Дескриптор в программировании это
Дескри́птор (от лат. descriptor «описывающий») — лексическая единица (слово, словосочетание) информационно-поискового языка, служащая для описания основного смыслового содержания документа или формулировки запроса при поиске документа (информации) в информационно-поисковой системе. Дескриптор однозначно ставится в соответствие группе ключевых слов естественного языка, отобранных из текста, относящегося к определённой области знаний.
- Дескриптор HTML — элемент языка разметки гипертекста HTML. В разговорной речи дескрипторы HTML называют тегами.
- Дескриптор развёртывания — XML-файлы, описывающие развёртывание модулей веб-приложения.
- Дескриптор сегмента — служебная структура архитектуры x86 в оперативной памяти ЭВМ, определяющая сегмент.
- Дескриптор шлюза — служебная структура данных архитектуры x86, определяющая различные переходы [какие?] .
- Файловый дескриптор — число или структура, используемая в операционной системе для доступа к файлам, папкам, сокетам и т. п.
Как файлы получают дескрипторы
Обычно файловые дескрипторы выделяются последовательно. Есть пул свободных номеров. Когда вы создаете новый файл или открываете существующий, ему присваивается номер. Следующий файл получает очередной номер — например, 101, 102, 103 и так далее.
Дескриптор для каждого процесса является уникальным. Но есть три жестко закрепленных индекса — это первые три номера (0, 1, 2).
- 0 — стандартный ввод (stdin), место, из которого программа получает интерактивный ввод.
- 1 — стандартный вывод (stdout), на который направлена большая часть вывода программы.
- 2 — стандартный поток ошибок (stderror), в который направляются сообщения об ошибках.
Когда вы завершаете работу с файлом, присвоенный ему дескриптор освобождается и возвращается в пул свободных номеров. Он снова доступен для выделения под новый файл.
В Unix-подобных системах файловые дескрипторы могут относиться к любому типу файлов Unix: обычным файлам, каталогам, блочным и символьным устройствам, сокетам домена, именованным каналам. Дескрипторы также могут относиться к объектам, которые не существуют в файловой системе: анонимным каналам и сетевым сокетам.
Понятием «файловый дескриптор» оперируют и в языках программирования. Например, в Python функция os.open(path, flags, mode=0o777, *, dir_fd=None) открывает путь к файлу path, добавляет флаги и режим, а также возвращает дескриптор для вновь открытого файла. Начиная с версии 3.4 файловые дескрипторы в дочернем процессе Python не наследуются. В Unix они закрываются в дочерних процессах при выполнении новой программы.
Диспетчер задач WINDOWS
В диспетчере задач отображаются сведения о программах и процессах, выполняемых на компьютере. Кроме того, там можно просмотреть наиболее часто используемые показатели быстродействия процессов.
Диспетчер задач служит для отображения ключевых показателей быстродействия компьютера. Для выполняемых программ можно просмотреть их состояние и завершить программы, переставшие отвечать на запросы. Имеется возможность просмотра активности выполняющихся процессов с использованием до 15 параметров, а также графиков и сведений об использовании ЦП и памяти.
Кроме того, если имеется подключение к сети, можно просматривать состояние сети и параметры ее работы. Если к компьютеру подключились несколько пользователей, можно увидеть их имена, какие задачи они выполняют, а также отправить им сообщение.
На вкладке Процессы отображаются сведения о выполняющихся на компьютере процессах: сведения об использовании ЦП и памяти, счетчике процессов и некоторые другие параметры:
На вкладке Быстродействие, отображаются сведения о счетчике дескрипторов и потоках, параметры памяти:
Потребность в синхронизации потоков возникает только в мультипрограммной ОС и связана с совместным использованием аппаратных и информационных ресурсов компьютера. Синхронизация необходима для исключения гонок (см. далее) и тупиков при обмене данными между потоками, разделении данных, при доступе к процессору и устройствам ввода-вывода.
Синхронизация потоков и процессов заключается в согласовании их скоростей путем приостановки потока до наступления некоторого события и последующей его активизации при наступлении этого события.
Пренебрежение вопросами синхронизации в многопоточной системе может привести к неправильному решению задачи или даже к краху системы.
Пример. Задача ведения базы данных клиентов некоторого предприятия.
Каждому клиенту отводится отдельная запись в базе данных, в которой имеются поля Заказ и Оплата. Программа, ведущая базу данных, оформлена как единый процесс, имеющий несколько потоков, в том числе:
- Поток А, который заносит в базу данных информацию о заказах, поступивших от клиентов.
- Поток В, который фиксирует в базе данных сведения об оплате клиентами выставленных счетов.
Оба эти потока совместно работают над общим файлом базы данных, используя однотипные алгоритмы:
- Считать из файла БД в буфер запись и клиенте с заданным идентификатором.
- Ввести новое значение в поле Заказ (для потока А) или оплата (для потока В).
- Вернуть модифицированную запись в файл БД.
Обозначим шаги 1-3 для потока А как А1-А3, а для потока В как В1-В3. Предположим, что в некоторый момент поток А обновляет поле Заказ записи о клиенте N. Для этого он считывает эту запись в свой буфер (шаг А1), модифицирует значение поля Заказ (шаг А2), но внести запись в базу данных не успевает, так как его выполнение прерывается, например, вследствие истечение кванта времени.
Предположим, что потоку В также потребовалось внести сведения об оплате относительно того же клиента N. Когда подходит очередь потока В, он успевает считать запись в свой буфер (шаг В1) и выполнить обновление поля Оплата (шаг В2), а затем прерывается. Заметим, что в буфере у потока В находится запись о клиенте N, в которой поле Заказ имеет прежнее, не измененное значение.
Важным понятием синхронизации процессов является понятие «критическая секция» программы. Критическая секция — это часть программы, в которой осуществляется доступ к разделяемым данным. Чтобы исключить эффект гонок по отношению к некоторому ресурсу, необходимо обеспечить, чтобы в каждый момент в критической секции, связанной с этим ресурсом, находился максимум один процесс. Этот прием называют взаимным исключением.
Простейший способ обеспечить взаимное исключение — позволить процессу, находящемуся в критической секции, запрещать все прерывания. Однако этот способ непригоден, так как опасно доверять управление системой пользовательскому процессу; он может надолго занять процессор, а при крахе процесса в критической области крах потерпит вся система, потому что прерывания никогда не будут разрешены.
Другим способом является использование блокирующих переменных. С каждым разделяемым ресурсом связывается двоичная переменная, которая принимает значение 1, если ресурс свободен (то есть ни один процесс не находится в данный момент в критической секции, связанной с данным процессом), и значение 0, если ресурс занят. На рисунке ниже показан фрагмент алгоритма процесса, использующего для реализации взаимного исключения доступа к разделяемому ресурсу D блокирующую переменную F(D). Перед входом в критическую секцию процесс проверяет, свободен ли ресурс D. Если он занят, то проверка циклически повторяется, если свободен, то значение переменной F(D) устанавливается в 0, и процесс входит в критическую секцию. После того, как процесс выполнит все действия с разделяемым ресурсом D, значение переменной F(D) снова устанавливается равным 1.
Если все процессы написаны с использованием вышеописанных соглашений, то взаимное исключение гарантируется. Следует заметить, что операция проверки и установки блокирующей переменной должна быть неделимой. Поясняется это следующим образом. Пусть в результате проверки переменной процесс определил, что ресурс свободен, но сразу после этого, не успев установить переменную в 0, был прерван. За время его приостановки другой процесс занял ресурс, вошел в свою критическую секцию, но также был прерван, не завершив работы с разделяемым ресурсом. Когда управление было возвращено первому процессу, он, считая ресурс свободным, установил признак занятости и начал выполнять свою критическую секцию. Таким образом, был нарушен принцип взаимного исключения, что потенциально может привести к нежелаемым последствиям. Во избежание таких ситуаций в системе команд машины желательно иметь единую команду «проверка-установка», или же реализовывать системными средствами соответствующие программные примитивы, которые бы запрещали прерывания на протяжении всей операции проверки и установки.
Реализация критических секций с использованием блокирующих переменных имеет существенный недостаток: в течение времени, когда один процесс находится в критической секции, другой процесс, которому требуется тот же ресурс, будет выполнять рутинные действия по опросу блокирующей переменной, бесполезно тратя процессорное время. Для устранения таких ситуаций может быть использован так называемый аппарат событий. С помощью этого средства могут решаться не только проблемы взаимного исключения, но и более общие задачи синхронизации процессов. В разных операционных системах аппарат событий реализуется по-своему, но в любом случае используются системные функции аналогичного назначения, которые условно называются WAIT(x) и POST(x), где x — идентификатор некоторого события.
Если ресурс занят, то процесс не выполняет циклический опрос, а вызывает системную функцию WAIT(D), здесь D обозначает событие, заключающееся в освобождении ресурса D. Функция WAIT(D) переводит активный процесс в состояние ОЖИДАНИЕ и делает отметку в его дескрипторе о том, что процесс ожидает события D. Процесс, который в это время использует ресурс D, после выхода из критической секции выполняет системную функцию POST(D), в результате чего операционная система просматривает очередь ожидающих процессов и переводит процесс, ожидающий события D, в состояние ГОТОВНОСТЬ.
Обобщающее средство синхронизации процессов предложил Дейкстра, который ввел два новых примитива. В абстрактной форме эти примитивы, обозначаемые P и V, оперируют над целыми неотрицательными переменными, называемыми семафорами. Пусть S такой семафор. Операции определяются следующим образом:
V(S): переменная S увеличивается на 1 одним неделимым действием; выборка, инкремент и запоминание не могут быть прерваны, и к S нет доступа другим процессам во время выполнения этой операции.
P(S): уменьшение S на 1, если это возможно. Если S=0, то невозможно уменьшить S и остаться в области целых неотрицательных значений, в этом случае процесс, вызывающий P-операцию, ждет, пока это уменьшение станет возможным. Успешная проверка и уменьшение также является неделимой операцией.
В частном случае, когда семафор S может принимать только значения 0 и 1, он превращается в блокирующую переменную. Операция P заключает в себе потенциальную возможность перехода процесса, который ее выполняет, в состояние ожидания, в то время как V-операция может при некоторых обстоятельствах активизировать другой процесс, приостановленный операцией P.
Взаимоблокировка процессов
При организации параллельного выполнения нескольких процессов одной из главных функций ОС является корректное распределение ресурсов между выполняющимися процессами и обеспечение процессов средствами взаимной синхронизации и обмена данными.
При параллельном исполнении процессов могут возникать ситуации, при которых два или более процесса все время находятся в заблокированном состоянии. Самый простой случай – когда каждый из двух процессов ожидает ресурс, занятый другим процессом. Из-за такого ожидания ни один из процессов не может продолжить исполнение и освободить в конечном итоге ресурс, необходимый другому процессу. Эта тупиковая ситуация называется дедлоком (dead lock), тупиком, клинчем или взаимоблокировкой.
Говорят, что в мультизадачной системе процесс находится в состоянии тупика, если он ждет события, которое никогда не произойдет.
Тупиковые ситуации надо отличать от простых очередей, хотя и те и другие возникают при совместном использовании ресурсов и внешне выглядят похоже: процесс приостанавливается и ждет освобождения ресурса. Однако очередь — это нормальное явление, неотъемлемый признак высокого коэффициента использования ресурсов при случайном поступлении запросов. Она возникает тогда, когда ресурс недоступен в данный момент, но через некоторое время он освобождается, и процесс продолжает свое выполнение. Тупик же является в некотором роде неразрешимой ситуацией.
Проблема тупиков включает в себя следующие задачи:
- предотвращение тупиков.
- распознавание тупиков.
- восстановление системы после тупиков.
Тупики могут быть предотвращены на стадии написания программ, то есть программы должны быть написаны таким образом, чтобы тупик не мог возникнуть ни при каком соотношении взаимных скоростей процессов. Так, если бы в предыдущем примере процесс А и процесс В запрашивали ресурсы в одинаковой последовательности, то тупик был бы в принципе невозможен. Второй подход к предотвращению тупиков называется динамическим и заключается в использовании определенных правил при назначении ресурсов процессам, например, ресурсы могут выделяться в определенной последовательности, общей для всех процессов.
В некоторых случаях, когда тупиковая ситуация образована многими процессами, использующими много ресурсов, распознавание тупика является нетривиальной задачей. Существуют формальные, программно-реализованные методы распознавания тупиков, основанные на ведении таблиц распределения ресурсов и таблиц запросов к занятым ресурсам. Анализ этих таблиц позволяет обнаружить взаимные блокировки.
Если же тупиковая ситуация возникла, то не обязательно снимать с выполнения все заблокированные процессы. Можно снять только часть из них, при этом освобождаются ресурсы, ожидаемые остальными процессами, можно вернуть некоторые процессы в область свопинга, можно совершить «откат» некоторых процессов до так называемой контрольной точки, в которой запоминается вся информация, необходимая для восстановления выполнения программы с данного места. Контрольные точки расставляются в программе в местах, после которых возможно возникновение тупика.
Ответ 3
Услышь это из Лошадиной пасти: APUE (Ричард Стивенс).
В ядре все открытые файлы упоминаются дескрипторами файлов. Файловый дескриптор — это не -n число.
Когда мы открываем существующий файл или создаем новый файл, ядро возвращает файловый дескриптор процессу. Ядро поддерживает таблицу всех открытых дескрипторов файлов, которые используются. Выделение файловых дескрипторов, как правило, является последовательным, и они выделяются для файла в качестве следующего свободного файлового дескриптора из пула бесплатных файловых дескрипторов. Когда мы закрываем файл, дескриптор файла освобождается и становится доступным для дальнейшего выделения.
Смотрите это изображение для более подробной информации:
Когда мы хотим прочитать или записать файл, мы отождествляем файл с дескриптором файла, который был возвращен вызовом функции open() или create(), и используем его в качестве аргумента для read() или write().
По соглашению системные оболочки UNIX связывают дескриптор файла 0 со стандартным вводом процесса, дескриптор файла 1 со стандартным выводом и дескриптор файла 2 со стандартной ошибкой.
Дескриптор файла варьируется от 0 до OPEN_MAX. Максимальное значение дескриптора файла можно получить с помощью ulimit -n . Для получения дополнительной информации просмотрите 3-ю главу книги APUE.
Практика
Давайте посмотрим дескриптор безопасности какого-нибудь процесса. Заметьте, дескриптор безопасности процесса определяет кто может что-то сделать с этим процессом, а не то что может сделать сам процесс. Посмотреть на дескриптор безопасности можно из Process Explorer. Я выбираю любой процесс svhost (процесс какой-то службы), открываю его свойства. Затем перехожу на вкладку “Securuty” и внизу нажимаю кнопку “Permision“:
В примере выше к этому процессу имеют доступ только локальные администраторы. При этом читать и писать в процесс они не могут, но имеют “Особые разрешения“.
Если погрузиться дальше, нажимаем кнопку “Дополнительно“, далее два раза щелкаем по группе “Администраторы“, и в открывшемся окне нажимаем ссылку “Отображение дополнительных разрешений“. Вы увидите такую ACE запись (записи в ACL называются ACE):
То есть Администраторы могут запрашивать информацию о процессе.
Вот еще некоторые сведения о DACL:
- Владельцы объекта имеют возможность редактировать DACL записи. То есть могут дать себе полные права, или дать права к этому файлу другому пользователю.
- Запрещающие правила ACL всегда имеют приоритет над разрешающими.
Если открыть свойства файла или папки, перейти на вкладку “Безопасность“, а затем нажать кнопку “Дополнительно“. И перейти на вкладку “Действующие права доступа“, то можно выбрать пользователя и проверить его права доступа к этому файлу или каталогу:
Когда может возникнуть ошибка
В большинстве случаев ошибка неверного дескриптора вызывается из-за недоработок в установленном программном обеспечении. Поэтому стоит внимательно следить за тем, что из софта появляется на компьютере. Также необходимо периодически обновлять все имеющееся программное обеспечение и следить за его состоянием. При этом стоит вооружиться и хорошим антивирусным ПО.
В статье были представлены общие принципы работы дескрипторов в различных языках программирования и операционных системах, их функции, свойства и виды. Как правило, данный термин в основном используется программистами и разработчиками для идентификации объектов и элементов для последующего обращения к ним и управления.
А также стало ясно, что это — неверный дескриптор. Как оказалось, это распространённая проблема в среде Windows, в большинстве случаев решаемая простыми манипуляциями.
Поиск открытых файлов с помощью отладчика ядра.
Хотя для поиска дескрипторов открытых файлов можно воспользоваться такими средствами, как Process Explorer, Handle и OpenFiles.exe, они недоступны при просмотре аварийного дампа или удаленном анализе системы.
Вместо них для поиска дескрипторов, отрытых для файлов на том или ином томе, можно воспользоваться командой !devhandles.
- Сначала нужно выбрать букву диска, представляющего интерес, и получить указатель на его объект Device. Для этого, как показано ниже, можно воспользоваться командой !object:
1: kd> !object Global??C:
Object: fffff8a00016ea40 Type: (fffffa8000c38bb0) SymbolicLink
ObjectHeader: fffff8a00016ea10 (new version)
HandleCount: 0 PointerCount: 1
Directory Object: fffff8a000008060 Name: C:
Target String is ‘DeviceHarddiskVolume1’
Drive Letter Index is 3 (C:)
- Затем нужно воспользоваться командой !object, чтобы получить объект
Device для нужного имени тома:
1: kd> !object DeviceHarddiskVolume1
Object: fffffa8001bd3cd0 Type: (fffffa8000ca0750) Device
- Теперь можно воспользоваться указателем на объект Device, вставив его в команду !devhandles. Каждый показанный объект указывает на файл:
Checking handle table for process 0xfffffa8000c819e0
Kernel handle table at fffff8a000001830 with 434 entries in use
SessionId: none Cid: 0004 Peb: 00000000 ParentCid: 0000
DirBase: 00187000 ObjectTable: fffff8a000001830 HandleCount: 434.
0048: Object: fffffa8001d4f2a0 GrantedAccess: 0013008b Entry: fffff8a000003120