Поколения компьютеров — история развития вычислительной техники
В короткой истории компьютерной техники выделяют несколько периодов на основе того, какие основные элементы использовались для изготовления компьютера. Временное деление на периоды в определенной степени условно, т.к. когда еще выпускались компьютеры старого поколения, новое поколение начинало набирать обороты.
Можно выделить общие тенденции развития компьютеров:
- Увеличение количества элементов на единицу площади.
- Уменьшение размеров.
- Увеличение скорости работы.
- Снижение стоимости.
- Развитие программных средств, с одной стороны, и упрощение, стандартизация аппаратных – с другой.
Поколения ЭВМ
Можно выделить (5) основных поколений ЭВМ . Но деление компьютерной техники на поколения — весьма условная.
1. Элементная база: электронно-вакуумные лампы.
2. Соединение элементов: навесной монтаж проводами.
3. Габариты: ЭВМ выполнена в виде громадных шкафов.
Эти компьютеры были огромными, неудобными и слишком дорогими машинами, которые могли приобрести крупные корпорации и правительства.
Лампы потребляли большое количество электроэнергии и выделяли много тепла.
4. Быстродействие: (10-20) тыс. операций в секунду.
5. Эксплуатация: сложная из-за частого выхода из строя электронно-вакуумных ламп.
6. Программирование: машинные коды. При этом надо знать все команды машины, двоичное представление, архитектуру ЭВМ. В основном были заняты математики-программисты. Обслуживание ЭВМ требовало от персонала высокого профессионализма.
7. Оперативная память: до (2) Кбайт.
8. Данные вводились и выводились с помощью перфокарт, перфолент.
В (1948) году Джон Бардин, Уильям Шокли, Уолтер Браттейн изобрели транзистор, за изобретение транзистора они получили Нобелевскую премию в (1956) г.
В (1958) году создана машина М-20 , выполнявшая (20) тыс. операций в секунду — самая мощная ЭВМ (50-х) годов в Европе.
1. Элементная база: полупроводниковые элементы (транзисторы, диоды).
2. Соединение элементов: печатные платы и навесной монтаж.
3. Габариты: ЭВМ выполнена в виде однотипных стоек, чуть выше человеческого роста, но для размещения требовался специальный машинный зал.
4. Быстродействие: (100-500) тыс. операций в секунду.
5. Эксплуатация: вычислительные центры со специальным штатом обслуживающего персонала, появилась новая специальность — оператор ЭВМ .
6. Программирование: на алгоритмических языках, появление первых операционных систем .
7. Оперативная память: (2-32) Кбайт.
8. Введён принцип разделения времени — совмещение во времени работы разных устройств.
Уже начиная со второго поколения, машины стали делиться на большие, средние и малые по признакам размеров, стоимости, вычислительных возможностей.
Так, небольшие отечественные машины второго поколения (« Наири », « Раздан », « Мир » и др.) были в конце (60)-х годов вполне доступны каждому вузу, в то время как упомянутая выше БЭСМ-6 имела профессиональные показатели (и стоимость) на (2-3) порядка выше.
В (1958) году Джек Килби и Роберт Нойс , независимо друг от друга, изобретают интегральную схему (ИС).
В (1965) году начат выпуск семейства машин третьего поколения IBM-360 (США). Модели имели единую систему команд и отличались друг от друга объёмом оперативной памяти и производительностью.
В (1967) году начат выпуск БЭСМ — 6 ((1) млн. операций в (1) с) и « Эльбрус » ((10) млн. операций в (1) с).
В (1968) году сотрудник Стэндфордского исследовательского центра Дуглас Энгельбарт продемонстрировал работу первой мыши.
В (1969) году фирма IBM разделила понятия аппаратных средств (hardware) и программные средства (software). Фирма начала продавать программное обеспечение отдельно от железа, положив начало индустрии программного обеспечения.
(29) октября (1969) года проходит проверка работы самой первой глобальной военной компьютерной сети ARPANet , связывающей исследовательские лаборатории на территории США.
В (1971) году создан первый микропроцессор фирмой Intel . На (1) кристалле сформировали (2250) транзисторов.
1. Элементная база: интегральные схемы.
2. Соединение элементов: печатные платы.
3. Габариты: ЭВМ выполнена в виде однотипных стоек.
4. Быстродействие: (1-10) млн. операций в секунду.
5. Эксплуатация: вычислительные центры, дисплейные классы, новая специальность — системный программист .
6. Программирование: алгоритмические языки, операционные системы.
7. Оперативная память: (64) Кбайт.
При продвижении от первого к третьему поколению радикально изменились возможности программирования. Написание программ в машинном коде для машин первого поколения (и чуть более простое на Ассемблере) для большей части машин второго поколения является занятием, с которым подавляющее большинство современных программистов знакомятся при обучении в вузе.
Появление процедурных языков высокого уровня и трансляторов с них было первым шагом на пути радикального расширения круга программистов. Научные работники и инженеры сами стали писать программы для решения своих задач.
Уже в третьем поколении появились крупные унифицированные серии ЭВМ. Для больших и средних машин в США это прежде всего семейство IBM 360/370 . В СССР (70)-е и (80)-е годы были временем создания унифицированных серии: ЕС (единая система) ЭВМ (крупные и средние машины), СМ (система малых) ЭВМ и « Электроника » ( серия микро-ЭВМ).
В их основу были положены американские прототипы фирм IBM и DEC (Digital Equipment Corporation). Были созданы и выпущены десятки моделей ЭВМ, различающиеся назначением и производительностью. Их выпуск был практически прекращен в начале (90)-х годов.
Стив Джобс и Стив Возняк организовали предприятие по изготовлению персональных компьютеров « Apple », предназначенных для большого круга непрофессиональных пользователей. Продавался (Apple 1) по весьма интересной цене — (666,66) доллара. За десять месяцев удалось реализовать около двухсот комплектов.
В (1982) году фирма IBM приступила к выпуску компьютеров IBM РС с процессором Intel 8088 , в котором были заложены принципы открытой архитектуры, благодаря которому каждый компьютер может собираться как из кубиков, с учётом имеющихся средств и с возможностью последующих замен блоков и добавления новых.
1. Элементная база: большие интегральные схемы (БИС).
2. Соединение элементов: печатные платы.
3. Габариты: компактные ЭВМ, ноутбуки.
4. Быстродействие: (10-100) млн. операций в секунду.
5. Эксплуатация: многопроцессорные и многомашинные комплексы, любые пользователи ЭВМ.
6. Программирование: базы и банки данных.
7. Оперативная память: (2-5) Мбайт.
8. Телекоммуникационная обработка данных, объединение в компьютерные сети.
Элементной базой являются сверхбольшие интегральные схемы (СБИС) с использованием оптоэлектронных принципов (лазеры, голография).
Поколения ЭВМ и их основные характеристики
Пятое поколение зародилось в недрах нынешнего четвертого и в значительной мере его черты определяются результатами работы японского Комитета научных исследований в области ЭВМ пятого поколения, опубликованными в 1981 г. Отчет Комитета имел огромный резонанс в научном мире, несмотря на национальный характер. Авторы поставили целью наметить план информатизации, направленный на содействие решению актуальнейших проблем японского общества. Ввиду высокого уровня развития Японии он несомненно представляет интерес для остального мира и оказывает большое влияние на развитие компьютерной информатики во всех развитых странах. Согласно этому проекту ЭВМ и вычислительные системы пятого поколения помимо более высокой производительности и надежности при более низкой стоимости, вполне обеспечиваемые СБИС и другими новейшими технологиями, должны удовлетворять следующим качественно новым функциональным требованиям:
Обеспечивать простоту применения ЭВМ путем реализации эффективных систем ввода/вывода информации голосом и изобразительной; диалоговой обработки информации с использованием естественных языков; возможности обучаемости, ассоциативных построений и логических выводов (интеллектуализация ЭВМ);
Упростить процесс создания программных средств путем автоматизации синтеза программ по спецификациям исходных требований на естественных языках; усовершенствовать вспомогательные инструментальные средства и интерфейс разработчиков с вычислительными средствами;
Улучшить основные характеристики и эксплуатационные качества ВТ для удовлетворения различных социальных задач; улучшить соотношения затрат и результатов, быстродействия, легкости и компактности ЭВМ; обеспечить их разнообразие, высокую адаптируемость к приложениям и надежность в эксплуатации.
Специалисты оценивают данный проект как чрезвычайно трудный, но в целом ряде ведущих научно-исследовательских и проектно-конструкторских центров уже ряд лет ведутся интенсивные проработки в этом направлении. Среди разработок в рамках данного проекта можно отметить следующиеосновные направления: разработка высокопроизводительных средств параллельной обработки информации, устройства перевода с японского языка на английский посредством голоса, параллельную ЭВМ логического вывода, информационно-вычислительную сеть на 10 000 автоматизированных рабочих мест, процессоры баз данных и знаний. По ряду этих направлений достигнут существенный прогресс. Большое внимание уделяется созданию компьютерных систем распознавания образов и искусственного зрения, созданию интеллектуальных роботов и др. Особое внимание уделяется проблеме обеспечения надежности ВТ, включая самотестирование и использование элементов искусственного интеллекта для диагностики сбоев. Разрабатываются и уже частично реализованы проекты глобальных информационно-вычислительных сетей, уже меняющих общественную идеологию. Детальный анализ показывает, что целый ряд проектов в рамках создания пятогопоколения имеет хорошую теоретическую проработку и технически осуществимы в самое ближайшее время.
Предполагается, что ПК в рамках ЭВМ пятого поколения будут по основным параметрам соответствовать современным большим и супер-ЭВМ, а характеристики последних трудно поддаются оценке. Для разработки элементной базы и логических архитектур таких ЭВМ потребуются мощные системы автоматизации проектирования. Учитывая сложность реализации поставленных перед пятым поколением задач, вполне возможно разбиение его на более обозримые и лучше ощущаемые этапы, первый из которых во многом уже реализован в рамках настоящего четвертого поколения.
Вопрос 7
Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой.
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).
© cyberpedia.su 2017-2020 — Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!
Сравнительная таблица Поколения ЭВМ ( годы, основные элементы, размеры, быстродействие, носители)
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
ЭВМ пятого поколения
Конец 90-х превратился в настоящую гонку конкурирующих титанов — производителей компьютерной техники. Стремительно повышается тактовая частота процессоров и их модификации. Возрастающая скорость работы процессоров стимулировала совершенствование других узлов и периферийных устройств компьютерного «железа. Некоторые специалисты считают, что в 90-х годах ХХ века появился компьютер V поколения, представляющий собой: ЭВМ на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных команд программы, что позволяет строить эффективные системы обработки знаний.
5-е поколение, 90-е гг.: ЭВМ с многими десятками параллельно работающих микропроцессоров, позволяющих строить;
Примерная характеристика компьютеров пятого поколения:
ЭВМ на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных команд программы; многоядерность
Появление карманных компьютеров
Максимальное быстродействие процессора
Максимальный объем ОЗУ
от 2000Mb и выше
Картридер, flash- память, геймпады, многофункциональные устройства
Развитие существующих пакетов прикладного, сетевого, мультимедиа и пр. программного обеспечения
Расширение сферы научной, производственной и учебной _деятельности, отдых и развлечение, Интернет
Четыре поколения развития ЭВМ
К концу тридцатых годов XX столетия потребность в автоматизации сложных вычислительных процессов сильно возросла. Этому способствовало бурное развитие таких отраслей, как самолетостроение, атомная физика и других. С 1945 года по наши дни вычислительная техника прошла 4 поколения в своём развитии:
- 1. Первое поколение: 1916-1959
- 2. Второе поколение:1960-1960
- 3. Третье поколение:1970-1979
- 4. Четвёртое поколение: с 1980
Первое поколение (1945-1954) — компьютеры на электронных лампах. Это доисторические времена, эпоха становления вычислительной техники. Большинство машин первого поколения были экспериментальными устройствами и строились с целью проверки тех или иных теоретических положений. Вес и размеры этих компьютерных динозавров, которые нередко требовали для себя отдельных зданий, давно стали легендой.
Начиная с 1943 года, группа специалистов под руководством Говарда Айткена, Дж. Моучли и П. Эккерта в США начала конструировать вычислительную машину на основе электронных ламп, а не на электромагнитных реле. Эта машина была названа ENIAC (Electronic Numeral Integrator And Computer) и работала она в тысячу раз быстрее, чем «Марк-1». ENIAC содержал 18 тысяч вакуумных ламп, занимал площадь 9х15 метров, весил 30 тонн и потреблял мощность 150 киловатт. ENIAC имел и существенный недостаток — управление им осуществлялось с помощью коммутационной панели, у него отсутствовала память, и для того чтобы задать программу приходилось в течение нескольких часов или даже дней подсоединять нужным образом провода. Худшим из всех недостатков была ужасающая ненадежность компьютера, так как за день работы успевало выйти из строя около десятка вакуумных ламп.
Во втором поколении компьютеров (1955-1964) вместо электронных ламп использовались транзисторы, а в качестве устройств памяти стали применяться магнитные сердечники и магнитные барабаны — далекие предки современных жестких дисков. Все это позволило резко уменьшить габариты и стоимость компьютеров, которые тогда впервые стали строиться на продажу.
Но главные достижения этой эпохи принадлежат к области программ. На втором поколении компьютеров впервые появилось то, что сегодня называется операционной системой. Тогда же были разработаны первые языки высокого уровня — Фортран, Алгол, Кобол. Эти два важных усовершенствования позволили значительно упростить и ускорить написание программ для компьютеров; программирование, оставаясь наукой, приобретает черты ремесла.
Соответственно расширялась и сфера применения компьютеров. Теперь уже не только ученые могли рассчитывать на доступ к вычислительной технике; компьютеры нашли применение в планировании и управлении, а некоторые крупные фирмы даже компьютеризировали свою бухгалтерию, предвосхищая моду на двадцать лет.
Элементной базой второго поколения стали полупроводники. Без сомнения, транзисторы можно считать одним из наиболее впечатляющих чудес XX века.
Патент на открытие транзистора был выдан в 1948 году американцам Д.Бардину и У.Браттейну, а через восемь лет они вместе с теоретиком В. Шокли стали лауреатами Нобелевской премии. Скорости переключения уже первых транзисторных элементов оказались в сотни раз выше, чем ламповых, надежность и экономичность — тоже. Впервые стала широко применяться память на ферритовых сердечниках и тонких магнитных пленках, были опробованы индуктивные элементы — параметроны.
В третьем поколении ЭВМ (1965-1974) впервые стали использоваться интегральные схемы — целые устройства и узлы из десятков и сотен транзисторов, выполненные на одном кристалле полупроводника (то, что сейчас называют микросхемами). В это же время появляется полупроводниковая память, которая и по всей день используется в персональных компьютерах в качестве оперативной. Приоритет в изобретении интегральных схем, ставших элементной базой ЭВМ третьего поколения, принадлежит американским ученым Д. Килби и Р.Нойсу, сделавшим это открытие независимо друг от друга. Массовый выпуск интегральных схем начался в 1962 году, а в 1964 начал быстро осуществляться переход от дискретных элементов к интегральным. Упоминавшийся выше ЭНИАК, размерами 9х15 метров, в 1971 году мог бы быть собран на пластине в 1,5 квадратных сантиметра. Началось перевоплощение электроники в микроэлектронику.