Триггеры. Принцип работы
Всем доброго времени суток! Сегодняшний мой пост посвящён цифровым микросхемам, которые имеют память. Подобно тому, как человек помнит события из своей жизни, так и эти микросхемы могут долго хранить заложенную в них информацию, а когда необходимо выдавать её.
Такими цифровыми микросхемами являются триггеры (англ. – Trigger или Flip-Flop). В отличие от простых логических микросхем, которые называют комбинационными (НЕ, И-НЕ, ИЛИ и другие) и их сигналы на выходе чётко соответствуют сигналам на входе, то триггеры относятся к последовательным или последовательностным микросхемам, уровень выходного напряжения которых, зависит от того в какой последовательности поступали сигналы на вход триггера. С помощью триггеров строят более сложные цифровые микросхемы.
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
Сигналы, поступившие на вход триггера, могут храниться только до тех пор, пока на него подается напряжение питания. После каждого включения триггера на его выходах появляются случайные логические уровни напряжения. Триггеры обладают очень высоким быстродействием, сравнимым с задержками при переключении простейших логических элементов, однако объём хранимой информации мал. Один триггер может хранить только один сигнал или бит.
Классификация и типы синхронизации триггеров
Триггеры делятся на два больших класса:
- асинхронные;
- синхронные (тактируемые).
Принципиальное различие между ними в том, что у первой категории устройств уровень выходного сигнала меняется одновременно с изменением сигнала на входе (входах). У синхронных триггеров изменение состояния происходит только при наличии сихронизирующего (тактового, стробирующего) сигнала на предусмотренном для этого входе. Для этого предусмотрен специальный вывод, обозначаемый буквой С (clock). По виду стробирования синхронные элементы делятся на два класса:
- динамические;
- статические.
У первого типа уровень выхода меняется в зависимости от конфигурации входных сигналов в момент появления фронта (переднего края) или спада тактового импульса (зависит от конкретного вида триггера). Между появлением синхронизирующих фронтов (спадов) на входы можно подавать любые сигналы, состояние триггера не изменится. У второго варианта признаком тактирования является не изменение уровня, а наличие единицы или нуля на входе Clock. Также существуют сложные триггерные устройства, классифицируемые по:
- числу устойчивых состояний (3 и более, в отличие от 2 у основных элементов);
- числу уровней (также более 3);
- другим характеристикам.
Сложные элементы имеет ограниченное применение в специфических устройствах.
Как действуют триггеры?
Проявление данного психологического феномена зависит от таких факторов как тип личности, настроение, текущие жизненные обстоятельства и состояние нервной системы. Триггер срабатывает при появлении определенного раздражителя. На уровне ощущений человек чувствует, что его настроение заметно поменялось, но объяснить это может не всегда.
Чтобы разобраться, что такое триггер и как он работает, рассмотрим типичную ситуацию, с которой часто сталкиваются психологи – последствия автомобильной аварии. Во время подобных потрясений, человеческий мозг придаёт особое значение всем происходящим событиям, связывая их с опасностью.
Особенно сильно обычно запоминается визг тормозов – резкий звук за доли секунды до столкновения. Если человеку довелось побывать в автомобильной аварии, то в будущем данный триггер будет срабатывать, даже если человек услышит визг тормозов, заведомо зная, что находится в безопасности (например, если находится дома, а машина затормозила на дороге за окном).
Входы и виды триггеров
В зависимости от структуры и выполняемых им функций можно определить число входов триггера.
По параметру записи информации триггеры можно разделить на:
- Синхронные – запись информации производится только при дополнительном, синхронизирующем сигнале, который, по сути, запускает триггер.
- Асинхронные – запись информации зависит от информационных сигналов, подающихся на вход триггера, и происходит она непрерывно.
В цифровой схемотехнике обычно можно найти следующие обозначения входов триггера:
- S – раздельный вход, устанавливающий триггер на единицу (на Q единица)
- Q – прямой выход
- R – раздельный выход, устанавливающий триггер на ноль (на Q ноль)
- С – вход синхронизации
- D – вход информационный (на него подаётся информация, которая будет занесена на триггер)
- T – счётный вход
Что касается функций, то в этом плане триггеры можно разделить на:
- RS-триггеры;
- JK-триггеры;
- D-триггеры;
- Т-триггеры.
RS- триггер
Это самый простой тип триггеров. На его основе создаются и другие типы. Возможные логические элементы в его построении – это 2И-НЕ (инверсионный вход) и 2ИЛИ-НЕ (прямые входы).
Из-за низкой помехоустойчивости такие триггеры почти не используются самостоятельно. Их можно применить, например, для устранения влияния дребезжащих контактов, которое возникает при коммутации механических переключателей. Тогда требуется тумблер с тремя выходами, один из которых подключается по очереди к остальным двум. Чтобы создать RS-триггер используется D-триггер с замкнутыми на состоянии «ноль» входы С и D.
Первый отрицательный сигнал на входе –R переводит в состояние «0». Первый отрицательный сигнал на входе –S переводит в состояние «1». Другие сигналы, возникшие из-за дребезга контактов, не могут оказать влияние на триггер. При таком подключении переключателя верхнее положение будет равно «1» на выходе, нижнее – «0».
RS-триггер сам по себе асинхронный, однако, иногда возникают случаи, когда нужно сохранить информацию. Тогда на помощь приходит синхронизируемый RS-триггер, который в этом случае должен состоять из обычного RS-триггера и схемы управления.
При этой схеме, импульсы, поступающие на Х1 и Х2 не имеют никакого значения, пока на входе С сохраняет значение «0». В этот момент RS-триггер находится в режиме хранения информации. Как только значение C становится равно «1» триггер запускается, начинается запись.
D-триггер
Это триггеры задержки. Используются они для создания регистров сдвига и хранения. Это одна из важнейших частей всех микропроцессоров.
У такого триггера два выхода – информационный и синхронизирующий. Триггер стабилен, когда состояние С находится на «ноль». При этом сигнал на выходе не будет зависеть от сигналов, которые поступают на информационный вход. Когда значение С изменяется на «1» на прямом выходе, тогда информация будет такой же, как и на триггере D.
JK-триггер
По своему принципу действия он очень похож на RS- триггеры. Но в отличие от него, у JK-триггеров нет проблем с неопределённостью, когда на вход одновременно поступают две «единицы». При возникновении подобной ситуации JK-триггер становится счётным триггером. Тогда при поступлении на вход сигналов со значением «1» триггер меняет своё состояние на противоположное.
Эти устройства очень универсальны. С одной стороны, они прекрасно находят своё применение в цифровых устройствах – счётчиках, регистрах, делителях частоты и т.д. С другой стороны при соединении определённых выводов можно получить вообще любой нужный вид триггера.
Т-триггер
У этих триггеров есть и другое название – счётные. На их основе создаёт двоичные счётчики и делители частот. У этих триггеров вход только один. На изображениях – асинхронный (1) и синхронный (2) Т-триггеры.
Импульс поступает на этот вход, состояние его меняется не противоположное. После поступления следующего импульса состояние становится исходным.
Триггер переключается в тот момент, когда на его вход поступается синхроимпульс. Тогда частота импульсов на выходе оказывается в 2 раза меньше начальной. Таким образом, один счётный триггер уменьшает частоту импульса двукратно. А два триггера, что были подключены последовательно, логично уменьшат частоту уже в 4 раза.
Почему эти триггеры называют ещё и делителями частот хорошо заметно по временным схемам:
Использование
Все выше описанные разновидности триггеров используются только в простейших электронных схемах контроля. Способность устройств к синхронизации и удерживанию сигнала используется в технике для взаимодействия с простейшими таймерами. Большая доля использования приходится для стабилизации работы механических кнопок и клавиш. Эти устройства испытывают эффект дребезга контактов. Например, при включении электрических двигателей. Дребезг контактов становится причиной появления сигналов с высокой частотой взаимодействия. Триггеры выравнивают и сглаживают этот эффект.
В персональных компьютерах простые триггеры не используются. Причина заключается в малом операционном объеме памяти. Устройство обладает только ячейкой емкостью 1 бит, что очень мало для сложной вычислительной техники.
Классификация триггеров
Триггерные системы отличаются друг от друга по функциональному признаку, типу управления, числу возможных состояний и уровней, способу реагирования на помехи, составу основных логических элементов и другим особенностям. Однако все они, начиная от самых простых схем и заканчивая сложными многоступенчатыми структурами с множеством состояний, работают по одинаковому принципу.
Общие различия
Триггеры делят на несколько больших групп по функциональным и практическим различиям. Вот некоторых из них:
- По принципу управления они бывают статические (или потенциальные) и динамические. Первые реагируют на непосредственную подачу сигналов на вход, соответствующих единице или нулю. Вторые воспринимают изменение сигнала с одного на другой.
- Статические, в свою очередь, делятся на две группы: симметричные и несимметричные. Они отличаются по внутреннему строению электрических связей в схеме — у симметричных они идентичны во всех отдельных ячейках устройства. Именно они составляют основную массу триггеров.
- По функциональным особенностям. Самый частый тип такой классификации — синхронные и асинхронные. Первые приходят в действие только при смене такса с нуля на единицу или наоборот, в то время как вторые воспринимают непосредственный момент появления сигнала.
- Согласно количеству ступеней и уровней.
- По реагированию на возникновение помех триггеры можно поделить на прозрачные и непрозрачные, которые, в свою очередь, бывают проницаемыми и непроницаемыми.
- В соответствии с числом возможных устойчивых состояний. Чаще всего их два, но бывают и троичные, четверичные и прочие элементы.
- По логическому составу, количеству и соотношению элементов И-НЕ и ИЛИ-НЕ.
- Со сложной и простой логикой.
Все системы классификации триггеров взаимодействуют и дополняют друг друга. Например, двухступенчатый триггер может быть синхронным или асинхронным, иметь статическое или динамическое управление и так далее. Выделены также отдельные виды этих систем с разными названиями.
Типы устройств
Говоря о различиях триггеров, стоит рассмотреть их отдельные типы. Самый простой из них — это RS-триггер, на основе которого строятся все остальные разновидности этих устройств, потому именно с него нужно начинать знакомство «для чайников». Это асинхронный тип системы, который состоит из двух входов — S (от английского set — установить) и R (соответственно, reset — сбросить). Он может работать как на основе логических систем И-НЕ, так и на ИЛИ-НЕ. В первом случае входы будут прямыми, во втором — инверсными.
Подача активного сигнала на элемент S приведёт РС триггер в состояние логической единицы, а на R — сбросит его до нуля. Если их подать одновременно, результат зависит от реализации схемы, а когда убрать, то он будет определён случайным образом.
Из-за низкой устойчивости к помехам такой тип устройства редко применяют в электронике и микросхемах. Чаще всего его используют для устранения так называемого дребезга контактов — многократных хаотичных замыканий и размыканий, вызванных упругостью используемых для них материалов и происходящих после их подключения.
Система типа RS является асинхронной. Если возникает необходимость сохранить поступаемую на неё информацию, к устройству подключают отдельно составленную систему управления, которая будет переводить его в режимы хранения и записи.
Вторым типом является D триггер (по некоторым данным, название происходит от английского слова delay — задержка, по другим — от data — данные). В его составе должны присутствовать минимум два элемента: D-вход для получения информации и C — для синхронизации. Такие системы бывают статичными и динамичными. Первые записывают данные всё время, при котором уровень сигнала на C соответствует единице, вторые — только тогда, когда происходит перепад напряжения.
Вход на схеме D триггера изображается в виде треугольника. Когда его вершина направлена на микросхему, то его ввод прямой, а если наоборот — инверсный.
Информация на выходах в этом типе системы задерживается по сравнению с входной на один такт. Поскольку она остаётся неизменной до активации очередной команды синхронизации, устройство как бы помнит её, что и позволяет ему выполнять свои основные функции. Главная из них — это создание регистров сдвига и хранения для управления записью информации. Это очень важные элементы, без которых невозможно создать даже простейший микропроцессор.
Из-за того, что все изменения на входе D системы точно повторяются на её выходе, иногда возможны ложные срабатывания контролируемых ею устройств. Чтобы избежать этого, необходимо создать двухступенчатый триггер. Его первая ступень записывает информацию, но во вторую она не попадает до поступления сигнала перезаписи. Затем, после получения команды, первая ступень переходит в режим хранения, а вторая переписывает с неё данные, что помогает избежать состояния их «прозрачности».
Двухступенчатые триггеры обозначают как TT. Они могут управляться как статически, так и динамически.
T триггер (от слова «toggle», которое значит «переключатель») ещё называют счётчиковым, так как это простейший вариант счётчика до двух. Состоит из входа T и выхода C. Синхронные системы такого типа переключаются по каждому тактовому импульсу на выводе, в то время как работа асинхронного зависит от состояния ввода. Когда оно соответствует единице, при получении импульса на выходе триггер меняет своё значение на противоположное, а если равно нулю, то никакой реакции не происходит.
Построить такую асинхронную систему можно на основе JK или двухстепенного D-триггера. Её в основном применяют для деления частоты вдвое.
Последний из используемых наиболее часто видов — JK триггер. По принципу работы он почти идентичен RS. Его единственное отличие в том, что система типа JK меняет своё состояние на противоположное при подаче единицы на оба входа. Это помогает избежать возникающих иногда неопределённостей.
JK иногда называют универсальным триггером. У этого есть две причины. Первая — широкий спектр применения подобных элементов. Второе — тот факт, что из него можно легко получить любой другой тип системы, если это зачем-то понадобится.
Преимущества применения триггерных схем логики
Выяснив, что значит триггер, несложно использовать полученные знания для решения практических задач. С помощью логических элементов:
- автоматизируют работу систем освещения;
- обеспечивают безопасное подключение станков и других мощных нагрузок;
- предотвращают опасные режимы с использованием сигналов от внешних датчиков.
Для создания качественного устройства на основе триггеров рекомендуется в комплексе использовать представленную информацию. Следует учесть условия реальной эксплуатации, чтобы выбрать подходящие функциональные компоненты конструкции.