно известных вычислительных систем мира. Сравнение проводится на основании системы тестов, результат которых быстродействие. Измеряемое в количестве операций над числами с плавающей точкой в секунду (FLOPS). Рубеж в 1 квадриллион флопс (1Петафлопс) был перейден в 2008 году суперкомпьютером IBM Roadrunner.

В эволюции персональных компьютеров важной характеристикой является эволюция процессоров. В основании этой лестницы Intel-4004 первый коммерческий 4-х битный процессор, реализованный на одной микросхеме и представленный в ноябре 1971 года. Его тактовая частота составляла 740 кГц.

Начало XXI века стало поистине эрой мобильных устройств. Данные различных исследований утверждают, что число пользователей мобильных устройств неуклонно растет от года к году, большинство пользователей предпочитают гаджеты десктопам. Больше чем две трети людей во всем мире сегодня имеют мобильный телефон, большинство из них являются владельцами смартфонов.

По последним данным, полученным от GlobalWebIndex, среднестатистический интернет-юзер сегодня проводит около 6 часов в день, пользуясь устройствами и сервисами, работа которых зависит от подключения к интернету. Это, грубо говоря, треть всего времени бодрствования.

Если умножить это время на 4 миллиарда всех интернет-пользователей, то получится ошеломляющая цифра — в 2018 году мы суммарно проведем онлайн 1 миллиард лет.

Робототехника и роботизированные комплексы одна из приоритетных технологий XXI века. Если в 80-х годах XX века промышленные роботы только начинали появляться на производстве, то сегодня только на обзор этой темы мы потратим несколько часов. Это компьютеризированные игрушки, производящие фурор на международных выставках, это медицинская техника, это потоковые линии, сложное, опасное производство, и, конечно, военная техника.

На мировом рынке работает около 400 компаний, занимающихся производством робототехники.

— «Центральный научно-исследовательский и опытно-конструкторский институт робототехники и технической кибернетики» в Санкт-Петербурге;

— ЗАО «Центр высоких технологий в машиностроении при МГТУ им. Н. Э. Баумана»;

— ОАО «НИКИМТ-Атомстрой» — головная материаловедческая организация «Росатома», в Москве;

— НИИ системных исследований РАН Москва;

— НПО «Андроидная техника» в Москве;

— ФГУП ЦНИИмаш г. Королев, учредитель «Роскосмос»;

— ОАО «ЦНИИТОЧМАШ» Госкорпорации Ростех, Московская область, Климовск;

— СПКБ ПА г. Ковров;

— «Научно-Исследовательский Технологический Институт (НИТИ) Прогресс» в Ижевске;

— Институт проблем механики им. А. Ю. Ишлинского АН;

— НИИ стали Москва;

— Компания СМП Роботикс, Зеленоград.

Современные компьютеры — это компьютеры четвертого поколения. Определить границу между этим поколением и следующим можно будет лишь после того, как со временем будет признана революционной, прорывной новая технология, которая сегодня только зарождается. Возможно, это будут квантовые компьютеры, идея которых была высказана в 80-х годах XX века Ю. Майниным и Р. Фейнманом, или биологические компьютеры, в которых роль битов возьмут на себя молекулы ДНК. Возможно, изменению подвергнется неймановская архитектура, реализующаяся вот уже три четверти века.

Человечество на этом пути ждут трудности, провалы и, конечно, новые открытия.

Изобретение компьютера шло от массивных, неуклюжих машин, которые были в 50-х-60-х годах прошлого столетия. 1970-х годах технология изменилась главным образом для любителей электроники, когда можно было приобрести ПК в разобранном виде как «микрокомпьютер» и программы для удовольствия. Но эти ранние ПК не могли выполнять многие из полезных задач, способные решать сегодняшние компьютеры.

Сегодня сотни компаний продают персональные компьютеры, аксессуары и сложное программное обеспечение и игры, а устройства используются для широкого спектра функций от основной обработки текста, редактирования фотографий до управления бюджетами. У себя дома и на работе мы используем их чтобы сделать почти все. Это почти невозможно представить современную жизнь без них.

Машина Чарльза Бэббиджа

Английский профессор математики и изобретатель Чарльз Бэббидж был одержим вычислительными науками. Ещё в молодости 21-летний учёный впервые задумался о вычислительной машине, а это был 1812 год. На основании многолетних трудов по совершенствованию вычислительных таблиц он придумал механизм, который бы свободно производил сложения разностным методом. Так появилась разностная машина. К 1822 году Чарльз собрал свою первую, Малую разностную машину. Аппарат, состоящий из множества шестерёнок, был представлен Королевскому Астрономическому обществу.

Чарльз Бэббидж был слабым в юношестве, при этом он увлекался паранормальными явлениями и неоднократно пытался установить контакт с потусторонним миром.

К 1854 году математик сумел создать несколько аналогичных разностных машин и даже одну из них продал. Затем он принялся за разработку аналитической машины, работа которой была основана на металлических числовых перфокартах. Но довести дело до конца он не смог. Не хватило финансирования. Остатки жизни учёный посвятил философии и скончался в 79 лет.

Компьютеры начала ХХ века

В первой половине ХХ века были предприняты неоднократные попытки создать автоматическое вычислительное устройство. Больших успехов в деле создания цифровой вычислительной машины достиг Конрад Цузе, который сконструировал такую машину и приводил ее в действие с помощью электричества. Если бы не бомбардировки и вторая мировая война, то в ответ на вопрос о том, кто первым изобрел компьютер, справочники всего мира называли бы имя немецкого изобретателя. К сожалению, бомбежки разрушили удивительную машину и уничтожили документацию.

Принципы создания и разработки современных вычислительных устройств были разработаны американцем фон Нейманом в 1946 году. В своей работе «О предварительном рассмотрении устройства вычислительного прибора» он заложил основы архитектуры вычислительных устройств, которым разработчики пользуются и в настоящее время. Стандартный вычислительный агрегат должен иметь следующие узлы:

  1. Устройства вывода и ввода информации.
  2. Оперативная память.
  3. Арифметический и логический узел (АЛУ).
  4. Пульт для управления АЛУ.

Кто создал первый компьютер в России?

Советские разработчики впервые сконструировали компьютер в 1948 году. Придумал электронную счетную машину профессор Лебедев, в конструировании участвовали 20 инженеров и 10 помощников.

Отечественная машина занимала площадь в 60 кв.м. В ее конструкции присутствовало так много ламп и кабелей, что при запуске машина выделяла слишком много тепла. Инженерам даже пришлось разобрать часть крыши, чтобы свежий воздух охлаждал компоненты. Как называлась машина? Довольно незамысловато – МЭСМ.

МЭСМ

МЭСМ

Компьютерный механизм был способен совершать до 3 тысяч вычислений в минуту. В конструкцию было встроено 6 тысяч ламп суммарным потреблением 25 кВт.

Третье поколение ЭВМ

Этот период продолжается с конца 60-х до конца 70-х годов. Подобно тому как изобретение транзисторов привело к созданию компьютеров второго поколения, появление интегральных схем ознаменовало новый этап в развитии вычислительной техники — рождение машин третьего поколения.

В 1958 году Джон Килби впервые создал опытную интегральную схему. Такие схемы могут содержать десятки, сотни и даже тысячи транзисторов и других элементов, которые физически неразделимы. Интегральная схема (рисунок 24.9) выполняет те же функции, что и аналогичная ей схема на элементной базе ЭВМ второго поколения, но при этом она имеет существенно меньшие размеры и более высокую степень надежности.

image

Рис. 24.9. Интегральные схемы Первой ЭВМ, выполненной на интегральных схемах, была IBM-360 фирмы IBM. Она положила начало большой серии моделей, название которых начиналось с IBM, а далее следовал номер, который увеличивался по мере совершенствования моделей этой серии. То есть чем больше был номер, тем большие возможности предоставлялись пользователю.

Аналогичные ЭВМ стали выпускать и в странах СЭВ (Совета экономической взаимопомощи): СССР, Болгарии, Венгрии, Чехословакии, ГДР, Польше. Это были совместные разработки, причем каждая страна специализировалась на определенных устройствах. Выпускались два семейства ЭВМ:
— большие — ЕС ЭВМ (единая система), например ЕС-1022, ЕС-1035, ЕС-1065;
— малые — СМ ЭВМ (система малых), например СМ-2, СМ-3, СМ-4.

image

ЕС ЭВМ (единая система) ЕС-1035

image

СМ ЭВМ (система малых) СМ-3

В то время любой вычислительный центр оснащался одной-двумя моделями ЕС ЭВМ (рисунок 24.10). Представителей емейства СМ ЭВМ, составляющих класс мини-ЭВМ, можно было довольно часто встретить в лабораториях, на производстве, нa технологических линиях, на испытательных стендах. Особенюсть этого класса ЭВМ состояла в том, что все они могли работать в реальном масштабе времени, то есть ориентируясь на консретную задачу.

image

Рис. 24.10. ЭВМ третьего поколения

Приведем характерные черты ЭВМ третьего поколения.
Элементная база: интегральные схемы, которые вставляются в специальные гнезда на печатной плате.
— Габариты: внешнее оформление ЕС ЭВМ схоже с ЭВМ второго поколения. Для их размещения также требуется машинный зал. А малые ЭВМ — это в основном две стойки приблизительно в полтора человеческих роста и дисплей. Они не нуждались, как ЕС ЭВМ, в специально оборудованном помещении.
— Производительность: от сотен тысяч до миллионов операций в секунду.
— Эксплуатация: несколько изменилась. Более оперативно производится ремонт обычных неисправностей, но из-за большой сложности системной организации требуется штат высококвалифицированных специалистов. Большую роль играет системный программист.
— Технология программирования и решения задач: такая же, как на предыдущем этапе, хотя несколько изменился характер взаимодействия с ЭВМ. Во многих вычислительных центрах появились дисплейные залы, где каждый программист в определенное время мог подсоединиться к ЭВМ в режиме разделения времени. Как и прежде, основным оставался режим пакетной обработки задач.
— Произошли изменения в структуре ЭВМ. Наряду с микропрограммным способом управления используются принципы модульности и магистральности. Принцип модульности проявляется в построении компьютера на основе набора модулей — конструктивно и функционально законченных электронных блоков в стандартном исполнении. Под магист- ральностью понимается способ связи между модулями компьютера, то есть все входные и выходные устройства соединены одними и теми же проводами (шинами). Это прообраз современной системной шины.
— Увеличились объемы памяти. Магнитный барабан постепенно вытесняется магнитными дисками, выполненными в виде автономных пакетов. Появились дисплеи, графопостроители.

История изобретения компьютера

История изобретения компьютера исчисляется немногим более полувека. Ранние электронные компьютеры не были «персональными» в любом случае: они были огромными и очень дорогими и требовали команду инженеров и других специалистов, с тем, чтобы обслуживать их.

Первый компьютер и самый известный электронный анализатор и численный интегратор — ENIAC, который был построен в университете Пенсильвании для вычисления баллистики американских военных во время второй мировой войны. ENIAC стоимостью $500000, весил 30 тонн и занимал площадь около 200 квадратных метров жилой площади. ENIAC была покрыт клубком кабелей, сотни мигающих огней и почти 6000 механических переключателей. Внутри было почти 18 000 вакуумных ламп передающих электрические сигналы от одной части машины к другой.

ENIAC и другие первые компьютеры оказались научной базой для университетов и корпораций, притягивающих огромные инвестиции денежных средств, пространства и людских ресурсов. ENIAC могла решить в течение 30 секунд расчет траектории ракеты, которую могла рассчитать команда людей за 12 часов.

В то же время новые технологии развивались и смогли построить вычислители, которые были меньше и более рациональнее. В 1948 году корпорация Bell Labs представила транзистор, электронное устройство, которое осуществляет обработку и усиление электрического тока, но был гораздо меньше, чем громоздкая вакуумная лампа. Десять лет спустя, ученые построили электрические части – транзисторы, конденсаторы, резисторы и диоды – в одной кремниевой микросхеме.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector