Устройство компьютерных блоков питания и методика их тестирования
Эта статья послужит справочником, к которому вы сможете обратиться, встретив что-то непонятное в обзорах. Мы расскажем о принципе работы импульсных преобразователей напряжения, устройстве БП стандарта ATX и назначении его отдельных компонентов. А также о том, как мы тестируем блоки питания и как интерпретировать результаты измерений
- Линейный и импульсный источники питания
- Общая схема блока питания стандарта ATX
- Фильтр ЭМП
- Входной выпрямитель
- Блок активного PFC
- Основной преобразователь
- Вторичная цепь
- Дежурное питание +5VSB
- Методика тестирования блоков питания
Активная и реактивная мощность
Еще в школьном курсе физики нам рассказывали, что мощность бывает активная и реактивная.
Активная мощность делает полезную работу, в частности, выделяясь в виде тепла.
Классический примеры — утюг и лампа накаливания. Утюг и лампочка — почти чисто активная нагрузка, напряжение и ток на такой нагрузке совпадают по фазе.
Но существует и нагрузка с реактивностью — индуктивная (электродвигатели) и емкостная (конденсаторы). В реактивных цепях существует сдвиг фаз между током и напряжением, так называемый косинус φ (Фи).
Ток может отставать от напряжения (в индуктивной нагрузке) или опережать его (в емкостной нагрузке).
Реактивная мощность не производит полезной работы, а только болтается от генератора к нагрузке и обратно, бесполезно нагревая провода.
Это означает, что проводка должна иметь запас по сечению.
Чем больше сдвиг фаз между током и напряжением, тем большая часть мощности бесполезно рассеивается на проводах.
Как работает схема активной коррекции мощности с boost-конвертером?
Чаще всего в мощных компьютерных блоках питания используется схема активной boost PFC-коррекции (с импульсным повышающим преобразователем) с накопительной катушкой индуктивности L, работа которой управляется силовым ключом S1. Ее энергия используется для постоянного заряда выходного конденсатора C импульсами, амплитуда которых меняется в соответствии с синусоидальной формой входного напряжения:
Ток в этой схеме протекает поочередно:
- при замкнутом ключе S1 — через накопительную катушку индуктивности и разомкнутый ключ S2. При этом катушке заряжается, а питание нагрузки осуществляется от конденсатора C;
- при размыкании ключа S1 энергия, накопленная в катушке индуктивности складывается с питающим напряжением Vin и питает нагрузку через замкнутый ключ S2. Благодаря этому напряжение на выходе схемы становиться выше, чем питающее.
На практике в качестве ключа S2 используется диод с малым сопротивлением при прямом включении:
Два состояния, в которых находится схема с импульсным повышающим преобразованием напряжения:
Изменяя время On и Off-state с помощью импульсов ШИМ, можно управлять зарядным током конденсатора, приводя его в соответствие с входным синусоидальным напряжением:
Это позволяет снизить до минимума реактивные потери и обеспечить равномерную нагрузку на сеть. Кроме того, такая схема обеспечивает стабильность напряжений на выходе блока питания даже при значительных колебаниях входного напряжения.
В схеме импульсного повышающего преобразования обязательно используется контроллер (Control Circuit), управляющий работой ключевого транзистора:
В работе классической схемы активной boost-коррекции мощности участвуют:
- входной (обычно мостовой) выпрямитель;
- ключевой транзистор Q1, работающий как активный управляемый силовой ключ;
- быстродейстующий диод D1 (обычно диод Шоттки);
- схема управления (control circuit);
- нагрузка R1 Load;
- фильтрующий/накопительный конденсатор C1;
- катушка индуктивности L1 (boost inductor).
В приведенной выше схеме контролирующий узел постоянно производит измерение входного напряжения (вывод 2 контроллера), а также тока через шунт на выводах 3 и 11. Полученные данные используются для управления временем переключения и скважностью (duty cycle) импульсов на ключевом транзисторе Q1.
Схема управления на основании действующего значения напряжения Vg(t) и тока Ig(t) формирует ШИМ-сигнал, управляющий открытием и закрытием ключевого транзистора.
Периодическое замыкание/размыкание транзисторного ключа обеспечивает заряд выходного конденсатора пульсирующим током в соответствии с формой входного синусоидального напряжения:
Осциллограммы напряжений и токов на элементах активного корректора мощности:
Использование сигнала обратной связи с выхода схемы коррекции мощности позволяет осуществить стабилизацию выходного напряжения. Для этого обычно используются резисторы обратной связи Roc1, Roc2 и перемножитель выпрямленного и выходного напряжения:
В блоках питания, питающихся от сети 220В, величина напряжения на выходе схемы APFC для обеспечения запаса по регулированию достигает 400В. Для получения квазисинусоидальной формы тока на выходе корректора мощности используют достаточно высокие частоты коммутации ключа (обычно от 300 КГц до 1 МГц).
Протекание тока в схеме boost-APFC с мостовым выпрямителем и сдвоенными ключевыми транзисторами и диодами (рисунки a и c — On-state, b и d — Off-state):
Исходя из того, что наибольшая нагрузка в схеме APFC приходится на ключевые транзисторы и диоды, именно они, а также микросхема-контроллер, чаще всего выходят из строя.
Реактивная мощность компьютерного БП
Так как, обычно в компьютерных блоках питания используются конденсаторы большой емкости, то и реактивная составляющая в такой схеме ощутима. К счастью, она не учитывается бытовым счетчиком электроэнергии, поэтому переплачивать за электричество юзеру не придется.
Значение cos φ для таких устройств обычно достигает 0,7. Это значит, что запас проводки по мощности, должен быть не менее 30%. Но, так как ток протекает через схему блока питания короткими импульсами со сменной амплитудой, из-за этого сокращается срок службы конденсаторов и диодов.
Если последние не имеют запаса по силе тока и подобраны «впритык» (как это часто бывает в дешевых БП), срок эксплуатации такого устройства сокращается.
Для борьбы с этими реактивными явлениями используется корректор коэффициента мощности, то есть PFC.
Разновидности блоков питания с ККМ
БП с корректировкой коэффициента мощности делят на две большие группы, по типу встроенного ККМ.
Пассивный — система оснащена дросселем.
Дроссель — компонент с сопротивлением, по действию противоположный реактивной работе конденсаторов. С его помощью удается снизить негативное влияние реактивных усилий, компенсируя появляющиеся в момент заряда всплески. Коэффициент мощности при этом немного увеличивается, наблюдается стабилизация входного напряжения на блоке стабилизаторов.
Активный — в БК встроен источник питания импульсного типа, повышающий напряжение.
Активная схема ККМ рассчитана на увеличение коэффициента до 0.95, приблизив его к идеалу. Такая система оказывается устойчивой к перепадам напряжения в сети и способна некоторое время работать на заряде встроенных в схему конденсаторов. Такое решение обойдется дороже обычного пассивного корректора.
На рынке представлены блоки питания разных конфигураций как со встроенной коррекцией, так и без нее. Необходимость PFC в каждом конкретном случае определяется индивидуально. Надо понимать особенности использования компьютера. Например, на игровых сборках компонент будет полезен, но необязателен.
За счет снижения уровня помех БП с корректорами удобно применять с периферией, направленной на работу с аналоговыми сигналами. Компьютер с подобным БП станет отличным дополнением для звукозаписывающей студии. Даже начинающим музыкантам рекомендуется оснащать сборки такими БП с корректорами, поскольку это позволит нейтрализовать помехи, а также получить чистое звучание на выходе.
Вспомним школьный курс физики
Те, кто хорошо изучал физику в школе, помнят, что мощность может быть активная или реактивная. Активной называется мощность, которая выполняет полезную работу – заставляет греться утюг, светиться лампу накаливания или приводит в действие компоненты ПК.
p, blockquote 2,0,0,0,0 —>
В реактивных цепях сила тока может отставать от напряжения или опережать его, что определяется параметром cos φ (косинус Фи). При индуктивной нагрузке ток отстает от напряжения (индуктивная нагрузка) или опережает его (емкостная нагрузка).
p, blockquote 3,0,0,0,0 —>
Последнее часто встречается в сложных электрических схемах, где используются конденсаторы, в том числе и в компьютерных блоках питания.
p, blockquote 4,0,0,0,0 —>
Реактивная мощность не выполняет никакой полезной нагрузки, «блуждая» по электрическим цепям и нагревая их. Именно по этой причине предусмотрен запас сечения проводов. Чем больше cos φ, тем больше энергии рассеется в схеме, в виде тепла.
p, blockquote 5,0,1,0,0 —>