Что такое NVRAM и почему она не всегда энергонезависима

Тест по дисциплине «Информационные технологии в профессиональной деятельности» для АНО ПО ОСЭК

Области, расположенные в верхнем и нижнем поле каждой страницы документа, которые обычно содержат повторяющуюся информацию:

b. совокупность методов, производственных процессов и программно-технических средств для обработки данных

Что такое энергонезависимая память?

NVRAM (Non Volatile Random Access Memory) – общее название энергонезависимой памяти. Энергонезависимая память – это такая, данные в которой не стираются при выключении питания. В противоположность ей есть энергозависимая память, данные в которой исчезают при отключении питания. Т.е. когда питание на микросхему (или модуль) памяти подается, она «помнит» данные, когда перестает подаваться – она их «забывает».

Под понятие «энергонезависимая» подпадает несколько видов памяти. Кстати сказать, память (и энергозависимая, и энергонезависимая) имеется не только в компьютере, но и во всех околокомпьютерных и периферийных устройствах:

  • в принтерах — лазерных, струйных и матричных ,
  • в мониторах,
  • в модемах,
  • графических картах и т.д.

Контроллер клавиатуры

Даже в компьютерных клавиатурах имеются оба вида памяти.

Оба они упакованы в бескорпусную микросхему («капельку»), покрытую компаундом.

Такая конструкция — все «в одном флаконе» — именуется контроллером (от английского «control» — управление) и очень широко применяется в электронике.

История технологии $CMOS$

Технология $CMOS$ известна давно. Память типа $CMOS RAM$ впервые была разработана в $1963$ г. в то время она была дорогой, но имела немало преимуществ. Не смотря на то, что у такой памяти ниже быстродействие, чем у обычной оперативной памяти, но для ее работы нужно меньше электроэнергии и она выделяет меньше тепловой энергии во время работы.

Для хранения данных $BIOS$ не нужно высокое быстродействие, однако желательно, чтобы количество энергии, которая используется при выполнении этой задачи, было как можно меньшим, поэтому память $CMOS$ в таком случае подходит больше всего.

Со времени открытия технологии $СМОS$ она была значительно усовершенствована. В современных ПК микросхемы $CMOS RAM$ применяются в большинстве элементов, даже в самом ЦП. Более того, технология $CMOS$ используется не только в ПК. Микросхемы, изготовленные по технологии $CMOS$, широко применяются не только в ПК, но и в фоточувствительных элементах (матрицах) сканеров и цифровых фотоаппаратов.

Роль оперативной памяти в общем «оркестре» компонентов компьютера

Компьютерная память

Работу компьютера следует рассматривать как «оркестр». «Музыкантами» в нем являются все его программные и аппаратные составляющие, в том числе центральный процессор, жесткий диск и операционная система, выполняющая, как известно нашим читателям, пять важнейших невидимых задач. Оперативная память, которую нередко называют просто «памятью» находится в числе наиболее важных компонентов компьютера. С того момента как вы включили компьютер и до того мгновения, когда вы его отключите, процессор будет непрерывно обращаться к памяти. Давайте рассмотрим типичный сценарий работы любого компьютера.

Вы включили компьютер. Он, в свою очередь, загрузил данные из постоянной памяти (ROM) и начал самотестирование при включении (power-on self-test, POST). Компьютер проверяет сам себя и определяет, исправен ли он и готов ли к новому трудовому сеансу. Целью этого этапа работы является проверка того, что все основные компоненты системы работают корректно. В ходе самотестирования контроллер памяти посредством быстрой операции чтения/записи проверяет все ячейки памяти на наличие или отсутствие ошибок. Процесс проверки выглядит так: бит информации записывается в память по определенному адресу, а затем считывается оттуда.

Компьютер загружает из ПЗУ базовую систему ввода-вывода, более известную по английской аббревиатуре BIOS. В этом «биосе» содержится базовая информация о накопителях, порядке загрузки, безопасности, автоматическом распознавании устройств (Plug and Play) и некоторые иные сведения.

Затем наступает черед загрузки операционной системы. Она загружается в оперативную память компьютера с жесткого диска (чаще всего в современном компьютере всё обстоит именно так, но возможны и иные сценарии). Важные компоненты операционной системы обычно находятся в оперативной памяти компьютера на протяжении всего времени работы с ним. Это дает центральному процессору возможность немедленного доступа к операционной системе, что повышает производительность и функциональность всего компьютера в целом.

Когда вы открываете приложение, оно записывается всё в ту же оперативную память. Объем памяти этого типа в наши дни хоть и велик, но при этом все равно значительно уступает ёмкости жесткого диска. В целях экономии оперативной памяти некоторые приложения записывают в нее только свои важнейшие компоненты, а остальные «подгружают» с жесткого диска по мере необходимости. Каждый файл, который загружается работающим приложением, тоже записывается в оперативную память.

Что происходит, когда вы сохраняете файл и закрываете приложение? Файл записывается на жесткий диск, а приложение «выталкивается» из оперативной памяти. То есть и само приложение, и связанные с ним файлы удаляются из оперативной памяти. Тем самым освобождается место для новой информации: других приложений и файлов. Если измененный файл не был сохранен перед удалением из временного хранилища, все изменения будут потеряны.

Из вышесказанного следует, что каждый раз, когда что-то загружается или открывается, оно помещается в оперативную память, то есть во временное хранилище данных. Центральному процессору проще получить доступ к информации из этого хранилища. Процессор запрашивает из оперативной памяти необходимые ему в процессе вычислений данные.

Всё это звучит несколько суховато и не дает полного представления о масштабах событий. Но поистине впечатляюще выглядит то, что в современных компьютерах обмен информацией между центральным процессором и оперативной памятью совершается миллионы раз в секунду.

Но запоминающие устройства не исчерпываются одной только оперативной памятью. Теперь, когда мы знаем, какое место занимает каждый тип памяти в общей картине современного цифрового устройства, нам осталось рассмотреть и другие разновидности хранилищ информации. И поэтому…

Другие типы энергонезависимой памяти

В этом разделе кратко описаны некоторые другие типы энергонезависимой памяти, которые широко использовались в прошлом.

Постоянная память ROM. Содержимое этой памяти программируется на этапе производства и не может быть изменено в процессе эксплуатации.

Однократно программируемая пользователем память PROM (Programmable ROM). Содержимое этой памяти может быть однократно запрограммировано пользователем.

Стираемая память EPROM (Erasable Programmable ROM). Микросхемы EPROM имеют небольшое окно для стирания содержимого с помощью ультрафиолетового излучения. После стирания память EPROM может быть снова запрограммирована.

Пример устаревшей микросхемы EPROM с окном для стирания УФ-светом

Рис. 3. Пример устаревшей микросхемы EPROM с окном для стирания УФ-светом

Жесткие магнитные диски

image

Одним из обязательных компонентов персонального компьютера являются жесткие магнитные диски. Они представляют собой набор металлических либо керамических дисков (пакет дисков), покрытых магнитным слоем. Диски вместе с блоком магнитных головок установлены внутри герметичного корпуса накопителя, обычно называемого винчестером. Накопитель на жестких магнитных дисках (винчестер) относится к накопителям с прямым доступом.

Термин «винчестер» возник из жаргонного названия первой модели жесткого диска емкостью 16 Кб (IBM, 1973 г.), имевшего 30 дорожек по 30 секторов, что случайно совпало с калибром 30″/30″ известного охотничьего ружья «Винчестер».

Основные особенности жестких дисков:

♦ жесткий диск относится к классу носителей с произвольным доступом к информации;
♦ для хранения информации жесткий диск размечается на дорожки и секторы;
♦ для доступа к информации один двигатель дисковода вращает пакет дисков, другой устанавливает головки в место считывания/запи си информации;
♦ наиболее распространенные размеры жесткого диска — 5,25 и 3,5 дюйма в наружном диаметре.

Жесткий магнитный диск представляет собой очень сложное устройство с высокоточной механикой чтения/записи и электронной платой, управляющей работой диска. Чтобы сохранить информацию и работоспособность жестких дисков, необходимо оберегать их от ударов, резких толчков.

Производители винчестеров сосредоточили свои усилия на создании жестких дисков большей емкости, надежности, скорости обмена данными и меньшей шумности. Можно выделить следующие основные тенденции развития жестких магнитных дисков:

♦ развитие винчестеров для мобильных приложений (например однодюймовые, двухдюймовые винчестеры для ноутбуков);
♦ развитие областей применения, не связанных с персональными компьютерами (в телевизорах, видеомагнитофонах, автомобилях).

Для обращения к жесткому диску используется имя, задаваемое любой латинской буквой, начиная с С:. В случае если установлен второй жесткий диск, ему присваивается следующая буква латинского алфавита D: и т. д. Для удобства работы в операционной системе предусмотрена возможность с помощью специальной системной программы условно разбивать один физический диск на несколько независимых частей, называемых логическими дисками. В этом случае каждой части одного физического диска присваивается свое логическое имя, что позволяет независимо обращаться к ним: С:, D: и т. д.

1990-е — твердотельные накопители и новые потребительские области применения

В 1990-х технология Flash создала новые возможности для NVM-устройств в конфигурациях как с NAND, так и с NOR. Архитектура NOR Flash имела преимущества произвольного доступа и малого времени чтения, а её функция execute-in-place (XIP) идеально подходила для выполнения кода, а значит, и для сферы обработки данных. NAND Flash имела более низкие скорости чтения, но гораздо меньший размер ячейки, позволяя создавать недорогие устройства с повышенной плотностью, что идеально подходило для внешних накопителей. Кроме того, доступ чтения/записи к блокам NAND имитировал доступ к дисковым приводам.

Прототип SSD-модуля компании SanDisk (бывшей SunDisk), созданный для IBM (1991 год)

Эли Харари, в 1970-х ставший пионером техпроцессов с тонким слоем оксида в Hughes Aircraft, в 1988 году основал SunDisk (позже переименованную в SanDisk) для разработки устройств памяти большой ёмкости на основе флэш-памяти. Вскоре к нему присоединились сооснователи компании Джек Юань и Санджай Мехротра, а также архитектор систем Роберт «Боб» Норман. Первым крупным заказом компании стали 10 тысяч 20-мегабайтных 2,5-дюймовых ATA-устройств, совместимых с plug and play, которые в 1991 году должны были заменить 20-мегабайтный жёсткий диск Connor в ThinkPad PC компании IBM. В то время надёжность флэш-памяти была низкой, однако Харари вдохновляли отзывы заказчиков о прототипах устройств: «Если несколько устройств проработают у меня все выходные без сбоев, значит, у вас получился хороший продукт». [Интервью с Эли Харари]

Для достижения уровней надёжности, необходимых для коммерческого применения, потребовалось несколько поколений усовершенствований техпроцессов производства и архитектуры систем флэш-памяти. Харари встроил в устройства метаданные, позволявшие его прошивке выполнять коррекцию ошибок, скрывая таким образом от пользователя проблемы с надёжностью — критически важного для популярности технологии фактора. Массовые ноутбуки с SSD появились на рынке в конце 2000-х, а современные SSD являются самым быстрорастущим сегментом рынка компьютерных накопителей.

Основатели SanDisk: Юань, Мехротра и Харари

Новые возможности возникли у SanDisk после того, как компания представила в 1994 году карты CompactFlash для цифровых камер. «Мы поняли, что вместо того, чтобы кто-то другой продавал плёнку или её продавали продавцы камер, нужно создать вторичный рынок флэш-карт. Превращение его в международный бренд стало поворотным фактором в истории компании», — рассказывает Мехротра. [Интервью с Санджаем Мехротра] В 2016 году SanDisk приобрела компания Western Digital.

Современные флэш-технологии доминируют на рынке NVM-устройств, который в 2019 году превысил 50 миллиардов долларов, и составляют крупнейший сегмент мировой полупроводниковой промышленности. Крупнейшим поставщиком флэш-чипов стала Samsung, имея примерно 30% рынка. Другими крупными поставщиками являются Toshiba и Western Digital.

Виды оперативной памяти

На данный момент времени, существует два типа памяти возможных к применению в качестве оперативной памяти в компьютере. Оба представляют собой память на основе полупроводников с произвольным доступом. Другими словами, память позволяющая получить доступ к любому своему элементу (ячейке) по её адресу.

Память статического типа

SRAM (Static random access memory) — изготавливается на основе полупроводниковых триггеров и имеет очень высокую скорость работы. Основных недостатков два: высокая стоимость и занимает много места. Сейчас используется в основном для кэша небольшой емкости в микропроцессорах или в специализированных устройствах, где данные недостатки не критичны. Поэтому в дальнейшем мы её рассматривать не будем.

Память динамического типа

DRAM (Dynamic random access memory) — память наиболее широко используемая в качестве оперативной в компьютерах. Построена на основе конденсаторов, имеет высокую плотность записи и относительно низкую стоимость. Недостатки вытекают из особенностей её конструкции, а именно, применение конденсаторов небольшой емкости приводит к быстрому саморазряду последних, поэтому их заряд приходится периодически пополнять. Этот процесс называют регенерацией памяти, отсюда возникло и название динамическая память. Регенерация заметно тормозит скорость ее работы, поэтому применяют различные интеллектуальные схемы стремящиеся уменьшить временные задержки.

Развитие технологий идет быстрыми темпами и совершенствование памяти не исключение. Компьютерная оперативная память, применяемая в настоящее время, берет свое начало с разработки памяти DDR SDRAM. В ней была удвоена скорость работы по сравнению с предыдущими разработками за счет выполнения двух операций за один такт (по фронту и по срезу сигнала), отсюда и название DDR (Double Data Rate). Поэтому эффективная частота передачи данных равна удвоенной тактовой частоте. Сейчас ее можно встретить практически только в старом оборудовании, зато на её основе была создана DDR2 SDRAM.

В DDR2 SDRAM была вдвое увеличена частота работы шины, но задержки несколько выросли. За счет применения нового корпуса и 240 контактов на модуль, она обратно не совместима с DDR SDRAM и имеет эффективную частоту от 400 до 1200 МГц.

Сейчас наиболее распространённой памятью является третье поколение DDR3 SDRAM. За счет технологических решений и снижения питающего напряжения удалось снизить энергопотребление и поднять эффективную частоту, составляющую от 800 до 2400 МГц. Несмотря на тот же корпус и 240 контактов, модули памяти DDR2 и DDR3 электрически не совместимы между собой. Для защиты от случайной установки ключ (выемка в плате) находится в другом месте.

DDR4 является перспективной разработкой, которая в ближайшее время придет на смену DDR3 и будет иметь пониженное энергопотребление и более высокие частоты, до 4266 МГц.

Наряду с частотой работы, большое влияние на итоговую скорость работы оказывают тайминги. Таймингами называются временные задержки между командой и её выполнением. Они необходимы, чтобы память могла «подготовиться» к её выполнению, в противном случае часть данных может быть искажена. Соответственно, чем меньше тайминги (латентность памяти) тем лучше и следовательно быстрее работает память при прочих равных.

Различных таймингов существует много, но обычно выделяют четыре основных:

  • CL (CAS Latency) — задержка между командой на чтение и началом поступления данных
  • TRCD (Row Address to Column Address Delay) — задержка между подачей команды на активацию строки и командой на чтение или запись данных
  • TRP (Row Precharge Time) — задержка между командой закрытия строки и открытием следующей
  • TRAS (Row Active Time) — время между активацией строки и её закрытием

Указываются обычно в виде строки цифр разделенных дефисом, например 2-2-3-6, если указывается только одна цифра, то подразумевается параметр CAS Latency. Это позволяет сравнить скорость работы различных модулей и объясняет разницу в стоимости казалось бы одинаковых планок.

Кстати, обычно чем больше объем модуля, тем больше тайминги, поэтому взять две планки по 2 Гб может оказаться выгоднее, чем одну на 4 Гб. К тому же использование нескольких одинаковых планок памяти активирует многоканальный режим работы, что обеспечивает дополнительное увеличение быстродействия. Справедливости ради нужно отметить, что в настоящее время влияние таймингов на производительность несколько снизилось из-за повсеместного увеличения объема кэша на основе высокоскоростной памяти статического типа интегрированного в современные процессоры.

Как узнать оперативную память на компьютере

Определить тип оперативной памяти можно, открыв корпус системного блока. На планках RAM написаны все данные о разновидности и объеме. Если же вы не хотите лезть во «внутренности» машины, то можно воспользоваться различным служебным софтом — командной строкой, BIOS, диспетчером задач и т. д. Рассмотрим на примере диспетчера задач:

  • одновременно нажимаем сочетание клавиш ctrl + alt + delete;
  • открываем «Диспетчер задач»;
  • переходим во вкладку «Производительность»;
  • в блоке «Память» смотрим данные об объеме ОЗУ и его типе (последний система не всегда определяет).

Также можно воспользоваться возможностями стороннего приложения AIDA64. В разделе «Память» блока «Системная плата» смотрим данные об общем объеме ОЗУ. Детали находятся в разделе SPD — тип RAM, скорость и другие параметры.

Данные об оперативной памяти в AIDA64

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector