Трилогия охлаждения. Вентиляторы. Давление, расход.
Эта работа была прислана на наш «бессрочный» конкурс статей и является второй из трёх задуманных. Первая – Гибкий туннель для синхронных вентиляторов. За эту работу автор получил приз – медный кулер под Socket A.
Известно, что эффективность охлаждения зависит от многих факторов. В их числе и такго, как расход охлаждающего вещества, – воздух, вода и д.р. Чем больше его пройдёт через охлаждаемое тело, тем оно больше унесёт тепла. Продвинутые пользователи это не только знают, но и всевозможными методами стремятся поток увеличить. Именно по этому пункту возникает больше всего вопросов и недоразумений, – то получается недостаточно хорошее охлаждение, то много шума. Точнее, вопрос поставлен так: можно ли применять в охлаждении большие вентиляторы (насосы) взамен маленьких и чего от этого ждать? Об этом и пойдёт речь. Для того чтобы ответить, кроме теоретических обоснований, потребовался и ряд практических опытов.
ТЕОРИЯ, кратко.
Распиновка проводов кулера 4 pin
Здесь скорость вращения можно не только считывать, но и изменять. Это делается при помощи импульса от материнской платы. Он способен в режиме реального времени возвращать информацию на тахогенератор (3-х штырьковый на это неспособен, так как датчик и контроллер сидят на одной ветке питания).
Конструкция процессорного охладителя
Рассмотрим на классическом примере — системе охлаждения центрального процессора. Такой охладитель состоит из радиатора, который отбирает лишнее тепло у ЦП и вентилятора, затем выдувает теплый воздух подальше.
Радиатор — деталь сложной формы с обилием ребер. Это сделано для увеличения контактной поверхности — чем больше ее площадь, тем больше тепла отдаст радиатор. Изготовляют их обычно из материала, который хорошо проводит тепло — алюминия, реже меди.
Между контактной пластиной CPU и радиатором намазывается тонкий слой термопасты — специального теплопроводящего состава. При его отсутствии радиатор не сможет забрать необходимое количество тепла и ЦП будет перегреваться.
AMD и Intel, основные конкуренты в производстве компьютерных процессоров, используют разные конструкции процессорных охладителей. Принципиальное отличие между ними в способе крепления. У Интел это 4 поворотных зажима, которые вставляются в соответствующие прорези на системной плате и фиксируют радиатор по углам.
У АМД это специальная рамка фиксатор, которая двумя концами цепляется за специальные крючки. Также сторонними независимыми производителями выпускаются универсальные кулера, рассчитанные на использование с процессором любого бренда. У них комбинированное крепление — присутствуют зажимы обоих видов.
Подключение кулера
Для подключения кулера к материнской плате используется расположенный на ней специальный разъем. Через этот разъем поступает питание, вращающее вентилятор. Кроме того, разъем может иметь одну или две вспомогательные линии данных. Разъем для кулера, в зависимости от типа материнской платы, может иметь 2, 3 или 4 контакта.
Кратко остановимся на особенностях, которыми обладает каждый разъем. Двухконтактный разъем поддерживает лишь линии питания, которым соответствуют черный и красный провод в кабеле вентилятора. Трехконтактный разъем означает, что присутствует еще одна дополнительной линия управления, предназначенная для контроля скорости вращения кулера. Четырехконтактный разъем поддерживает еще одну линию – линию управления скоростью вращения вентилятора методом PWM. Как правило, современные материнские платы имеют именно четырехконтактный разъем, хотя в него можно включать и вентиляторы, имеющие кабели с меньшим количеством проводов.
Устанавливается кулер, точнее говоря, радиатор кулера на верхнюю крышку процессора. Обычно между радиатором и процессором пролегает слой специальной проводящей пасты – так называемой термопасты. Предназначение термопасты – обеспечить плотное прилегание основания радиатора к поверхности процессора и предотвратить появление воздушных полостей между этими устройствами. Сверху, а иногда и сбоку от радиатора устанавливается вентилятор. Для крепления кулера к материнской плате используются специальные защелки и зажимы, а во многих случаях – винты.
Устройство кулера 4-pin
Самый модерновый вариант. Здесь скорость вращения можно не только считывать, но и изменять. Это делается при помощи импульса от материнской платы. Теоретически регулироваться могут все кулеры, но этот представитель способен в режиме реального времени возвращать информацию на тахогенератор (3-х штырьковый на это уже физически неспособен, так как датчик и контроллер сидят на одной ветке питания). Если вы пустите сигнал на датчик и тахо, они просто уйдут в параллель и процесс регулировки и считывания будет некорректным. Так что только 4 штырька под «отдельно стоящие» сигналы:
Распиновка коннекторов кулеров также может различаться:
Управляемый скоростью сигнал от материнской платы обычно 5 В имеет пульсирующий характер; иначе он садится на корпус.
Что в компьютере греется, и как оно охлаждается
Ну что же, имея представление о кулерах, давайте теперь составим картину, что же греется в компьютерах, и как это нужно (если нужно) охлаждать. Начнём мы с самого основного элемента любого ПК — центрального процессора. Сегодня охлаждению процессоров уделяется особое внимание, и поэтому каждый производитель кулеров для PC обязательно имеет в своём ассортименте и охладители для CPU.
Если не рассматривать серверные и переносные компьютеры (в том числе и ноутбуки), то сегодня в персональных компьютерах используются процессоры двух компаний-производителей: Intel и AMD. Они используют три основные платформы: Socket 370, Socket 478 и Socket 462 (Socket A). Цифры в обозначении платформы показывают число контактов каждого процессора. Естественно, между собой все эти стандарты не совместимы, и Pentium III под Socket 370 не установишь в материнскую плату с каким-нибудь другим гнездом. До недавнего времени был распространён ещё и стандарт Socket 423 под первые Pentium 4, но с приходом более современного Socket 478, он почти исчез и сейчас успешно забывается. Для каждого типа процессоров существуют свои стандарты кулеров.
В Socket 370 используют процессоры Intel Pentium III, Intel Celeron (кроме новых под Socket 478) и VIA C3. Процессоры же производства AMD (Duron, Athlon на ядре Thunderbird, Palomino и Thoroughbred) используют разъём Socket A. Кулеры для Socket 370 и Socket A почти совместимы друг с другом. Точнее, можно сказать, что они и полностью совместимы, но это не означает, что Вы сможете установить кулер под Athlon на Pentium III. Дело в том, что хотя гнезда Socket 370 и Socket A имеют одинаковые размеры, всё же стандарты, по которым AMD рекомендует строить материнские платы, отличаются от Intel-овских. Прежде всего, посмотрите на фотографию. Гнездо Socket A имеет по три зубчика спереди и сзади для крепления кулера. Изначально подразумевалось, что на процессоры Athlon будут ставиться более мощные охладители, которые потребуют более жёсткое крепление, и один зубчик может сломаться под пружиной кулера. Кроме того, AMD рекомендовала производителям материнских плат оставлять так называемую свободную зону слева и справа от гнезда. В этой зоне не должно быть никаких элементов, которые бы могли помешать установке прямоугольных кулеров длиной более 55 мм (ширина гнезда). Таким образом, на процессоры Athlon и Duron можно устанавливать кулеры размером 60×80мм и высотой насколько позволяет Ваш корпус. На Pentium III, конечно же, такие большие охладители вряд ли станут, но это опять же зависит от материнской платы.
Кроме того, многие материнские платы под Athlon/Duron имеют вокруг гнезда четыре отверстия. Это ещё один способ крепления кулера — не к гнезду, а к материнской плате. С одной стороны, он более удобный, поскольку кулер уже не отвалится, отломав зубчик, а с другой стороны — для его замены или апгрейда процессора придётся снимать материнскую плату. Хорошо это или плохо, но недавно AMD перестала требовать наличия четырёх отверстий в свободной зоне возле гнезда процессора, и все будущие кулеры будут крепиться только к нему, а не к материнской плате.
Процессоры Athlon выделяют до 73 Вт тепла в неразогнанном состоянии. Для мощных серверов такое тепловыделение процессора — обычное дело, а вот для настольных компьютеров это очень много, а к тому же площадь ядра процессора постоянно уменьшается, поэтому охладители для современных процессоров активно используют медь в своих радиаторах. И в продаже Вы сможете увидеть кулеры не только с алюминиевыми радиаторами, но и с медным основанием, или полностью медные. Некоторые производители, пытаясь увеличить эффективность кулеров, покрывают сверху медь ещё и никелем, серебром или другими материалами с высокой теплопроводностью. Вентиляторы на таких кулерах чаще всего имеют размер 60x60x25 мм, хотя сейчас большое распространение получают 70мм и 80мм модели. Они имеют меньшую скорость вращения и работают намного тише.
Процессор | Тепловыделение, Вт |
---|---|
AMD Duron 1100 | 51 |
AMD Duron 1200 | 55 |
AMD Duron 1300 | 57 |
AMD Athlon Thunderbird 1400 | 73 |
AMD AthlonXP (Palomino) 2100+ | 72 |
AMD AthlonXP (Thoroughbred) 2600+ | 68.3 |
В случае с охладителями для Socket 370 всё намного проще: все они цепляются за два зубчика гнезда и имеют размеры, не превышающие размеров гнезда. Обычно от 50×50 до 60×60 мм. Тепловыделение процессоров Pentium III примерно в два раза меньше, чем у Athlon, поэтому охлаждать их проще, и на Pentium III чаще всего используются кулеры с полностью алюминиевыми радиаторами или с медным основанием. Они стоят дешевле полностью медных, в которых к тому же и нет необходимости.
Если продолжать разговор про Socket 370 и вспомнить про процессоры VIA C3, то можно и вовсе забыть про кулеры. Дело в том, что VIA C3 имеют репутацию «холодных» процессоров, потому что они выделяют слишком мало тепла и могут работать и с пассивными охладителями — обычными радиаторами, или совсем простенькими кулерами. Для них тепловыделение не проблема, и поэтому компьютеры на их базе работают очень тихо.
Сегодня выгоднее выпускать кулеры для процессоров Intel Pentium 4 и Celeron под Socket478. Дело в том, что рынок охладителей под Athlon уже достаточно насыщен, а к тому же цена на компьютеры с процессорами AMD невысоки, и не каждый пользователь готов дорого заплатить за хороший кулер. С Pentium 4 ситуация совсем другая, так как они стоят намного дороже конкурентов от AMD, и на рынок высокопроизводительных процессоров можно продавать кулеры стоимостью несколько десятков долларов.
В компьютерах с процессорами Pentium 4 и Celeron под Socket 478 кулер крепится к специальной стойке на материнской плате. Есть мнение, что процессоры Pentium 4 вообще не перегреваются. Оно в корне неверно, и первые Pentium 4 действительно грелись слабее своих товарищей Athlon, но сейчас энергопотребление Pentium 4 с частотой 2.8 ГГц находится в районе 64 Вт, а Pentium 4 3.0 ГГц обещает требовать до 80 Вт. Конечно, современные технологические процессы и конструкция Pentium 4 со встроенным распределителем тепла помогают ему лучше бороться с выделяемым теплом, но он также, как и Athlon требует большой кулер. Правда, коробочные варианты процессоров уже поставляются с кулерами, но при необходимости в магазинах можно найти широкий ассортимент охладителей для Pentium 4.
Кулеры под Socket 478 имеют, в основном, один вид крепления: двумя стальными скобами они цепляются за пластиковые упоры материнской платы и крепко прижимаются к поверхности процессора. Иногда от слишком сильных пружин кулера материнская плата слегка изгибается, но по большому счёту это не страшно. Для компьютеров, использующих Pentium 4 в низких или серверных корпусах, существуют кулеры, крепящиеся к материнской плате без использования стоек вокруг процессора.
Так же, как и в случае с некоторыми охладителями под Athlon, в них крепление проходит сквозь отверстия в материнской плате (для этого с неё придётся снять стандартные держатели для кулера) и фиксируется сверху на процессоре. В этом случае на плату подаётся куда меньшая физическая нагрузка. К сожалению, такие кулеры мало распространены.
Под Pentium 4 выпускаются кулеры с различными радиаторами. Здесь есть как чисто алюминиевые, так и с медными основаниями, или полностью медные. Вентиляторы для таких кулеров обычно ставятся тихие, потому что их низкая производительность компенсируется большими размерами радиаторов. Хотя, громкие модели тоже нередкое явление среди охладителей для Socket 478.
Виды подшипников, используемых в компьютерных вентиляторах
Одним из самых важных параметров, на который следует обращать внимание при выборе вентилятора для компьютера, это вид используемых в нем подшипников.
Существует несколько видов подшипников, на основе которых создаются компьютерные вентиляторы. Именно они влияют на такие важные параметры для нас, как надежность, время наработки на отказ и создаваемый вентилятором шум.
Приведенные ниже виды подшипников на сегодняшний день являются самыми распространенными при производстве компьютерных вентиляторов.
Так же существуют более редкие и дорогие варианты подшипников, о которых я расскажу ниже.
Подшипник скольжения очень прост в изготовлении и от этого самый дешевый из всех видов. Для придания стабильности крыльчатке во время ее вращения, используется металлический или (в более продвинутых версиях) керамический цилиндр, с отверстием посередине. Именно в это отверстие вставляется стальная ось, к которой крепиться крыльчатка.
Из-за такого простого и дешевого технического решения, вытекают все недостатки данного вида подшипников.
Когда вентилятор только приобретен и установлен, он будет Вас радовать тишиной во время своей работы, но как только смазка начнет высыхать (а происходит это приблизительно через год, в зависимости от условий эксплуатации), то появиться неприятный шум.
Он возникает из-за сопротивления, которое появляется при трении оси крыльчатки, об высохшую и загрязненную смазку, внутри подшипника.
Дальнейшая длительная работа вентилятора без смазки, приведет к появлению еще большего шума, началу истирания самого подшипника, разбалансировке, и в конечном итоге приведет к полной невозможности восстановления работоспособности вентилятора, что потребует его замены.
Работоспособность подшипника скольжения сильно зависит от окружающей температуры, чем она ваше, тем быстрее будет высыхать смазка, и тем чаще придется чистить и смазывать сам вентилятор, либо менять его на новый.
Так же, одним из недостатков вентиляторов с подшипниками скольжения, является их низкая эффективность при работе в горизонтальном положении. При таком расположении вентилятора, смазка, находящаяся внутри подшипника, стекает на одну сторону, что приводит к ее неравномерному распределению и более быстрому выходу из строя вентилятора.
Из всего сказанного, можно сделать вывод, что вентиляторы с подшипниками скольжения, особенно качественные модели, можно эффективно применять в охлаждении компьютеров, которым не требуется сильный отвод тепла и время работы которых не превышает 8-10 часов в сутки (офисные или домашние маломощные компьютеры).
Не рекомендуется использовать вентиляторы, построенные на основе подшипников скольжения в серверах, мощных игровых и портативных компьютерах, в системах охлаждения видеокарт.
При всех своих недостатках, такие вентиляторы наименее дороги, а если за ними следить, в нужное время смазывать и чистить от пыли, то и они смогут проработать долго, не беспокоя Вас лишним шумом.
Теперь перейдем к более качественным и дорогим моделям вентиляторов построенных на основе двух шарикоподшипников ⇒
Шарикоподшипник представляет собой металлический корпус в виде кольца и внутренней втулки с заключенными между ними шариками. Подшипник качения является не разборным, поэтому смазка находящаяся внутри него не вытекает. Это значительно продлевает срок службы вентилятора, а его характеристики ухудшаются очень незначительно, в течение всего времени эксплуатации.
Так же, подшипник качения, менее подвержен влиянию высоких температур, по сравнению с подшипником скольжения, и пригоден для охлаждения компьютеров с сильным выделением тепла.
Уровень акустического шума, издаваемый современными вентиляторами, оснащенными шарикоподшипниками не громче, чем у новых вентиляторов на подшипниках скольжения, и в течение всего времени использования он практически не изменяется, в отличие от соперника.
Вы скорее услышите шум, от трения входящего или выходящего с большой скоростью воздуха, об вентиляционные отверстия Вашего корпуса, чем шум работы подшипников качения.
Вентилятор на подшипниках качения позволяет создавать на его основе значительно более продуманные и эффективные варианты охлаждения компьютерных систем, из-за возможности располагать их в любом удобном положении, не боясь ухудшения характеристик вентилятора или уменьшения срока его службы.
Так как подшипник качения технологически более сложен в изготовлении, чем подшипник скольжения, то соответственно он более дорог и изделия на его основе имеют высокую цену. А если учесть, что в качественном вентиляторе установлено два подшипника качения, то цена вырастает еще больше.
На данный момент, выбор вентилятора на подшипниках качения представляется мне самым оптимальным вариантом. Производителей много, качество продукции высокое, а цены, ввиду высокой конкуренции, находятся на приемлемом уровне. Рекомендуется устанавливать во все существующие компьютеры.
Приобретение данных вентиляторов, избавит Вас от множества проблем, связанных с их обслуживанием, так как их время наработки на отказ, примерно, составляет жизненный цикл современного компьютера, и вентиляторы на шарикоподшипниках вы будете менять вместе со всем содержимым вашего ПК .
Для производства одного вентилятора, могут использоваться комбинации различных видов подшипников. Например, достаточно распространенным вариантом является вентилятор, в котором установлены один подшипник скольжения и один подшипник качения.
Это решение не устраняет существующие недостатки вентиляторов, но позволяет производителям сэкономить и занять нужную им ценовую нишу, между дорогими и дешевыми моделями вентиляторов, а нам с вами получить хороший продукт по приемлемой цене.
Керамический подшипник качения (Ceramic Bearings)
Подшипник качения, при производстве которого применены керамические материалы. Эксплуатационные свойства керамики, для производства подшипников, превосходят свойства металла. Заявленный ресурс работы больше обычных в два раза.
Керамический подшипник качения позволяет использовать вентиляторы, построенные на их основе при таких температурах, в которых неспособны долго работать другие типы подшипников.
На сегодняшний день, это самые долговечные подшипники, применяемые в вентиляторах, но вместе с тем и самые дорогие.
Гидродинамический подшипник (Fluid Dynamic Bearings)
Технологически усовершенствованный подшипник скольжения, в котором вращение вала крыльчатки происходит в слое специальной смазки, постоянно находящейся внутри втулки, за счёт создающейся при работе разницы давлений.
Уровень шума у гидродинамического подшипника, считается самым низким.
Наработка на отказ выше, чем у подшипников скольжения почти в два раза, но ниже, чем у подшипников качения. Вентиляторы на этом типе подшипников дороги и очень редки, ввиду сложности изготовления. Выпускаются только небольшой группой производителей.
Подшипник скольжения c винтовой нарезкой (Rifle bearing)
Подшипник скольжения со специальными нарезами на внутренней стороне втулки и вдоль оси крепления крыльчатки, по которым осуществляется равномерное распределение смазки. По уровню издаваемого шума и времени работы примерно соответствует характеристикам гидродинамического подшипника.
Из чего собрать «тихий» ПК
- Ultra-tower;
- Full-tower.
Система охлаждения ЦП:
- максимальное количество.
- от 120 мм и выше.
- магнитное центрирование;
- гидродинамический подшипник.
- коэффициент теплопроводности > 8 Вт/(м*К).
Что еще сделать :
- кабель-менеджмент;
- регулярно чистить пылевые фильтры;
- провести «тонкую» настройку вентилятора с помощью регулятора оборотов.
Мы определили источник шума и как его убрать. Узнали, какие бывают подшипники, где расположить и как смонтировать вентиляторы. Научились рассчитывать воздушный поток и создавать нужное давление в корпусе. Этого вполне достаточно, чтобы собрать малошумный компьютер с эффективной системой охлаждения.