Что такое DNS

служба для получения ip адреса

Не так давно я написал свою первую статью на Хабр. В моей статье была одна неприятная шероховатость, которую моментально обнаружили, понимающие в сетевом администрировании, пользователи. Шероховатость заключается в том, что я указал неверные IP адреса в лабораторной работе. Сделал это я умышленно, так как посчитал что неопытному пользователю будет легче понять тему VLAN на более простом примере IP, но, как было, совершенно справедливо, замечено пользователями, нельзя выкладывать материал с ключевой ошибкой.

В самой статье я не стал править эту ошибку, так как убрав её будет бессмысленна вся наша дискуссия в 2 дня, но решил исправить её в отдельной статье с указание проблем и пояснением всей темы.

Для начала, стоит сказать о том, что такое IP адрес.

IP-адрес — уникальный сетевой адрес узла в компьютерной сети, построенной на основе стека протоколов TCP/IP (TCP/IP – это набор интернет-протоколов, о котором мы поговорим в дальнейших статьях). IP-адрес представляет собой серию из 32 двоичных бит (единиц и нулей). Так как человек невосприимчив к большому однородному ряду чисел, такому как этот 11100010101000100010101110011110 (здесь, к слову, 32 бита информации, так как 32 числа в двоичной системе), было решено разделить ряд на четыре 8-битных байта и получилась следующая последовательность: 11100010.10100010.00101011.10011110. Это не сильно облегчило жизнь и было решение перевести данную последовательность в, привычную нам, последовательность из четырёх чисел в десятичной системе, то есть 226.162.43.158. 4 разряда также называются октетами. Данный IP адрес определяется протоколом IPv4. По такой схеме адресации можно создать более 4 миллиардов IP-адресов.

Максимальным возможным числом в любом октете будет 255 (так как в двоичной системе это 8 единиц), а минимальным – 0.

Далее давайте разберёмся с тем, что называется классом IP (именно в этом моменте в лабораторной работе была неточность).

IP-адреса делятся на 5 классов (A, B, C, D, E). A, B и C — это классы коммерческой адресации. D – для многоадресных рассылок, а класс E – для экспериментов.

Класс А: 1.0.0.0 — 126.0.0.0, маска 255.0.0.0
Класс В: 128.0.0.0 — 191.255.0.0, маска 255.255.0.0
Класс С: 192.0.0.0 — 223.255.255.0, маска 255.255.255.0
Класс D: 224.0.0.0 — 239.255.255.255, маска 255.255.255.255
Класс Е: 240.0.0.0 — 247.255.255.255, маска 255.255.255.255

Теперь о «цвете» IP. IP бывают белые и серые (или публичные и частные). Публичным IP адресом называется IP адрес, который используется для выхода в Интернет. Адреса, используемые в локальных сетях, относят к частным. Частные IP не маршрутизируются в Интернете.

Публичные адреса назначаются публичным веб-серверам для того, чтобы человек смог попасть на этот сервер, вне зависимости от его местоположения, то есть через Интернет. Например, игровые сервера являются публичными, как и сервера Хабра и многих других веб-ресурсов.
Большое отличие частных и публичных IP адресов заключается в том, что используя частный IP адрес мы можем назначить компьютеру любой номер (главное, чтобы не было совпадающих номеров), а с публичными адресами всё не так просто. Выдача публичных адресов контролируется различными организациями.

Допустим, Вы молодой сетевой инженер и хотите дать доступ к своему серверу всем пользователям Интернета. Для этого Вам нужно получить публичный IP адрес. Чтобы его получить Вы обращаетесь к своему интернет провайдеру, и он выдаёт Вам публичный IP адрес, но из рукава он его взять не может, поэтому он обращается к локальному Интернет регистратору (LIR – Local Internet Registry), который выдаёт пачку IP адресов Вашему провайдеру, а провайдер из этой пачки выдаёт Вам один адрес. Локальный Интернет регистратор не может выдать пачку адресов из неоткуда, поэтому он обращается к региональному Интернет регистратору (RIR – Regional Internet Registry). В свою очередь региональный Интернет регистратор обращается к международной некоммерческой организации IANA (Internet Assigned Numbers Authority). Контролирует действие организации IANA компания ICANN (Internet Corporation for Assigned Names and Numbers). Такой сложный процесс необходим для того, чтобы не было путаницы в публичных IP адресах.

Поскольку мы занимаемся созданием локальных вычислительных сетей (LAN — Local Area Network), мы будем пользоваться именно частными IP адресами. Для работы с ними необходимо понимать какие адреса частные, а какие нет. В таблице ниже приведены частные IP адреса, которыми мы и будем пользоваться при построении сетей.

Из вышесказанного делаем вывод, что пользоваться при создании локальной сеть следует адресами из диапазона в таблице. При использовании любых других адресов сетей, как например, 20.*.*.* или 30.*.*.* (для примера взял именно эти адреса, так как они использовались в лабе), будут большие проблемы с настройкой реальной сети.

Из таблицы частных IP адресов вы можете увидеть третий столбец, в котором написана маска подсети. Маска подсети — битовая маска, определяющая, какая часть IP-адреса узла сети относится к адресу сети, а какая — к адресу самого узла в этой сети.

У всех IP адресов есть две части сеть и узел.
Сеть – это та часть IP, которая не меняется во всей сети и все адреса устройств начинаются именно с номера сети.
Узел – это изменяющаяся часть IP. Каждое устройство имеет свой уникальный адрес в сети, он называется узлом.

Маску принято записывать двумя способами: префиксным и десятичным. Например, маска частной подсети A выглядит в десятичной записи как 255.0.0.0, но не всегда удобно пользоваться десятичной записью при составлении схемы сети. Легче записать маску как префикс, то есть /8.

Так как маска формируется добавлением слева единицы с первого октета и никак иначе, но для распознания маски нам достаточно знать количество выставленных единиц.

Таблица масок подсети

Высчитаем сколько устройств (в IP адресах — узлов) может быть в сети, где у одного компьютера адрес 172.16.13.98 /24.

172.16.13.0 – адрес сети
172.16.13.1 – адрес первого устройства в сети
172.16.13.254 – адрес последнего устройства в сети
172.16.13.255 – широковещательный IP адрес
172.16.14.0 – адрес следующей сети

Итого 254 устройства в сети

Теперь вычислим сколько устройств может быть в сети, где у одного компьютера адрес 172.16.13.98 /16.

172.16.0.0 – адрес сети
172.16.0.1 – адрес первого устройства в сети
172.16.255.254 – адрес последнего устройства в сети
172.16.255.255 – широковещательный IP адрес
172.17.0.0 – адрес следующей сети

Итого 65534 устройства в сети

В первом случае у нас получилось 254 устройства, во втором 65534, а мы заменили только номер маски.

Посмотреть различные варианты работы с масками вы можете в любом калькуляторе IP. Я рекомендую этот.

До того, как была придумана технология масок подсетей (VLSM – Variable Langhe Subnet Mask), использовались классовые сети, о которых мы говорили ранее.

Теперь стоит сказать о таких IP адресах, которые задействованы под определённые нужды.

Адрес 127.0.0.0 – 127.255.255.255 (loopback – петля на себя). Данная сеть нужна для диагностики.
169.254.0.0 – 169.254.255.255 (APIPA – Automatic Private IP Addressing). Механизм «придумывания» IP адреса. Служба APIPA генерирует IP адреса для начала работы с сетью.

Теперь, когда я объяснил тему IP, становиться ясно почему сеть, представленная в лабе, не будет работать без проблем. Этого стоит избежать, поэтому исправьте ошибки исходя из информации в этой статье.

Причины и история появления DNS

Практически каждый пользователь компьютера, подключая его к Сети, получает от своего провайдера личный IP-адрес ( например 63.141.33.125 или 179.23.45.216) и, зачастую, не вникает в суть и назначение группы цифр, которые и называются IP.

Но не зная IP-адрес компьютера, из Сети будет невозможно послать ему информацию или ответить на запрос. Например, невозможно будет пользоваться поисковыми системами. Если такое происходит, говорят упал DNS.

Чтобы получить информацию с какого либо сайта, прежде соединившись с ним, нужно знать его IP-адрес. Но человеку невозможно запомнить большое количество чисел, да это просто не удобно. Вот именно потому разработчики придумали систему доменных имен (DNS). Разработана эта система была Полом Мокапетрисом еще в 1983 году.

Происхождение и принцип работы

Когда и как появился файл хостс? С самого начала появления компьютеров и локальной сети, для удобства пользователей, хостам присваивались имена.

Хост (от англ. host — «хозяин, принимающий гостей») — любое устройство, предоставляющее сервисы формата «клиент-сервер» в режиме сервера по каким-либо интерфейсам и уникально определённое на этих интерфейсах. В более частном случае, под хостом могут понимать любой компьютер, сервер, подключённый к локальной или глобальной сети.

Чтобы сопоставить имя хоста с ip адресом отправлялся запрос на главный хост, который в ответ направлял список всех имен и адресов к ним. Host file регулярно рассылался всем подключенным к сети компьютерам. Со временем, из-за развития глобальной сети значительно возросло количество пользователей, а значит и хостов и серверов. Файл хост стал разрастаться и стали появляться огромные задержки при регистрации и получении имен новыми компьютерами в сети. Проблему помогла решить служба доменных имен — DNS.

DNS (англ. Domain Name System — система доменных имён) — компьютерная распределённая система для получения информации о доменах. Чаще всего используется для получения IP-адреса по имени хоста (компьютера или устройства)

Необходимость в рассылке файла hosts компьютерам отпала. Теперь когда пользователь в адресной строке браузера набирает url-адрес какого либо сайта, происходит следующее:

  1. Так как запрос к файлу hosts имеет приоритет перед DNS службой, браузер сначала обращается именно к нашему файлу и проверяет не совпадает ли ip адрес запрашиваемого сайта с ip адресом localhost, то есть 128.0.0.1
  2. Если не совпадает, то проверяется файл hosts на наличие запрашиваемого адреса.
  3. Если адрес (имя хоста) в наличии, то идет переход по указанному хосту (ip-адресу)
  4. Если запрашиваемый адрес не найден, то сначала идет обращение к кешу DNS распознавателя, а потом уже соответственно к DNS серверу
  5. Если запрашиваемый сайт существует, то DNS сервер преобразовывает url адрес сайта в ip адрес и браузер уже переходит по данному ip адресу и загружает его содержимое.

Здесь важное замечание — в отличие от DNS сервера, файл hosts полностью контролируется пользователем (администратором) компьютера и имеет приоритет перед DNS.
Давайте узнаем, что вообще содержится в этом файле.

Способы противодействия поиску информации в записях DNS-сервера

При создании DNS-записей вручную убедитесь, что они не содержат опасной информа­ции, которая будет общедоступна. Записи HINFO и ТХТ можно оставить пустыми. PR-записи могут пригодиться в тех случаях, когда нужна срочная связь с администратором, например, для его оповещения о подозрительных действиях, источником которых является один из вверен­ных ему хостов. Но при этом все же следует соблюдать осторожность. Не будем забывать, что почтовый адрес может быть использован для разных целей, хотя бы для рассылки рекламных сообщений или спама.

Большинство неприятностей происходит, когда информация в записях HINFO и ТХТ созда­ется с помощью копирования информации из базы данных локального компьютера. Наличие такой информации в базе данных локальной машины, безусловно, очень полезно, но абсолют­но не рекомендуется делать ее общедоступной посредством службы DNS.

Заводить новые знакомства, слушать песни (см. music.connect.ua), смотреть видео, выкладывать интересные фото, весело общаться с друзьями поможет украинская социальная сеть «CoNNect.ua».

2014: Передача функций контроля за управлением корневой зоной DNS от правительства США

В декабре 2014 года Межотраслевая рабочая группа ICANN подготовила предложения по передаче функций контроля за управлением корневой зоной DNS от правительства США интернет-сообществу. С инициативой передачи этих функций выступила весной нынешнего года Национальная администрация по телекоммуникациям и информации (NTIA), входящая в состав Министерства торговли США. Межотраслевая рабочая группа из 119 членов представила два варианта передачи функций.

Один из них проговорен в самых общих чертах, поскольку предусматривает передачу функций контроля непосредственно корпорации ICANN. При этом исполнение функций будет контролироваться через существующие механизмы подотчетности ICANN.

Другой вариант предполагает создание новой структуры, надзирающей за деятельностью ICANN по управлению доменной системой и управляемой представителями интернет-сообщества. Авторы предложений подчеркивают, что речь идет о некоммерческой структуре с минимальным числом сотрудников. Таким образом, межотраслевая рабочая группа стремится, очевидно, избежать того, чего опасаются многие наблюдатели – создания «еще одной ICANN для надзора над ICANN».

Структура, условно обозначенная в документе как Contract Co, и возьмет на себя функции NTIA по контролю за управлением корневой зоной DNS. Выработка условий контракта с Contract Co и надзор за соблюдением его исполнения будут возложены на комитет Multistakeholder Review Team, сформированный из числа делегатов всех сообществ, чьи интересы представляет ICANN. Механизмы формирования этого комитета пока не определены и, вероятно, станут предметом жарких дискуссий, поскольку к максимальному представительству в нем будут стремиться самые разные группы с зачастую противоположными интересами.

Также будет сформирован новый постоянный комитет Customer Standing Panel, куда войдут представители регистратур общих и национальных доменов верхнего уровня – как главные «потребители услуг» корневой зоны DNS. Он будет транслировать комитету Multistakeholder Review Team пожелания регистратур, обеспечивая тем самым подотчетность ICANN перед ними. Наконец, предполагается и создание независимого апелляционного комитета, куда могут быть поданы жалобы на любые решения, связанные с управлением корневой зоной DNS, включая, очевидно, и решения о делегировании либо снятии с делегирования доменов.

Предложения опубликованы на сайте ICANN, комментарии к ним принимаются до 22 декабря 2014 года. Окончательное предложение правительству США по передаче функций контроля над управлением корневой зоной DNS должно быть сформулировано летом 2015 года.

DNS-сервер в общих чертах

В самых общих чертах DNS-сервер – это не только протокол, но база данных, в которой «прописаны» соответствия между именами хостов в буквенном виде, например,http://www.microsoft.com, и их IP-адресами в цифровом виде 192.168.124.1. Можно сказать, что DNS – это «телефонная книга для интернета».

Однако, внутреннее устройство DNS сложнее, чем телефонная книга.

Во-первых, база данных DNS является распределенной. Каждый отдельный DNS-сервер содержит лишь относительно небольшую часть всех записей в сети интернет об именах хостов и их соответствий IP-адресам. В случае, если запрос клиента относится к доменному имени, записи о котором нет в базе данных DNS-сервера, он производит поиск другого сервера, где есть такая запись. Иногда такой поиск занимает несколько поочередных запросов с одного DNS-сервера на другой. Набор записей соответствия имен хостов IP-адресам называется «пространство имен» (namespace).

Во-вторых, процесс поиска и передачи запроса на нижележащие уровни пространства имен продолжается до тех пор, пока не будет найдет DNS-сервер, который содержит искомую запись соответствия DNS-имени точному IP-адресу. Если доменное имя по запросу не найдено, то пользователю возвращается сообщение о неудачном поиске.

В-третьих, в базе данных DNS-сервера содержатся и другие типы записей, кроме записей соответствия доменного имени IP-адресу. Например, это могут быть записи почтовой службы MX (Mail Exchanger), которые обеспечивают почтовые серверы (e-mail server) информацией, необходимой для пересылки электронных писем.

Для чего нужен сервис DNS

DNS используется для следующих целей:

  • Разрешение имен сайтов WWW (World Wide Web).
  • Маршрутизация сообщений на почтовые серверы и службы webmail.
  • Соединение серверов приложений, баз данных и промежуточных программ (middleware) внутри веб-приложения.
  • Создание виртуальных частных сетей VPN (Virtual Private Networks).
  • Предоставление доступа к программным средствам (Peer-to-peer).
  • Работа совместных онлайн-игр (Multiplayer games).
  • Работа служб мгновенных сообщений и онлайн-конференций.
  • Связь между устройствами, шлюзами и серверами интернета вещей.

Это все, что нужно знать о DNS-серверах в самых общих чертах. Если нужно поподробнее, но тоже не слишком детально, можно читать дальше.

Заключение

Теперь вы должны хорошо понимать, как работает DNS. Хотя общую идею относительно легко понять, при настройке DNS сервера всё ещё могут возникнуть трудности, поэтому мы продолжим знакомство в DNS в последующих статьях, которые также рекомендуются для ознакомления.

Для продолжения знакомства с DNS рекомендуются следующие статьи:

[СТАТЬИ БЕЗ ССЫЛОК В ПРОЦЕССЕ ПОДГОТОВКИ — ЗАХОДИТЕ ЗА ССЫЛКАМИ ЧУТЬ ПОЗЖЕ]

  • Сравнение типов DNS серверов: как выбрать правильную конфигурацию DNS
  • Как пользоваться командой dig для DNS запросов
  • Как пользоваться командой nslookup для DNS запросов
  • Как делать запросы к DNS серверу командой host
  • Как настроить локальный DNS используя файл /etc/hosts в Linux
  • Как узнать IP DNS сервера в Linux
  • Как включить DNS через HTTPS и для чего это нужно
  • Что такое glue record в DNS
  • Как настроить рекурсивный кэширующий или перенаправляющий DNS-сервер
  • Как настроить DNS серверы с только авторитативной функцией (Authoritative-Only)
  • Как настроить частный DNS-сервер

Заключение

Стек TCP/IP регламентирует взаимодействие разных уровней. Ключевым понятием в здесь являются протоколы, формирующие стек, встраиваясь друг в друга с целью передать данные. Рассмотренная модель по сравнению с OSI имеет более простую архитектуру.

Сама модель остается неизменной, в то время как стандарты протоколов могут обновляться, что еще дальше упрощает работу с TCP/IP. Благодаря всем преимуществам стек TCP/IP получил широкое распространение и использовался сначала в качестве основы для создания глобальной сети, а после для описания работы интернета.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector