Архитектура шин интерфейсов ввода-вывода

Учебное пособие для студентов высших учебных заведений

Если процессор – это сердце персонального компьютера, то шины – это артерии и вены, по которым текут электрические сигналы. Строго говоря, это каналы связи, применяемые для организации взаимодействия между устройствами компьютера. Неопытные пользователи часто путают шины и разъемы, куда вставляются платы расширения — это интерфейсы (слоты, разъемы), с помощью которых осуществляется подключение к шинам, которых зачастую вообще не видно.
^

Микропроцессор, память и некоторые другие устройства ПК, связанны между собой шинами, которые делятся на 3 типа – шина адреса, шина данных и шина управления. Иногда по одним и тем же проводникам в разные моменты времени передаются и адрес и данные – в этом случае говорят, что шина мультиплексирована. Каждый из этих типов шин имеет уникальное место и собственный код, называемый адресом (памяти или ввода/вывода). Микропроцессор использует управляющую и адресную шины для чтения и записи на шину данных. Все операции чтения и записи осуществляются микропроцессором синхронно с системными часами.

Адресная шина состоит из нескольких соединений – по одному для каждого бита адреса, и используются для доступа к устройствам и памяти. Каждый элемент, подсоединенный к адресной шине, может распознавать уникальную комбинацию электронных сигналов, называемых адресом. Микропроцессор выдает сигналы и затем использует шину данных для передачи данных. Когда микропроцессор должен прочитать данные из памяти, он сообщает требуемое расположение этих данных в памяти на адресную шину и затем считывает их с шины данных.

Шина данных представляет собой группу из восьми сигналов, каждый из которых несет 1 бит данных, и все восемь сигналов составляют 1 байт. Шина данных используются для доступа к устройствам и памяти.

Управляющая шина включает сигналы, показывающая, например, когда данные доступны для чтения. Управляющей шиной указывается точная синхронизация сообщения адреса и чтения данных.

  • master — главный, способный управлять шиной, т.е. инициировать запись/чтение и т.д. Обычно это контроллер шины.
  • slave — подчиненный. Это устройства, которые могут только отвечать на запросы. Кроме того, есть еще «интеллектуальные слуги» (intelligent slaves).

Наличие свободных разъемов шины обеспечивает возможность добавление к компьютеру новых устройств. Шина входит в состав материнской (системной) платы компьютера и осуществляет обмен данными между процессором и оперативной памятью и контроллерами внешних устройств компьютера: клавиатуры, монитора, дисков и т.д.

Слот расширения . Это стандартный соединитель, содержащий контакты для шины управления, шины данных и адресной шины. Конфигурация этого соединителя хорошо документирована. С функциональной точки зрения, размещения и число слотов расширения несущественно и для всех сигналов, связанных с этими слотами, обычно используется термин ’’шина расширения’’. Т.о. шина расширения состоит из всех электрических соединений и сигналов, необходимых для «расширения» ПК посредством слотов расширения.
^

Архитектура интерфейсов ввода-вывода

Интерфейсы памяти и ввода-вывода связаны с логикой управления шиной. Между ней и интерфейсами находятся только электрические проводники шины; следователь­но, интерфейсы должны быть спроектированы для передачи и приема сигналов, совместимых с логикой управления шиной и ее временной диаграммой. При наличии сход­ства интерфейсов памяти и ввода-вывода между ними имеются и существенные различия.

Интерфейс ввода-вывода должен выполнять следующие функции:

1. Интерпретировать сигналы адреса и выбора между памятью и вводом-выводом, чтобы определить обращение к нему, и в случае такого обращения определить, к каким регистрам происходит обращение.

2. Определять, выполняется ввод или вывод; при выводе воспринять с шины выход­ные данные или управляющую информацию, а при вводе поместить на шину входные данные или информацию о состоянии.

3. Вводить или выводить данные в подключенное устройство ввода-вывода и преобра­зовывать параллельные данные в формат, воспринимаемый устройством, или наоборот.

4. Посылать сигнал готовности, когда данные восприняты или помещены на шину данных, информируя процессор о завершении передачи.

5. Формировать запросы прерываний и (при отсутствии в логике управления шиной управления приоритетными прерываниями) принимать подтверждения прерываний и — выдавать тип прерывания.

6. Принимать сигнал сброса и реинициализировать себя и, возможно, подключенное Устройство.

Схема типичного интерфейса ввода-вывода

Главные функции интерфейса сводятся к преобразованию сигналов между системной шиной и устрой­ством ввода-вывода и реализации буферов, необходимых для удовлетворения двух на­боров временных ограничений. Значительная часть функций интерфейса выполняется блоком, находящимся на рисунке справа. Часто он реализуется в виде микросхемы, но иногда функции этого блока могут быть разбросаны по нескольким приборам. Очевид­но, его функции полностью определяются устройством ввода-вывода, с которым дол­жен взаимодействовать интерфейс.

Интерфейс можно разделить на две части, взаимодействующие с устройством и с си­стемной шиной. Первая из них определяется устройством, а вторые части всех интерфейсов в данной системе довольно похожи, так как они связаны с одной и той же ши­ной. В них должны быть шинные драйверы и приемники, схемы преобразования интер­фейсных сигналов управления в соответствующие квитирующие сигналы и схемы для дешифрирования появляющихся на шине адресов.

Квитирование — установка переключателя в положение, соответствующее полученному сигналу. Квитирование используется для надежной синхронизации работы ЭВМ и периферийного оборудования: между ними осуществляется обмен сигналами управления и сигналами состояния с целью взаимной синхронизации. Метод передачи данных с квитированием позволяет согласовать скорости выполнения операций в медленных УВВ и в быстрых ЦП.

Логику квитирования нельзя спроектировать, не зная управляющих сигналов, необходимых основному интерфейсному устройству, а эти сигналы в различных интерфейсах варьируются. Обычно эта логика должна воспринимать сигналы считывания/записи, определяющие направление передачи, и выдавать для микросхем 8286 сигналы ОЕ (Output Enable) и Т (Transmit). Через эту логику должны также проходить линии запроса прерывания, готовности и сброса. Иногда управляющие линии шины проходят через логику квитирования неизменными (т. е. подключаются прямо к основному интерфейсному устройству).

Память эвм и ее характеристики и назначение. Пзу, озу, взу. Организация и физическое представление данных в эвм.

Постоянное и оперативное ЗУ.

ЗУ
в ЭВМ состоят из последовательности
ячеек, каждая из которых содержит
значение 1-ого байта и имеет собственный
номер (адрес), по которому происходит
обращение к ее содержимому. Все данные
в ЭВМ хранятся в двоичном виде (0,1).

ЗУ
характеризуется 2-мя параметрами:

-объем
памяти — размер в байтах, доступных для
хранения информации

-Время
Доступа к ячейкам памяти — средний
временной интервал в течении кот.
находится требуемая ячейка памяти и из
нее извлекаются данные.

Оперативное
запоминающее устройство (ОЗУ; RAM
– Random
Access
Memory)
предназначено для оперативной записи,
хранения и чтения информации (программ
и данных), непосредственно участвующей
в информационно-вычислительном процессе,
выполняемом ЭВМ в текущий период времени.
После выключения питания ЭВМ, информация
в ОЗУ уничтожается. (В ЭВМ на базе
процессоров Intel Pentium
используется 32-разрядная адресация.
Т.е число адресов 232,
то есть возможное адресное пространство
составляет 4,3 Гбайт. время доступа
0,005-0,02 мкс. 1 с = 106 мкс.

Постоянное
запоминающее устройство (ПЗУ; ROM
– Read
Only
Memory)
хранит неизменяемую (постоянную)
информацию: программы, выполняемые во
время загрузки системы, и постоянные
параметры ЭВМ. В момент включения ЭВМ
в его ОЗУ отсутствуют данные, так как
ОЗУ не сохраняет данные после выключения
ЭВМ. Но МП необходимы команды, в том
числе и сразу после включения. Поэтому
МП обращается по специальному стартовому
адресу, который ему всегда известен, за
своей первой командой. Этот адрес из
ПЗУ. Основное назначение программ из
ПЗУ состоит в том, чтобы проверить состав
и работоспособность системы и обеспечить
взаимодействие с клавиатурой, монитором,
жесткими и гибкими дисками. Обычно
изменить информацию ПЗУ нельзя. Объем
ПЗУ 128-256 Кбайт, время доступа
0,035-0,1 мкс. Так как объем ПЗУ небольшой,
но время доступа больше, чем у ОЗУ, при
запуске все содержимое ПЗУ считывается
в специально выделенную область ОЗУ.

Энергонезависимая
память CMOS
RAM
(Complementary
Metal-Oxide
Semiconductor
RAM),
в которой хранятся данные об аппаратной
конфигурации ЭВМ: о подключенных к ЭВМ
устройствах и их параметры, параметры
загрузки, пароль на вход в систему,
текущее время и дата. Питание памяти
CMOS
RAM
осуществляется от батарейки. Если заряд
батарейки заканчивается, то настройки,
хранящиеся в памяти CMOS
RAM,
сбрасываются, и ЭВМ использует настройки
по умолчанию.

ПЗУ
и память CMOS
RAM
составляют базовую систему ввода-вывода
(BIOS
– Basic
Input-Output
System).

Внешние
ЗУ. ВЗУ для долговременного хранения и
транспортировки информации. ВЗУ
взаимодействуют с сист. шиной через
контроллеры ВЗУ (КВЗУ). КВЗУ обеспечивают
интерфейс ВЗУ и сист. шины в режиме
прямого доступа к памяти, т.е. без участия
МП. ИНТЕРФЕЙС — это совокупность связей
с унифицированными сигналами и аппаратуры,
предназначенной для обмена данными
между устройствами вычислительной
системы.

ВЗУ
можно разделить по критерию транспортировки
на ПЕРЕНОСНЫЕ и СТАЦИОНАРНЫЕ. Переносные
ВЗУ состоят из носителя, подключ-ого к
порту вв/вывода (обычно ЮСБ), (флеш-память)
или носителя и привода (накопители на
ГМД, приводы СиДи и ДВД). В стационарных
ВЗУ носитель и привод объединены в
единое устройство (НЖМД). Стационарные
ВЗУ предназначены для хранения информации
внутри ЭВМ.

Перед
первым использованием или в случае
сбоев ВЗУ необходимо ОТФОРМАТИРОВАТь
— записать на носитель служебную
информацию.

Основные
Технические Характеристики ВЗУ

-Информационная
емкость определяет наибольшее кол-во
ед. данных, кот может одновременно
хранить в ВЗУ (зависит от площади объема
носителя и плотности записи.)

-Плотность
записи — число бит информации, записанных
на единице поверхности носителя.
Различают продольную плотность (бит/мм),
и поперечную плотность.//

-Время
доступа — интервал времени от момента
запроса (чтения или записи) до момента
выдачи блока (включая время поиска
инфции на носителе и время чтения или
записи.)

-Скорость
передачи данных определяет кол-во
данных, считываемых или записываемых
в единицу времени и зависит от скорости
движения носителя, плотности записи,
числа каналов и тп.

8-битные и 16-битные автобусы ISA

8-битные и 16-битные автобусы ISA

Это наиболее распространенный тип шины раннего расширения, который был разработан для использования в оригинальном IBM PC. В IBM PC-XT использовалась 8-битная конструкция шины. Это означает, что передача данных происходит по 8-битным блокам (то есть по одному байту за раз) по шине. Шина ISA работала с тактовой частотой 4,77 МГц.

Для IBM PC-AT на базе 80286 была анонсирована улучшенная конструкция шины, которая могла бы одновременно передавать 16-битные данные. 16-битная версия шины ISA иногда называется шиной AT. (AT-Advanced Technology)

Усовершенствованная шина AT также предоставила в общей сложности 24 адресных строки, что позволило адресовать 16 МБ памяти. Шина AT была обратно совместима со своим 8-битным предшественником и позволяла использовать 8-битные карты в 16-битных слотах расширения.

Когда он впервые появился, 8-битная шина ISA работала на скорости 4,77 МГц — столько же, сколько процессор. Улучшения, сделанные за эти годы, в конечном итоге позволили шине AT работать на тактовой частоте 8 МГц.

Основные характеристики шины

Существует три основных показателя работы шины. Это тактовая частота, разрядность и скорость передачи данных.

Тактовая частота . Работа компьютера зависит от тактовой частоты, которую определяет кварцевый резонатор. Он представляет собой оловянный контейнер, в который помещен кристалл кварца. Под воздействием электрического напряжения в кристалле возникают колебания электрического тока, частота этих колебаний и называется тактовой частотой.

Такт – это определенные интервалы через которые происходят все изменения логических сигналов в любой микросхеме компьютера. Отсюда можно сделать вывод, что наименьшей единицей измерения времени для большинства логических устройств компьютера есть такт (период тактовой частоты). Проще говоря, на каждую операцию требуется минимум один такт (хотя некоторые современные устройства успевают выполнить несколько операций за один такт). Тактовая частота, применительно к персональным компьютерам, измеряется в МГц, где Герц – это одно колебание в секунду, соответственно 1 МГц – миллион колебаний в секунду.

Теоретически, если системная шина компьютера работает на частоте в 100 МГц, то значит она может выполнять до 100 000 000 операций в секунду. Кстати, совсем не обязательно, чтобы каждый компонент системы обязательно что-либо выполнял с каждым тактом. Существуют так называемые пустые такты (циклы ожидания), когда устройство находится в процессе ожидания ответа от какого-либо другого устройства. Так, например, организована работа оперативной памяти и процессора (СPU), тактовая частота которого значительно выше тактовой частоты ОЗУ.

Разрядность . Шина состоит из нескольких каналов для передачи электрических сигналов. Если говорят, что шина тридцатидвухразрядная, то это означает, что она способна передавать электрические сигналы по тридцати двум каналам одновременно. Однако существует одна особенность, которая заключается в том, что шина любой заявленной разрядности (8, 16, 32, 64) имеет, на самом деле, большее количество каналов. То есть, если взять ту же тридцатидвухразрядную шину, то для передачи собственно данных выделено 32 канала, а дополнительные каналы предназначены для передачи специфической информации.

Скорость передачи данных высчитывается по формуле

тактовая частота * разрядность = скорость передачи данных.

При расчете по данной зависимости скорость передачи данных для 64- разрядной системной шины, работающей на тактовой частоте в 100 МГц составляет 100 * 64 = 6400 Мбит/с, следовательно, 6400/8 = 800 Мбайт/с.

Компьютерная шина

Компьютерная шина – это электронная магистраль предназначенная для передачи информации между функциональными модулями компьютера. Такими как: центральный процессор, графический адаптер, винчестер, ОЗУ и остальными устройствами. Данная система включает в себя некоторое количество других шин, в частности: шины адреса, шина данных, кстати их может быть несколько, и шина управления.

Шина данных это-2

Отличие шин друг от друга базируется на нескольких моментах. Главным признаком считается Первенствующим показателем является место расположения. Исходя из этого шины бывают следующих типов:

  1. Шины для создания магистральной связи между компонентами установленными внутри компьютерного блока, а именно: центральный процессор, оперативное запоминающее устройство, системная плата. В современных компьютерах она обозначается как — локальная шина.
  2. Шины служащие для подсоединения к системной плате периферийных гаджетов, таких, как: адаптеры, карты памяти, называются — внешними шинами.

По-большому счету, компьютерной шиной можно охарактеризовать практически всякое устройство, служащее для создания связи между двумя и более компонентами. Даже оборудование для подключения компьютера к сети Интернет в определенной степени считается системной шиной.

Шина USB

Шина USB (Universal Serial Bus – универсальная последовательная шина) обеспечивает подключение к компьютеру одновременно нескольких периферийных устройств (принтер, сканер, цифровая камера, Web-камера, модем и др.).

Клавиатура и мышь подключаются с помощью порта PS/2 или шины USB (в том числе с помощью беспроводного адаптера)

Шина isa

В компьютерах PC/AT, использующих микропроцессор i80286, впервые стала применяться новая системная шина ISA (Industry Standard Architecture), полностью реализующая возможности упо­мянутого микропроцессора. Она отличалась наличием дополни­тельного 36-контактного разъема для соответствующих плат рас­ширения. За счет этого количество адресных линий было увели­чено на четыре, а данных — на восемь. Теперь можно было пере­давать параллельно уже 16 разрядов данных, а благодаря 24 ад­ресным линиям напрямую обращаться к 16 Мбайтам системной памяти. Количество линий аппаратных прерываний в этой шине было увеличено с 7 до 15, а каналов DMA — с 4 до 7. Надо отме­тить, что новая системная шина ISA полностью включала в себя возможности старой 8-разрядной шины, то есть все устройства, используемые в PC/XT, могли без проблем применяться и в PC/AT 286. Системные платы с шиной ISA уже допускали воз­можность синхронизации работы самой шины и микропроцессо­ра разными тактовыми частотами, что позволяло устройствам, выполненным на платах расширения, работать медленнее, чем базовый микропроцессор. Это стало особенно актуальным, когда тактовая частота процессоров превысила 10-12 МГц. Теперь сис­темная шина ISA стала работать асинхронно с процессором на частоте 8 МГц. Таким образом, максимальная скорость передачи теоретически может достигать 16 Мбайт/с.

С появлением новых микропроцессоров, таких, как i80386 и i486, стало очевидно, что одним из вполне преодолимых препят­ствий на пути повышения производительности компьютеров с этими микропроцессорами является системная шина ISA. Дело в том, что возможности этой шины для построения высокопроиз­водительных систем следующего поколения были практически исчерпаны. Новая системная шина должна была обеспечить наи­больший возможный объем адресуемой памяти, 32-разрядную передачу данных, в том числе и в режиме DMA, улучшенную систему прерываний и арбитраж DMA, автоматическую конфи­гурацию системы и плат расширения. Такой шиной для IBM PC- совместимых компьютеров стала EISA (Extended Industry Standard Architecture). Заметим, что системные платы с шиной EISA первоначально были ориентированы на вполне конкретную область применения новой архитектуры, а именно на компьютеры, осна­щенные высокоскоростными подсистемами внешней памяти на жестких магнитных дисках с буферной кэш-памятью. Такие ком­пьютеры до сих пор используются в основном в качестве мощ­ных файл-серверов или рабочих станций.

В EISA-разъем на системной плате компьютера помимо, разу­меется, специальных EISA-плат может вставляться либо 8-, либо 16-разрядная плата расширения, предназначенная для обыкновенной PC/AT с шиной ISA. Это обеспечивается простым, но поистине гениальным конструктивным решением. EISA-разъе­мы имеют два ряда контактов, один из которых (верхний) ис­пользует сигналы шины ISA, а второй (нижний) — соответствен­но EISA. Контакты в соединителях EISA расположены так, что рядом с каждым сигнальным контактом находится контакт «Зем­ля». Благодаря этому сводится к минимуму вероятность генера­ции электромагнитных помех, а также уменьшается восприим­чивость к таким помехам.

Шина EISA позволяет адресовать 4-Гбайтное адресное про­странство, доступное микропроцессорам 180386/486. Однако дос­туп к этому пространству могут иметь не только центральный процессор, но и платы управляющих устройств типа bus master — главного абонента (то есть устройства, способные управлять пе­редачей данных по шине), а также устройства, имеющие возможность организовать режим DMA. Стандарт EISA поддерживает многопроцессорную архитектуру для «интеллектуальных» устройств (плат), оснащенных собственными микропроцессорами. Поэтому данные, например, от контроллеров жестких дисков, графических контроллеров и контроллеров сети могут обрабаты­ваться независимо, не загружая при этом основной процессор. Теоретически максимальная скорость передачи по шине

EISA в так называемом пакетном режиме (burst mode) может достигать 33 Мбайт/с. В обычном (стандартном) режиме она не превосхо­дит, разумеется, известных значений для ISA.

На шине EISA предусматривается метод централизованного Управления, организованный через специальное устройство — системный арбитр. Таким образом поддерживается использова­ло ведущих устройств на шине, однако возможно также предоставление шины запрашивающим устройствам по циклическому принципу.

Как и для шины ISA, в системе EISA имеется 7 каналов DMA. выполнение DMA-функций полностью совместимо с аналогичными операциями на ISA-шине, хотя они могут происходить и несколько быстрее. Контроллеры DMA имеют возможность под­держивать 8-, 16- и 32-разрядные режимы передачи данных. В общем случае возможно выполнение одного из четырех циклов обмена между устройством DMA и памятью системы. Это ISA-совместимые циклы, использующие для передачи данных 8 так­тов шины; циклы типа А, исполняемые за б тактов шины; циклы типа В, выполняемые за 4 такта шины, и циклы типа С (или burst DMA), в которых передача данных происходит за один такт шины. Типы циклов А, В и С поддерживаются 8-, 16- и 32-разрядными устройствами, причем возможно автоматическое изменение раз­мера (ширины) данных при передаче в не соответствующую раз­меру память. Большинство ISA-совместимых устройств, исполь­зующих DMA, могут работать почти в 2 раза быстрее, если они будут запрограммированы на применение циклов А или В, а не стандартных (и сравнительно медленных) ISA-циклов. Такая про­изводительность достигается только путем улучшения арбитража шины, а не в ущерб совместимости с ISA. Приоритеты DMA в системе могут быть либо «вращающимися» (переменными), либо жестко установленными. Линии прерывания шины ISA, по которым запросы прерывания передаются в виде перепадов уровней напряжения (фронтов сигналов), сильно подвержены импульсным помехам. Поэтому в дополнение к привычным сигналам прерываний на шине ISA, активным только по своему фронту, в системе EISA предусмот­рены также сигналы прерываний, активные по уровню. Причем для каждого прерывания выбор той или иной схемы активности может быть запрограммирован заранее. Собственно прерывания, активные по фронту, сохранены в EISA только для совместимо­сти со «старыми» адаптерами ISA, обслуживание запросов на пре­рывание которых производит схема, чувствительная к фронту сиг­нала. Понятно, что прерывания, активные по уровню, менее под­вержены шумам и помехам, нежели обычные. К тому же (теоре­тически) по одной и той же физической линии можно передавать бесконечно большое число уровней прерывания. Таким образом, одна линия прерывания может использоваться для нескольких запросов.

Для компьютеров с шиной EISA предусмотрено автоматическое конфигурирование системы. Каждый изготовитель плат расширения для компьютеров с шиной EISA поставляет вместе этими платами и специальные файлы конфигурации. Информация из этих файлов используется на этапе подготовки системы

работе, которая заключается в разделении ресурсов компьютера между отдельными платами. Для «старых» плат адаптеров пользователь должен сам подобрать правильное положение DIP-перекдючателей (рис. 25) и перемычек, однако сервисная программа на EISA-компьютерах позволяет отображать установленные положе­ния соответствующих переключателей на экране монитора и дает некоторые рекомендации по правильной их установке. Помимо этого в архитектуре EISA предусматривается выделение опреде­ленных групп адресов ввода-вывода для конкретных слотов шины — каждому разъему расширения отводится адресный диа­пазон 4 Кбайта, что также позволяет избежать конфликтов между отдельными платами EISA.

Заметим, что компьютеры, использующие системные платы с шиной EISA, достаточно дорогие. К тому же шина по-прежнему тактируется частотой около 8-10 МГц, а скорость передачи уве­личивается в основном благодаря увеличению разрядности шины данных.

Шиной (Bus ) называется вся совокупность линий (проводников на материнской плате), по которым обмениваются информацией компоненты и устройства ПК. Шины предназначены для обмена информацией между двумя и более устройствами. Шина, связывающая только два устройства, называется портом . На рис. 1 дана структура шины.

Шина имеет места для подключения внешних устройств – слоты , которые в результате становятся частью шины и могут обмениваться информацией со всеми другими подключенными к ней устройствами.

Рис. 1. Структура шины

Шины в ПК различаются по своему функциональному назначению :

  • системная шина (или шина CPU) используется микросхемами Cipset для пересылки информации к и обратно (см. также рис. 1);
  • шина предназначена для обмена информацией между CPU и кэш-памятью (см. также рис. 1);
  • шина памяти используется для обмена информацией между оперативной памятью RAM и CPU;
  • шины ввода/вывода информации подразделяются на стандартные и локальные.

Локальная шина ввода/вывода – это скоростная шина, предназначенная для обмена информацией между быстродействующими периферийными устройствами (видеоадаптерами, сетевыми картами, картами сканера и др.) и системной шиной под управлением CPU. В настоящее время в качестве локальной шины используется шина PCI. Для ускорения ввода/вывода видеоданных и повышения производительности ПК при обработке трехмерных изображений корпорацией Intel была разработана шина AGP (Accelerated Graphics Port ).

Стандартная шина ввода/вывода используется для подключения к перечисленным выше шинам более медленных устройств (например, мыши, клавиатуры, модемов, старых звуковых карт). До недавнего времени в качестве этой шины использовалась шина стандарта ISA. В настоящее время – шина USB.

Шина имеет собственную архитектуру, позволяющую реализовывать важнейшие ее свойства – возможность параллельного подключения практически неограниченного числа внешних устройств и обеспечение обмена информацией между ними. Архитектура любой шины имеет следующие компоненты:

  • линии для обмена данными (шина данных);
  • линии для адресации данных (шина адреса);
  • линии управления данными (шина управления);
  • контролер шины.

Контроллер шины осуществляет управление процессором обмена данными и служебными сигналами и обычно выполняется в виде отдельной микросхемы либо в виде совместимого набора микросхем – Chipset.

Шина данных обеспечивает обмен данными между CPU, картами расширения, установленными в слоты, и памятью RAM. Чем выше разрядность шины, тем больше данных может быть передано за один такт и тем выше производительность ПК. Компьютеры с процессором 80286 имеют 16-разрядную шину данных, с CPU 80386 и 80486 – 32-разрядную, а компьютеры с CPU семейства Pentium – 64-разрядную шину данных.

Шина адреса служит для указания адреса к какому-либо устройству ПК, с которым CPU производит обмен данными. Каждый компонент ПК, каждый регистр ввода/вывода и ячейка RAM имеют свой адрес и входят в общее адресное пространство ПК. По шине адреса передается идентификационный код (адрес ) отправителя и (или) получателя данных.

Для ускорения обмена данными используется устройство промежуточного хранения данных – оперативная память RAM . При этом решающую роль играет объем данных, которые могут временно храниться в ней. Объем зависит от разрядности адресной шины (числа линий) и тем самым от максимально возможного числа адресов, генерируемых процессором на адресной шине, т.е. от количества ячеек RAM, которым может быть присвоен адрес. Количество ячеек RAM не должно превышать 2 n , где n – разрядность адресной шины. В противном случае часть ячеек не будет использоваться, поскольку процессор не сможет адресоваться к ним.

В двоичной системе счисления максимально адресуемый объем памяти равен 2 n , где n – число линий шины адреса.

Процессор 8088, например, имел 20 адресных линий и мог, таким образом, адресовать память объемом 1 Мбайт (2 20 =1 048 576 байт=1024 Кбайт). В ПК с процессором 80286 разрядность адресной шины была увеличена до 24 бит, а процессоры 80486, Pentium, Pentium MMX и Pentium II имеют уже 32-разрядную шину адреса, с помощью которой можно адресовать 4 Гбайт памяти.

Шина управления передает ряд служебных сигналов: записи/считывания, готовности к приему/передаче данных, подтверждения приема данных, аппаратного прерывания, управления и других, чтобы обеспечить передачу данных.

Основные характеристики шины

Разрядность шины определяется числом параллельных проводников, входящих в нее. Первая шина ISA для IBM PC была восьмиразрядной, т.е. по ней можно было одновременно передавать 8 бит. Системные шины современных ПК, например, Pentium IV – 64-разрядные.

Пропускная способность шины определяется количеством байт информации, передаваемых по шине за секунду.

При расчете пропускной способности, например шины AGP, следует учитывать режим ее работы: благодаря увеличению в два раза тактовой частоты видеопроцессора и изменению протокола передачи данных удалось повысить пропускную способность шины в два (режим 2 х) или четыре (режим 4 х) раза, что эквивалентно увеличению тактовой частоты шины в соответствующее число раз (до 133 и 266 МГц соответственно).

Внешние устройства к шинам подключается посредством интерфейса (Interface – сопряжение), представляющего собой совокупность различных характеристик какого-либо периферийного устройства ПК, определяющих организацию обмена информацией между ним и центральным процессором.

К числу таких характеристик относятся электрические и временные параметры, набор управляющих сигналов, протокол обмена данными и конструктивные особенности подключения. Обмен данными между компонентами ПК возможен, только если интерфейсы этих компоненты совместимы.

Стандарты шин ПК

Принцип IBM-совместимости подразумевает стандартизацию интерфейсов отдельных компонентов ПК, что, в свою очередь, определяет гибкость системы в целом, т.е. возможность по мере необходимости изменять конфигурацию системы и подключать различные периферийные устройства. В случае несовместимости интерфейсов используются контроллеры. Кроме того, гибкость и унификация системы достигаются за счет введения промежуточных стандартных интерфейсов, таких как интерфейсы необходимы для работы наиболее важных периферийных устройств ввода и вывода.

Системная шина предназначена для обмена информацией между CPU, памятью и другими устройствами, входящими в систему. К системным шинам относятся:

  • GTL, имеющая разрядность 64 бит, тактовую частоту 66, 100 и 133 МГц;
  • EV6, спецификация которой позволяет повысить ее тактовую частоту до 377 МГц.

Шины совершенствуются в соответствии с развитием периферийных устройств ПК. В табл. 2 представлены характеристики некоторых шин ввода/вывода.

Шина ISA в течение многих лет считалась стандартом ПК, однако и до сих пор сохраняется в некоторых ПК наряду с современной шиной PCI. Корпорация Intel совместно с Microsoft разработала стратегию постепенного отказа от шины ISA. В начале планируется исключить ISA-разъемы на материнской плате, а впоследствии исключить слоты ISA и подключить дисководы, мыши, клавиатуры, сканеры к шине USB, а винчестеры, приводы CD-ROM – к шине IEEE 1394. Однако наличие огромного парка ПК с шиной ISA будет востребована еще на протяжении некоторого времени.

Шина EISA стала дальнейшим развитием шины ISA в направлении повышения производительности системы и совместимости ее компонентов. Шина не получила широкого распространения в связи с ее высокой стоимостью и пропускной способностью, уступающей пропускной способности появившейся на рынке шины VESA.

Таблица 2 . Характеристики шин ввода/вывода

Шина Разрядность, бит Тактовая частота, МГц Пропускная способность, Мбайт/с
ISA 8-разрядная 08 8,33 0008,33
ISA 16-разрядная 16 8,33 0016,6
EISA 32 8,33 0033,3
VLB 32 33 0132,3
PCI 32 33 0132,3
PCI 2.1 64-разрядная 64 66 0528,3
AGP (1 x) 32 66 0262,6
AGP (2 x) 32 66х2 0528,3
AGP (4 x) 32 66х2 1056,6

Шина VESA , или VLB , предназначена для связи CPU с быстрыми периферийными устройствами и представляет собой расширение шины ISA для обмена видеоданными.

Шина PCI была разработана фирмой Intel для процессора Pentium и представляет собой совершено новую шину. Основополагающим принципом, положенным в основу шины PCI, является применение так называемых мостов (Bridges), которые осуществляют связь между шиной PCI и другими типами шин. В шине PCI реализован принцип Bus Mastering, который подразумевает способность внешнего устройства при пересылке данных управлять шиной (без участия CPU). Во время передачи информации устройство, поддерживающее Bus Mastering, захватывает шину и становится главным. В этом случае центральный процессор освобождается для решения других задач, пока происходит передача данных. В современных

материнских платах тактовая частота шины PCI задается как половина тактовой частоты системной шины, т.е. при тактовой частоте системной шины 66 МГц шина PCI будет работать на частоте 33 МГц. В настоящее время шина PCI стала фактическим стандартом среди шин ввода/вывода.

Шина AGP – высокоскоростная локальная шина ввода/вывода, предназначенная исключительно для нужд видеосистемы. Она связывает видеоадаптер (3D-акселератор) с системой памятью ПК. Шина AGP была разработана на основе архитектуры шины PCI, поэтому она также является 32-разрядной. Однако при этом у нее есть дополнительные возможности увеличения пропускной способности, в частности, за счет использования более высоких тактовых частот.

Шина USB была разработана лидерами компьютерной и телекоммуникационной промышленности Compaq, DEC, IBM, Intel, Microsoft для подключения периферийных устройств вне корпуса PC. Скорость обмена информацией по шине USB составляет 12 Мбит/с или 15 Мбайт/с. К компьютерам, оборудованным шиной USB, можно подключать такие периферийные устройства, как клавиатура, мышь, джойстик, принтер, не выключая питания. Все периферийные устройства должны быть оборудованы разъемами USB и подключаться к ПК через отдельный выносной блок, называемый USB-хабом , или концентратором , с помощью которого к ПК можно подключить до 127 периферийных устройств. Архитектура шины USB представлена на рис. 4.

Шина SCSI (Small Computer System Interface) обеспечивает скорость передачи данных до 320 Мбайт/с и предусматривает подключение к одному адаптеру до восьми устройств: винчестеры, приводы CD-ROM, сканеры, фото- и видеокамеры. Отличительной особенностью шины SCSI является то, что она представляет собой кабельный шлейф. С шинами PC (ISA или PCI) шина SCSI связана через хост-адаптер (Host Adapter ). Каждое устройство, подключенное к шине SCSI, может инициировать обмен с другими устройством.

Шина IEEE 1394 это стандарт высокоскоростной локальной последовательной шины, разработанный фирмами Apple и Texas Instruments. Шина IEEE 1394 предназначена для обмена цифровой информацией между

ПК и другими электронными устройствами, особенно для подключения жестких дисков и устройств обработки аудио- и видеоинформации, а также работы мультимедийных приложений. Она способна передавать данные со скоростью до 1600 Мбайт/с, работать одновременно с несколькими устройствами, передающими данные с разными скоростями, как и SCSI.

Подключить к компьютеру через интерфейс IEEE 1394 можно практически любые устройств, способные работать с SCSI. К ним относятся все виды накопителей на дисках, включая жесткие, оптические, CD-ROM, DVD, цифровые видеокамеры, устройства. Благодаря таким широким возможностям, эта шина стала наиболее перспективной для объединения компьютера с бытовой электроникой. В настоящее время уже выпускаются адаптеры IEEE 1394 для шины PCI.

Шины персонального компьютера

Средний процент в баллах: 100%
всего голосов: 1
среднее: 5

Помогая проекту BEST-EXAM, вы делаете образование более доступным для каждого человека, внесите и вы свой вклад —
поделитесь этой статьей в социальных сетях!

Здравствуйте, уважаемые читатели блога сайт. Очень часто на просторах интернета можно встретить много всякой компьютерной терминологии, в частности — такое понятие, как «Системная шина». Но мало кто знает, что именно означает этот компьютерный термин. Думаю, сегодняшняя статья поможет внести ясность.

Системная шина (магистраль) включает в себя шину данных, адреса и управления. По каждой их них передается своя информация: по шине данных — данные, адреса — соответственно, адрес (устройств и ячеек памяти), управления — управляющие сигналы для устройств. Но мы сейчас не будем углубляться в дебри теории организации архитектуры компьютера, оставим это студентам ВУЗов. Физически магистраль представлена в виде (контактов) на материнской плате.

Я не случайно на фотографии к этой статье указал на надпись «FSB». Дело в том, что за соединение процессора с чипсетом отвечает как раз шина FSB, которая расшифровывается как «Front-side bus» — то есть «передняя» или «системная». И, на который обычно ориентируются при разгоне процессора, например.

Существует несколько разновидностей шины FSB, например, на материнских платах с процессорами Intel шина FSB обычно имеет разновидность QPB, в которой данные передаются 4 раза за один такт. Если речь идет о процессорах AMD, то там данные передаются 2 раза за такт, а разновидность шины имеет название EV6. А в последних моделях CPU AMD, так и вовсе — нет FSB, ее роль выполняет новейшая HyperTransport.

Итак, между и центральным процессором данные передаются с частотой, превышающей частоту шины FSB в 4 раза. Почему только в 4 раза, см. абзац выше. Получается, если на коробке указано 1600 МГц (эффективная частота), в реальности частота будет составлять 400 МГц (фактическая). В дальнейшем, когда речь пойдет о разгоне процессора (в следующих статьях), вы узнаете, почему необходимо обращать внимание на этот параметр. А пока просто запомните, чем больше значение частоты, тем лучше.

Кстати, надпись «O.C.» означает, буквально «разгон», это сокращение от англ. Overclock, то есть это предельно возможная частота системной шины, которую поддерживает материнская плата. Системная шина может спокойно функционировать и на частоте, существенно ниже той, что указана на упаковке, но никак не выше нее.

Вторым параметром, характеризующим системную шину, является. Это то количество информации (данных), которая она может пропустить через себя за одну секунду. Она измеряется в Бит/с. Пропускную способность можно самостоятельно рассчитать по очень простой формуле: частоту шины (FSB) * разрядность шины. Про первый множитель вы уже знаете, второй множитель соответствует разрядности процессора — помните, x64, x86(32)? Все современные процессоры уже имеют разрядность 64 бита.

Итак, подставляем наши данные в формулу, в итоге получается: 1600 * 64 = 102 400 МБит/с = 100 ГБит/с = 12,5 ГБайт/с. Такова пропускная способность магистрали между чипсетом и процессором, а точнее, между северным мостом и процессором. То есть системная, FSB, процессорная шины — все это синонимы . Все разъемы материнской платы — видеокарта, жесткий диск, оперативная память «общаются» между собой только через магистрали. Но FSB не единственная на материнской плате, хотя и самая главная, безусловно.

Как видно из рисунка, Front-side bus (самая жирная линия) по-сути соединяет только процессор и чипсет, а уже от чипсета идет несколько разных шин в других направлениях: PCI, видеоадаптера, ОЗУ, USB. И совсем не факт, что рабочие частоты этих подшин должны быть равны или кратны частоте FSB, нет, они могут быть абсолютно разные. Однако, в современных процессорах часто контроллер ОЗУ перемещается из северного моста в сам процессор, в таком случае получается, что отдельной магистрали ОЗУ как бы не существует, все данные между процессором и оперативной памятью передаются по FSB напрямую с частотой, равной частоте FSB.

Пока что это все, спасибо.

Изучив эту тему, вы узнаете:

Какова структурная схема компьютера;
— что такое принцип программного управления;
— в чем состоит назначение системной шины;
— что означает принцип открытой архитектуры, используемый при построении компьютера.

Структурная схема компьютера

В предыдущих темах вы познакомились с назначением и характеристиками основных устройств компьютера. Очевидно, что все эти устройства не могут работать по отдельности, а только в составе всего компьютера. Поэтому для понимания того, как компьютер обрабатывает информацию, нёобходимо рассмотреть структуру компьютера и основные принципы взаимодействия его устройств.

В соответствии с назначением компьютера как инструмента обработки информации взаимодействие входящих в него устройств должно быть организовано таким образом, чтобы обеспечить основные этапы обработки данных.

Для пояснения сказанного рассмотрим приведенную на рисунке 21.1 структурную схему обработки информации компьютером, на которой в верхнем ряду указаны уже знакомые вам по разделу 1 основные этапы этого процесса. Выполнение каждого из этих этапов определяется наличием в структуре компьютера соответствующих устройств. Очевидно, что ввод и вывод информации осуществляется с помощью устройств ввода (клавиатура, мышь и др.) и вывода (монитор, принтер и др.). Для хранения информации используются внутренняя и внешняя память на различных носителях (магнитные или оптические диски, магнитные ленты и пр.).

Рис. 21.1. Структурная схема компьютера

Темные стрелки обозначают обмен информацией между различными устройствами компьютера. Пунктирные линии со стрелками символизцруют управляющие сигналы, которые поступают от процессора. Светлые пустые стрелки отображают потоки входной и выходной информации соответственно.

Компьютер представляет собой систему взаимосвязанных компонентов. Конструктивно все основные компоненты компьютера объединены в системном блоке, который является важнейшей частью персонального компьютера.

Системный блок и системная плата

Внутри системного блока располагаются следующие устройства:

♦ микропроцессор;
♦ внутренняя память компьютера;
♦ дисководы — устройства внешней памяти;
♦ системная шина;
♦ электронные схемы, обеспечивающие связь различных компонентов компьютера;
♦ электромеханическая часть компьютера, включающая блок питания, системы вентиляции, индикации и защиты.

Компоновка компьютера IBM 286

Компоновка современного ПК

Все перечисленные устройства, входящие в состав системного блока, помещены в корпус, причем существуют различные типы корпусов. Тип корпуса системного блока зависит от вида персонального компьютера и определяет размер, размещение и количество устанавливаемых компонентов системного блока. Для стационарных персональных компьютеров наиболее распространенными корпусами являются горизонтальные или настольные (desktop) либо в виде башни (tower). В портативных компьютерах системный блок объединен с монитором и выполнен в стандарте booksize, то есть размером с книгу.

Технической (аппаратной) основой персонального компьютера является системная, или материнская, плата.

Системная плата является главной платой в системном блоке компьютера. На ней расположены важнейшие микросхемы — процессор и память. Системная плата связывает в единое целое различные устройства, обеспечивает условия работы и связь основных компонентов персонального компьютера. Процессор обеспечивает не только преобразование информации, но и управление работой всех остальных устройств компьютера.

В основе работы компьютера лежит так называемый принцип программного управления. В соответствии с ним команды программы и данные хранятся в закодированном виде в оперативной памяти. При работе компьютера команды, которые необходимо выполнить, и данные, которые им требуются, вчитываются по очереди из памяти и поступают в процессор, где они расшифровываются, а затем выполняются. Результаты выполнения различных команд, в свою очередь, могут быть записаны в память или переданы на различные устройства вывода. Скорость выполнения процессором операций по обработке информации является решающим фактором, определяющим его производительность. Дело в том, что любая информация (числа, текст, рисунки, музыка и т. д.) хранится и обрабатывается на компьютере только в цифровой форме. Поэтому ее обработка сводится к выполнению процессором различных арифметических и логических операций, предусмотренных его системой команд.

Системная шина

Для обеспечения информационного обмена между различными устройствами компьютера в нем должна быть предусмотрена ка- кая-то магистраль для перемещения потоков информации. Поясним эту мысль небольшим примером.

Вы знаете, что жизнь большого города — это постоянные потоки людей и транспортных средств, двигающихся в различных направлениях. Часто скорость транспортного или людского потока зависит не от скорости машины, велосипеда или пешехода, а от пропускной способности транспортной сети города, от его подземных и наземных магистралей.

В компьютере происходит движение не транспортных, а информационных потоков по соответствующей информационной магистрали. Роль такой информационной магистрали, связывающей друг с другом все устройства компьютера, выполняет системная шина, расположенная внутри системного блока. Упрощенно системную шину можно представить как группу кабелей и электрических (токопроводящих) линий на системной плате.

Все основные блоки персонального компьютера подсоединены к системной шине (рисунок 21.2). Основной ее функцией является обеспечение взаимодействия между процессором и остальными электронными компонентами компьютера. По этой шине осуществляется передача данных, адресов памяти и управляющей информации.

Рис. 21.2. Назначение системной шины

От типа системной шины, так же как и от типа процессора, зависит скорость обработки информации персональным компьютером. К основным характеристикам системной шины относятся разрядность и производительность канала связи.

Разрядность шины определяет количество бит информации, передаваемых одновременно от одного устройства к другому.

Системные шины первых персональных компьютеров могли передавать только 8 бит информации, используя для этого 8 линий данных в виде 8 параллельных проводников. Дальнейшее развитие компьютеров привело к созданию 16-битной системной шины, а затем ее разрядность увеличилась до 32 и далее до 64 бит. Увеличение разрядности шины данных привело к повышению скорости обмена информацией, а увеличение разрядности адресной шины обеспечило больший объем оперативной памяти.

Производительность шины определяется объемом информации, который можно передать по ней за одну секунду.

Подобно транспортным магистралям, пропускная способность которых зависит от количества полос движения на дороге, производительность системной шины во многом определяется ее разрядностью. Чем выше разрядность шины, тем больше бит информации одновременно может передаваться по ней, например из процессора в память. Это приводит к более быстрому обмену данными и освобождению процессора для решения других задач.

Однако системная шина как основная информационная магистраль не может обеспечить достаточную производительность для внешних устройств. Для решения этой проблемы в компьютере стали использовать локальные шины, которые связывают микропроцессор с различными устройствами памяти, ввода и вывода. Назначение локальных шин сходно с назначением окружных или кольцевых дорог вокруг большого города, которые разгружают основные магистрали.

Порты

Связь компьютера с различными устройствами ввода и вывода осуществляется через порты. Для некоторых устройств предусмотрено внешнее подключение к портам через разъемы, которые обычно тоже называют портами. Эти разъемы расположены на тыльной стороне системного блока. Дисководы гибких, жестких и лазерных дисков устанавливаются и подключаются внутри системного блока. Различают проводные (последовательные и параллельные, USB, Fire Wire ) и беспроводные (инфракрасные, Bluetooth ) порты.

Параллельные порты

Этот тип портов используется для подсоединения внешних устройств, которым необходимо передавать большой объем информации на близкое расстояние. Через параллельный порт обычно передается одновременно 8 бит данных по 8 параллельным проводникам. К параллельному порту подключаются принтер, сканер. Число параллельных портов у компьютера не превышает трех, и они имеют соответственно логические имена LPT1, LPT2, LPT3 (от англ. Line PrinTer — линия принтера).

Последовательные порты

Данный тип портов используется для подключения к системному блоку мыши, модемов и многих других устройств. Через такой порт идет последовательный поток данных по 1 биту. Это можно сопоставить с тем, как происходит движение транспорта по дороге с одной полосой. Последовательная передача данных используется на больших расстояниях. Поэтому последовательные порты часто называют коммуникационными. Количество коммуникационных портов не превышает четырех, и им присвоены имена от СОМ1 до COM4 (англ. COMmunication port — коммуникационный порт).

USB-порт

USB-порт (англ. Universal Serial Bus) в настоящее время является наиболее распространенным средством подключения к компьютеру среднескоростных и низкоскоростных периферийных устройств. USB-порт использует последовательный способ обмена данными. Наибольшее распространение получил высокоскоростной порт типа USB 2.0. Если в компьютере не хватает USB-портов, то этот недостаток можно устранить приобретением USB-концентратора, имеющего несколько таких портов.

Благодаря встроенным линиям питания USB часто позволяет применять устройства без собственного блока питания.

FireWire-порт

FireWire (IEEE 1394) — долсловно — огненный провод (произносится «файр вайр») — это последовательный порт, поддерживающий скорость передачи данных в 400 Мбит/сек. Этот порт служит для подключения к компьютеру видео устройств, таких как, например, видеомагнитофон, а также других устройств, требующих быстрой передачи большого объема информации, например, внешних жестких дисков.

Порты FireWire поддерживают технологию Plug and Play и «горячего подключения».

Порты FireWire бывают двух типов. В большинстве настольных компьютерах используются 6-контактные порты, а в ноутбуках — 4-контактные.

Инфракрасный порт беспроводного подключения

Передача данных осуществляется по оптическому каналу в инфракрасном диапазоне. Аналогично работают пульты дистанционного управления бытовой техникой — телевизорами, видеомагнитофонами и пр. Радиус действия инфракрасного порта составляет несколько метров, при этом необходимо обеспечить прямую видимость между приемником и передатчиком.

Инфракрасный порт обычно используется для соединения с мобильным телефоном, обладающим таким же портом. Это позволяет реализовать доступ в Интернет с использованием мобильного телефона, что наиболее важно для портативных ноутбуков в нестационарных условиях.

Модуль Bluetooth беспроводного подключения

Один адаптер Bluetooth позволяет осуществить беспроводное подключение порядка 100 устройств, находящихся на расстоянии до 10 м. При этом к компьютеру, оснащенному таким адаптером, можно подключать разнотипные беспроводные устройства: мобильные телефоны, принтеры, мыши, клавиатуры и пр. Передача данных осуществляется по радиоканалу в частотном диапазоне 2,2-2,4 ГГц. Главное достоинство — устойчивая связь независимо от взаиморасположения приемника и передатчика. Если в компьютере нет встроенного модуля Bluetooth, то его можно приобрести отдельно и подключить по USB-порту.

Прочие компоненты системной платы

Системная плата, кроме перечисленных выше важнейших компонентов компьютера, содержит дополнительные микросхемы, переключатели и перемычки. Все эти устройства необходимы для обеспечения взаимодействия различных устройств компьютера, установки режимов их работы. Например, на системной плате могут быть установлены микросхемы, которые требуют различного напряжения питания. Параметры работы устройств задаются переключателями на системной плате.

В любом системном блоке находятся обязательные узлы, обеспечивающие работу компьютера, — блок питания, системные часы, аккумулятор, сигнальные индикаторы передней стороны системного блока.

Системные часы определяют скорость выполнения компьютером операций, которая связана с тактовой частотой, измеряемой в мегагерцах (1 МГц равен 1 млн тактов в секунду).

Системные часы определяют ритм работы всего компьютера, синхронизируют работу большинства компонентов его системной платы.

Платы и слоты расширения обеспечивают реализацию так называемого принципа открытой архитектуры построения современного персонального компьютера. Слотом называется разъем, куда вставляется плата. Наличие слотов расширения на системной плате позволяет рассматривать персональный компьютер как устройство, которое можно модифицировать. Расширение возможностей компьютера осуществляется путем установки в слоте платы расширения. К разъему этой платы с помощью кабеля присоединяется некоторое устройство, расположенное вне системного блока.

Вместо термина «плата расширения» часто используют названия «карта», «адаптер». К наиболее распространенным платам расширения относятся видеокарты, звуковые карты и внутренние модемы.

Представление об открытой архитектуре компьютера

Технология производства компьютеров быстро развивается, что обеспечивает непрерывный рост их производительности, объема памяти и как результат — возможностей решать все более сложные задачи. Стремительно совершенствуются одни устройства, создаются другие, принципиально новые. При столь бурном развитии технологии необходимо предусмотреть такой принцип построения компьютера, который позволял бы использовать уже имеющиеся в нем устройства (блоки), а также без изменения конструкции заменять их на новые, более совершенные. Как города строятся по законам архитектуры, так и устройство компьютера должно развиваться по определенным законам. Главный принцип построения современного персонального компьютера — это принцип открытой архитектуры: каждый новый блок должен быть программно и аппаратно совместим с ранее созданными. Это означает, что современный персональный компьютер упрощенно можно представить как знакомый всем детский конструктор из кубиков. В компьютере столь же легко можно заменять старые кубики (блоки) на новые, где бы они ни располагались, в результате чего работа компьютера не только не нарушается, но становится более производительной. Именно принцип открытой архитектуры позволяет не выбрасывать, а модернизировать ранее купленный компьютер, легко заменяя в нем устаревшие блоки на более совершенные и удобные, а также приобретать и устанавливать новые блоки и узлы. При этом места для их установки (разъемы) во всех компьютерах являются стандартными и не требуют никаких изменений в самой конструкции компьютера.

Принцип открытой архитектуры — правила построения компьютера, в соответствии с которыми каждый новый узел (блок) должен быть совместим со старым и легко устанавливаться в том же месте в компьютере.

Контрольные вопросы

1. Какие основные блоки образуют структуру компьютера и как они связаны с этапами обработки информации?

2. Какова роль процессора персонального компьютера в обработке информации?

3. Что такое принцип программного управления?

4. Каковы назначение и основные компоненты системного блока?

5. Какие виды корпусов системного блока вам известны?

6. Для чего нужна системная плата?

7. Каково назначение системной шины в персональном компьютере?

8. В чем состоит аналогия между системной шиной и транспортными магистралями?

9. Какие вы знаете характеристики системной шины?

10. Что такое порт компьютера? Какие виды портов бывают и в чем их различие?

11. Зачем нужны платы расширения?

12. Для чего необходимо иметь слоты расширения?

13. В чем состоит принцип открытой архитектуры?

14. Что вам известно из художественной литературы, научно-популярных изданий, из телевизионных передач и кинофильмов о возможностях и использовании компьютеров будущего?

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector