Водяная система охлаждения процессора и как она работает

Жидкостное охлаждение для компьютеров

В конце позапрошлого века появились первые автомобили, послужившие вехой технического прогресса и мобилизации человечества. Их двигатели сначала были примитивны, маломощны, шумны и работали на воздушном охлаждении. Но вот не проходит и десяти лет, и вместе с ростом мощности и более сбалансированной работой двигатель внутреннего сгорания получает гораздо более эффективное жидкостное охлаждение. Этот способ охлаждения миллионов моторов является неизменным атрибутом комфортного автомобиля и по сегодняшний день.

Первые ПК не имели проблем с охлаждением своих процессоров вообще. Потом они обзавелись радиаторами. Далее – небольшими вентиляторами. Что мы имеем теперь? Сегодня стоимость средств охлаждения для процессоров из верхнего модельного ряда уже приближается к цене самих CPU из нижних моделей. Чрезвычайно возросла мощность современных кулеров, их габариты, вес, обороты двигателей и диаметр вентиляторов. Стали критичны обработка и качество материала. Если раньше возможностей кулеров хватало с запасом, то сегодня они уже с трудом справляются со своими задачами. Увеличивать мощность вентиляции становится все сложнее, так как размеры и вес процессорных кулеров уже достигают критичных значений.
Вместе с ростом вычислительной мощности современные процессоры потребляют все больше и больше энергии. Основная ее часть выделяется в виде тепла. Этот непрерывный тепловой поток можно отбирать только через ограниченную площадь процессорного ядра. Производители стараются бороться с потреблением энергии и тепловыделением переходом на более низкие напряжения питания и технологические нормы. С уменьшением микронных норм производства потребление мощности действительно уменьшается, однако уменьшается и площадь кристалла самого ядра, что, в свою очередь, ведет к увеличению плотности теплового потока. И хоть тепла становиться меньше, но снизится ли температура внутри ядра меньшей площади – это уже под вопросом. С увеличением интеграции и уменьшением площади чипа отвод тепла с его поверхности становится все более трудной задачей. Здесь уже требуются специальные материалы и теплоносители. Неизменный рост тактовых частот предполагает неизбежное увеличение тепловыделения CPU в дальнейшем. Для процессоров с тактовыми частотами превышающими 2 ГГц рекомендуются кулеры с радиаторами из меди либо хотя бы с медной подошвой на алюминиевом радиаторе. Что будет за медью? Серебро? Напыление из золота? Или что-то еще?

Как бы не справлялся воздушный кулер с охлаждением процессора, но куда он девает тепло? Ответ ясен – выкачивает (вытягивает) его вовнутрь системного блока. Туда же сбрасывают свое тепло и кулер видиокарты, порядком греющиеся приводы жестких и оптических приводов, радиаторы чипсета и т.д. Но все эти устройства охлаждаются тем же воздухом из системного блока, который они сами и нагревают. Круг тепловой конвекции замыкается. Температура внутри корпуса компьютера стала так же актуальна, как и нагрев внутренних устройств. Результат – интенсивная принудительная вентиляция всего системного блока. Если раньше корпуса комплектовались одним посадочным местом под фронтальный вентилятор, причем производители не особо заботились о вентиляционных отверстиях напротив него, то теперь внутри стандартных корпусов предусмотрено 2-3 места под вентиляторы. Кроме того, в продаже появилась масса всевозможных «бловеров», блоков вентиляторов под слотовые и 5,25” отсеки.
Рекомендация, ставшая уже аксиомой: берите корпус большого объема, потому что в нем лучше циркуляция воздуха. Вот куда тратится пространство корпуса – на циркуляцию воздуха. Притом, что какой-либо специальной организации путей для воздуховодов в обычных корпусах нет вообще, и эффект от вентиляции зависит от комплектации конкретного компьютера, от загромождения его внутреннего пространства шлейфами и платами расширения. Процессор и другие устройства охлаждаются воздухом изнутри корпуса. Эффективность воздушного охлаждения напрямую зависит от температуры воздуха внутри системного блока. Требуется продуманная вентиляция внутреннего пространства корпуса. Но вот заставить течь потоки воздуха в нужном направлении весьма сложно, путь ему преграждают всевозможные устройства, шлейфы, внутренние закоулки. Воздух по большому счету не циркулирует по заданному пути, а перемешивается внутри корпуса.
Если корпуса с воздушным охлаждением спроектированы специально, с компактным расположением элементом и четкой организацией воздуховодов, что характерно для серверов, то и здесь очень остро стоит проблема организации и сечения воздуховодов. Вентиляторы внутренних устройств нагнетают воздух на свои радиаторы под определенным давлением. Эффективное сечение воздуховода должно быть сравнимо с площадью вентилятора. Приходится предусматривать широкие воздушные внутренние магистрали. Эти магистрали должны обеспечивать достаточную пропускную способность для отвода тепла и доступа к холодному воздуху.
В случае охлаждения системы жидкостью ситуация коренным образом меняется. Охлаждающая жидкость циркулирует в изолированном пространстве – по гибким трубкам малого диаметра. В отличие от воздушных магистралей, трубкам для жидкости можно задать практически любую конфигурацию и направление. Занимаемый ими объем гораздо меньше, чем воздушные каналы при такой же или гораздо большей эффективности.

Структура систем жидкостного охлаждения

Для многих не будет секретом, что СВО могут быть открытого (кастомные) и закрытого типа (готовые необслуживаемые решения для охлаждения конкретного типа комплектующих). И если с последними все понятно, то первая категория может быть построена по трем основным принципам:

Схема с параллельным подключением. Все узлы запитаны от одной помпы, которая гонит хладагент к радиатору с кулерами. Через решетку радиатора вода охлаждается и подходит к железу, с которых снимается тепловая энергия. Горячая жидкость возвращается в резервуар с помпой и процесс повторяется заново. Схема выглядит следующим образом.

Схема с последовательным подключением. Элементы также охлаждаются параллельно и очень эффективно, но для этого необходимо иметь мощную помпу и весьма оборотистые вертушки, которые смогли бы оперативно охлаждать хладагент в радиаторе. Схема прилагается.Есть так называемые комбинированные или двухконтурные водянки. Принцип работы основан на последовательном методе, однако каждый контур ориентирован на одну железку. Довольно дорогая схема как в плане строительства, так и по обслуживанию. Хотя владельцы топовых конфигураций в погоне за максимальной производительностью не видят в подобном решении ничего зазорного.

Сборка системы жидкостного охлаждения

У нас был выбор, собирать ли систему на жестких трубках или на шлангах (или скомбинировать оба варианта). В итоге мы выбрали более простой в реализации вариант, то есть использовали шланги.

На сайте компании Corsair есть конфигуратор, который облегчит подбор компонентов СЖО под имеющиеся комплектующие. У нас задача была противоположной, так как практически все компоненты СЖО уже были, но описать такой полезный инструмент все же стоит.

Таинство начинается с выбора корпуса:

Далее пользователь указывает материнскую плату (и опционально модель процессора) и видеокарту (и их число). В результате конфигуратор предлагает, какие компоненты Hydro X Series использовать и как их располагать.

Детали конфигурации выясняются после рада уточняющих вопросов, типа выбора цвета компонентов, количества радиаторов, выбора вентиляторов, модели помпы, типа магистрали (жесткие трубки или шланги), цвета ОЖ, контроллера, выбора дополнительных аксессуаров.

Окончательная конфигурация получает свой уникальный код, чтобы в дальнейшем пользователь мог еще поработать над ней.

Для данной конфигурации доступны для загрузки PDF-файлы. Один со списком компонентов и изображением, показывающим расположение основных компонентов в корпусе. Второй содержит более подробную схему возможного размещения компонентов СЖО и вентиляторов в выбранном корпусе. Примеры файлов доступны по ссылкам.

Разумеется, все эти схемы и списки, полученные в результате работы с конфигуратором, стоит рассматривать лишь как рекомендации, но они облегчат понимание вопроса новичкам, и даже опытные пользователи смогут их использовать в качестве отправной точки.

Для сбора кастомной СЖО мы использовали корпус Corsair Crystal Series 680X RGB. Процессор и материнская плата использовались такие же, что и при тестировании процессорных охладителей, а именно Intel Core i9-7980XE и ASRock X299 Taichi. Видеокарта — Nvidia GeForce RTX 2080 Ti. Дополнительно к трем вентиляторам с подсветкой Corsair LL120 RGB, которые входят в комплект поставки этого корпуса, мы задействовали вентиляторы Corsair QL120 RGB, подключенные к своему контроллеру (он управляет только подсветкой). Вентилятор Corsair SP120 из комплекта поставки корпуса мы не использовали.

Три вентилятора Corsair LL120 RGB подключались через разветвитель к одному каналу контроллера Corsair Lighting Node Pro. Этот контроллер также управляет только подсветкой. Водоблок видеокарты, помпа и водоблок центрального процессора подключались последовательно (в данном порядке) к второму каналу контроллера Corsair Lighting Node Pro. Регулировка скорости вращения помпы и вентиляторов, которые были подключены к разъемам для вентиляторов на материнской плате (в случае помпы — подавался только управляющий сигнал, но не питание), осуществлялась с помощью ШИМ, КЗ для которой выставлялся в программе SpeedFan. Для управления подсветкой штатных вентиляторов и компонентов СЖО применялась программа Corsair iCUE. Отметим, что на один канал контроллера Corsair Lighting Node Pro можно зарегистрировать вентиляторы только одного типа, поэтому для управления подсветкой двух вентиляторов Corsair QL120 RGB мы подключили их к своему контроллеру.

Радиатор СЖО был закреплен на передней съемной панели изнутри, а между ним передней панелью были установлены три вентилятора Corsair LL120 RGB, работающие на вдув внутрь корпуса. Один вентилятор (второй рядом уже не поместился) Corsair QL120 RGB был закреплен на съемной верхней панели и работал на выдув вверх из корпуса. Второй вентилятор Corsair QL120 RGB был установлен на задней стенке корпуса и также работал на выдув. Таким образом, в корпусе было установлено пять вентиляторов, не считая вентилятора в блоке питания. Помпа была закреплена на передней стенке корпуса в отсеке за материнской платой. Работающая система в сборе показана на видео ниже:


Составляющие элементы, инструменты и материалы для сборки СЖОК

Подберём необходимый набор для жидкостного охлаждения центрального процессора компьютера. В состав СЖОК войдут:

  • водяной блок;
  • радиатор;
  • два вентилятора;
  • помпа;
  • шланги;
  • фитинги;
  • резервуар для жидкости;
  • сама жидкость (в контур можно залить дистиллированную воду или тосол).

Все составляющие системы жидкостного охлаждения можно приобрести в интернет-магазине по соответствующему запросу.

Некоторые узлы и детали, например, водяной блок, радиатор, фитинги, резервуар, можно изготовить самостоятельно. Однако вам, вероятно, придётся заказывать токарные и фрезерные работы. В результате может получиться так, что СЖОК обойдётся дороже, чем если бы вы её приобрели готовой.

Наиболее приемлемым и наименее затратным вариантом будет приобрести основные узлы и детали, после чего самостоятельно монтировать систему. В этом случае достаточно иметь базовый набор слесарного инструмента для выполнения всех необходимых работ.

Состав системы водяного охлаждения компьютера

Любая система водяного охлаждения состоит из следующего набора компонентов:

Система водяного охлаждения компьютера

Наиболее значимый компонент системы, отвечающий за рассеивание тепла от поверхности нагревающего элемента (процессора, материнской платы, видеочипа) и отвод его посредством воды. Водоблоки могут устанавливаться для всех тепловыделяющих комплектующих системного блока компьютера. Они изготавливаются из теплопроводного материала (в частности, из меди), чтобы наиболее эффективно и быстро передавать тепло от чипа воде.

Система водяного охлаждения компьютера

Вода, набирающая тепло в теплообменнике (ватерблоке), затем передает это тепло воздуху с помощью радиатора. То есть радиатор служит для охлаждения воды. Он может работать в пассивном режиме или активном. В последнем случае дополнительно оборудуется вентилятором для того, чтобы более эффективно передавать тепло воздуху.

Система водяного охлаждения компьютера

Она отвечает за циркуляцию воды в системе. Этот электрический насос, постоянно перекачивающий воду, является сердцем системы. Помпы, используемые в СВО, могут питаться от электросети 220 В и обладать различной производительностью (литров в час).

— Шланги и фитинги

Система водяного охлаждения компьютера

Без них не обходится любая система водяного охлаждения. По шлангам вода течет от одного компонента к другому, а фитинги позволяют подключать шланги к другим компонентам системы, в частности, к ватерблокам, радиатору и помпе.

— Резервуар и вода

Система водяного охлаждения компьютера

Резервуар для воды обычно ставится на дно корпуса компьютера, где он будет сохранять устойчивое положение и в случае неожиданной протечки не зальет материнскую плату водой. Что касается самой воды, то рекомендуется использовать дистиллированную воду, в которую иногда добавляют немного спирта или автомобильной охлаждающей жидкости.

Помимо этих компонентов, система водяного охлаждения компьютера может оснащаться сливным краном для удобного слива воды из контура системы, контроллерами помпы и вентиляторов, а также разнообразными датчиками, индикаторами и измерителями. Но все это не обязательные компоненты, которые используются, главным образом, для повышения удобства пользования СВО.

Супербашни

Самыми-самыми «воздушками» были и остаются монстры от Noctua, Termalright и Phanteks. Стоимость — от 70 до 100+ долларов, внушительные размеры и внушительный вес в комплекте. Эти гиганты способны как сделать бесшумным практически любое железо, так и обеспечить потрясающую стабильность под разгоном и высокой нагрузкой даже у таких процессоров, как Intel Core i7-5960X (8 ядер, 16 потоков, частоты до 4.5 ГГц у хороших экземпляров под продолжительной нагрузкой).

Об охлаждении 220-Ваттных нагревательных элементов (AMD 9590/9370, где ты, вылезай, пусть люди посмотрят и посмеются), которые по недоразумению продаются как процессоры, сегодня говорить не будем. За те же деньги можно взять Core i5, который по производительности в большинстве задач ещё и обойдёт своего горячего соперника, и платить только за то, что у AMD будет восемь ядер и почти пять гигагерц… ну, вы тут все взрослые люди, сами понимаете. Вернёмся к супербашням.

Производители таких систем охлаждения пускаются на всевозможные хитрости, лишь бы выжать из технологии ещё чуть-чуть. Оптимизируют размер и форму тепловых трубок, их распределение по подложке, которая контактирует с термораспределителем процессора, изобретают специальные напыления, способствующие увеличению теплопроводности, изменяют контуры пластин радиатора, чтобы обеспечить максимально эффективный обдув… Ну и, само собой, иногда просто наращивают размеры. Вы только посмотрите на этих исполинов:

А что же производители процессоров? Десктопные линейки раз в два года «сбрасывают» пару-тройку нанометров и наращивают частоты, теплопакеты же у моделей с аналогичной прошлым поколениям производительностью потихоньку снижаются, так что активного и очень мощного охлаждения требуют только процессоры для сокета LGA-2011-3 и разогнанные до 4.5+ ГГц Core i5 и i7 k-серии на сокетах 115х.

В остальных же случаях (Core i5 / i7 без разгона) достаточно моделей поскромнее: одновентиляторных Noctua, Thermaltake, CoolerMaster’ов.

Почему универсальное водяное охлаждение лучше самосбора?

Как видно из представленного выше списка оборудования, для водяного охлаждения ПК задействовано множество компонентов. Да и сама процедура сборки не то чтобы простая. Именно поэтому на начальном этапе логичнее выбрать СВО формата «все в одном», которые объединяют в себе вышеуказанные элементы в простом для установке комплексе. К тому же такие универсальные системы обойдутся дешевле.

Универсальные СВО оптимально подходят и для новичков, и для опытных пользователей, поскольку не предлагают собирать систему охлаждения самостоятельно из множества деталей: Насос зафиксирован прямо на водоблоке, трубки и фитинги предварительно собраны, и все сделано так, чтобы вам не приходилось возиться с водой. При этом такие системы обеспечивают не менее эффективный теплоотвод, чем самосбор.

Обратите внимание, что жидкостное охлаждение формата «все в одном» может применяться не только в связке с центральными процессорами материнских плат, но и с графическими картами. Кстати, есть еще одна причина, которая оправдывает использование универсальных СВО: программное обеспечение. Как правило, каждый производитель таких систем предлагает софт, позволяющий создавать устанавливать индивидуальные профили скорости вращения вентиляторов и работы насоса, контролировать нагрев CPU/GPU и настраивать RGB-подсветки.

Больше воздуха! Как выбрать кулер для процессора компьютера?

Adblock
detector