Какое устройство обрабатывает информацию. В каком устройстве компьютера производится обработка информации? Процессор компьютера
А14. Метеорологическая станция ведет наблюдение за влажностью воздуха. Результатом одного измерения является целое число от 0 до 100 процентов, которое записывается при помощи минимально возможного количества бит. Станция сделала 80 измерений. Определите информационный объем результатов наблюдений.
А15. Вычислите сумму чисел x и y, при x = A6 16 , y = 75 8 . Результат представьте в двоичной системе счисления.
¬(Первая буква имени гласная → Четвертая буква имени согласная)?
А18. После запуска Excel в окне документа появляется незаполненная….
А19. Слово, с которого начинается заголовок программы.
А20. Определите значение переменной c после выполнения следующего фрагмента программы.
Компьютер как средство обработки информации
Изучив эту тему, вы узнаете:
— каково назначение аппаратного обеспечения компьютера;
— каков состав базового комплекта компьютера;
— что означает понятие производительности компьютера.
Перед вами на столе установлен компьютер. Вы можете обратиться к нему за помощью, пообщаться с ним — иногда как с добрым или строгим учителем, иногда как с партнером в игре. Компьютер помогает вам в решении самых разных задач, учит, развлекает. При этом компьютер послушно выполняет ваши указания в виде определенных команд. Компьютер обладает чрезвычайно высокой по сравнению с человеческими возможностями скоростью работы, благодаря чему команды исполняются почти мгновенно.
Что же позволяет компьютеру так безукоризненно исполнять волю человека? Как устроен компьютер и из каких частей он состоит? Ответы на эти вопросы могут быть простыми или сложными в зависимости от того, как человек собирается его использовать.
В этом учебнике вы познакомитесь с устройством компьютера с точки зрения пользователей, чтобы уметь обращаться с компьютером как с инструментом для обработки информации. Компьютер должен воспринимать и распознавать вводимую информацию, запоминать ее, совершать над ней различные действия и выводить результаты своей работы, то есть выполнять основные этапы обработки информации (рисунок 16.1): ввод, хранение, преобразование, вывод.
Рис. 16.1. Основные этапы обработки информации
Для решения всех этих задач необходимы технические устройства и программы. Совокупность технических устройств называют аппаратным обеспечением (англ. hardware — аппаратные средства).
Аппаратное обеспечение персонального компьютера — система взаимосвязанных технических устройств, выполняющих ввод, хранение, обработку и вывод информации.
Отдельные части компьютера — блоки, связанные между собой с помощью различных устройств: электрических кабелей, разъемов, портов и т. п.
Из всего многообразия составных частей компьютера можно выделить минимально необходимый базовый комплект: устройство ввода информации — клавиатура, устройство вывода — монитор и отдельный блок, который называют системным. Эти устройства обеспечивают основные этапы обработки информации, отображенные на рисунке 16.1. С помощью клавиатуры человек вручную вводит информацию (данные и команды) в память компьютера. Монитор используется для отображения вводимых данных, а также для вывода на экран результатов обработки информации. Системный блок обеспечивает преобразование и хранение информации.
Наряду с клавиатурой и монитором при работе с персональным компьютером используется еще ряд устройств, не входящих в базовый комплект, но обеспечивающих ввод и вывод информации. Трудно, например, представить себе работу современного компьютера без маленькой помощницы — мыши, которая легко движется по коврику даже в руках неопытного пользователя.
Очень полезно иметь печатающее устройство — принтеру позволяющий распечатывать в считанные минуты текстовые, табличные, графические документы. Часто в комплект современного компьютера входят также сканер (устройство ввода информации с листа книги, журнала и т. п.), звуковые колонки, наушники, микрофон и др. Те, кто увлекается компьютерными играми, знают, что для управления ими часто используется джойстик.
Наличие этих и многих других устройств в составе компьютера позволяет использовать его в качестве универсального инструмента обработки разнообразной информации. В последующих темах вы более подробно познакомитесь с назначением и особенностями аппаратного обеспечения персонального компьютера.
Независимо от комплектации компьютера нас всегда будут интересовать характеристики его возможностей, которые также позволяют сравнивать компьютеры между собой. Одна из таких важнейших характеристик — производительность компьютера, которая приближенно характеризуется количеством элементарных операций, выполняемых за одну секунду (оп/с).
Производительность компьютера — характеристика, показывающая скорость выполнения компьютером операций обработки информации.
Контрольные вопросы
1. Как вы понимаете назначение компьютера?
2. Назовите основные этапы обработки информации компьютером.
3. Опишите основные этапы обработки информации с помощью обычного микрокалькулятора.
4. Что понимают под аппаратным обеспечением компьютера?
5. Что входит в базовый комплект персонального компьютера?
6. Каково назначение клавиатуры и монитора?
7. Перечислите известные вам устройства компьютера, не входящие в базовый комплект.
8. Что понимается под производительностью компьютера?
Процессор компьютера
Центральным устройством компьютера является процессор. Он организует приём данных, считывание из оперативной памяти очередной команды, её анализ и выполнение, а также отправку результатов работы на требуемое устройство. Основными характеристиками процессора являются его тактовая частота и разрядность.
Процессор обрабатывает поступающие к нему электрические сигналы (импульсы). Промежуток времени между двумя последовательными электрическими импульсами называется тактом. На выполнение процессором каждой операции выделяется определённое количество тактов.
Тактовая частота процессора равна количеству тактов обработки данных, которые процессор производит за 1 секунду. Тактовая частота измеряется в мегагерцах (МГц) — миллионах тактов в секунду. Чем больше тактовая частота, тем быстрее работает компьютер. Тактовая частота современных процессоров уже превышает 1000 МГц = 1 ГГц (гигагерц).
Разрядность процессора — это максимальная длина двоичного кода, который может обрабатываться или передаваться одновременно. Разрядность процессоров современных компьютеров достигает 64.
Устройства печати: принтеры, МФУ, сканеры
Принтеры используются для печати документов. Чаще всего встречаются форматов А3 и А4.
В профессиональной среде используют большие принтеры (плоттеры) для печати плакатов и баннеров.
Принтеры разделяются на цветные и черно-белые, лазерные и струйные.
Лазерные дают печать более высокого качества, но в цветных моделях заправка и замена картриджей дорогостоящая. В быту обычно используют черно-белые, так как их обслуживание обходится дешевле. Цветные же используют в случае, когда требуется высококачественная печать.
Струйные принтеры, как правило, все цветные. Они используют для печати жидкие чернила. Заправка в них намного проще, чем в лазерных – достаточно просто доливать чернила в контейнеры. И хватает такой заправки на более долгий срок. Существенный минус струйных моделей: у них периодически забивается печатная головка чернилами и требует обслуживания или замены. Качество печати уступает лазерным.
МФУ – это многофункциональное устройство. В нём совмещены функции сканера, копира, печати, а в некоторых моделях дополнительно и функция факса.
На сегодняшний день в основном используют МФУ на замену принтерам и сканерам, так как их цена не намного выше, а возможностей больше. МФУ также бывают лазерными и струйными.
Сканер – это устройство, которое фотографирует ваши документы и выводит их в цифровом виде на компьютер. Сканеры бывают разных форматов, но обычно это А3 и А4.
В быту им на смену пришли МФУ – сканеры же используются в основном в профессиональной области.
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.
Внешняя память компьютера
Для долговременного хранения программ и данных предназначена внешняя (долговременная) память. Внешняя память позволяет сохранять огромные объёмы информации. Информация во внешней памяти после выключения компьютера сохраняется. Различают носители информации — магнитные и оптические диски, энергонезависимые электронные диски (карты флеш-памяти и флеш-диски) и накопители (дисководы) — устройства, обеспечивающие запись данных на носители и считывание данных с носителей. Жёсткий диск — устройство, совмещающее в себе накопитель (дисковод) и носитель (непосредственно диск).
При запуске пользователем некоторой программы, хранящейся во внешней памяти, она загружается в оперативную память и после этого начинает выполняться.
На сайте http://sc.edu.ru размещён анимационный ролик «Внутренняя память ЭВМ: оперативная память» (135117), иллюстрирующий информационный обмен между внешней и внутренней памятью.
и отвод тепла
Как уменьшить негативные последствия повышения градусов? Для теплоотвода применяются активные кулеры и пассивные радиаторы. Каждый из способов имеет свои преимущества и недостатки.
А вот как устройства узнают, что им необходимо поменять эту свою характеристику? В центре крышки устанавливают специальный датчик температуры, в качестве которого может выступать термодиод, терморезистор или транзистор с замкнутыми коллектором и базой.
Из каких основных компонентов состоит компьютер?
Процессор. Это мозг компьютера. Он является главным компонентом и производит все вычисления в компьютере, контролирует все операции и процессы. Также является одним из самых дорогих компонентов, и цена очень хорошего современного процессора может переваливать за 50 000 рублей.
Бывают процессоры фирмы Intel и AMD. Тут кому что нравится, а так, Интелы меньше нагреваются, потребляют меньше электроэнергии. При всём этом у AMD лучше идёт обработка графики, т.е. больше подошёл бы для игровых компьютеров и тех, где работа будет вестись с мощными редакторами изображений, 3D графики, видео. На мой взгляд эта разница между процессорами не столь существенна и заметна…
Основной характеристикой является частота процессора (измеряется в Герцах. Например 2.5GHz), а также – разъём для подключения к материнской плате (сокет. Например, LGA 1150).
Вот так выглядит процессор (сверху указана фирма и модель):
Материнская (системная) плата. Эта самая большая плата в компьютере, которая является связующим звеном между всеми остальными компонентами. К материнской плате подключаются все остальные устройства, включая периферийные. Производителей материнских плат множество, а на верхушке держатся ASUS и Gigabyte, как самые надёжные и одновременно дорогие, соответственно. Основными характеристиками являются: тип поддерживаемого процессора (сокет), тип поддерживаемой оперативной памяти (DDR2, DDR3, DDR4), форм фактор (определяет в какой корпус вы сможете поместить данную плату), а также – типы разъёмов для подключения остальных компонентов компьютера. Например, современные жесткие диски (HDD) и диски SSD подключаются через разъёмы SATA3, видеоадаптеры – через разъёмы PCI-E x16 3.0.
Вот так выглядит материнская плата:
Память. Тут разделим её на 2 основных типа, на которые важно будет обратить внимание при покупке:
Оперативная память. Это временная память, в которую подгружаются все запускаемые программы на компьютере, процессы, игровые «миры» (текстуры) и всё остальное. Данная память не предназначена для хранения ваших данных! Поэтому не стоит путать её с памятью, где хранятся все ваши файлы. При выключении и повторном включении компьютера оперативка (так более-менее продвинутые пользователи часто называют оперативную память) будет очищена и по мере запуска вами различных программа начнёт снова заполняться. Т.е. это энергозависимая память.
Чем больше объём оперативной памяти, тем лучше и тем быстрее будет работать компьютер (конечно, если все остальные компоненты соответствуют уровню). Оперативная память выглядит как небольшие продолговатые планки (модули) и объём одного модуля у памяти поколения DDR4 уже может достигать 128 Гб.!
Вот так выглядят модули оперативной памяти:
Жёсткий диск (HDD) и SSD. Вот это как раз-таки та память, на которой у вас постоянно хранятся все ваши файлы, куда устанавливаются программы, игры, скачиваются фильмы, музыка и всё прочее. Этот вид памяти не очищается после перезагрузки или выключения компьютера, как в случае с оперативной памятью, т.е. является энергонезависимой.
Бывают диски HDD и SSD. Последние начали массово использоваться не так-то и давно и постепенно вытесняют HDD за счёт своих неоспоримых преимуществ, главное из которых – скорость записи / считывания данных. У SSD она в 10-ки раз превышает скорость HDD. Помимо этого, SSD диски намного прочнее (поскольку в них отсутствуют движущиеся механизмы как в HDD), потребляют меньше энергии (HDD около 6 Вт, а SSD меньше 2Вт), бесшумны, намного легче по весу, меньше нагреваются.
Недостаток SSD – высокая стоимость. Например, диск SSD объёмом 120 Гб. может стоить около 6000 рублей, в то время как за эти же деньги можно купить диск HDD объёмом около 2-х терабайт 🙂 Поэтому SSD диск целесообразнее покупать не очень небольшого размера (например, 120 Гб) и использовать его только для хранения операционной системы и установленных программ, а все нужные файлы (документы для работы, фильмы, фотки и прочее) хранить уже на HDD большого размера.
Ну и второй недостаток – число циклов перезаписи значительно меньше чем у HDD. А это значит, что SSD диски меньше служат. Но прогресс не стоит на месте и со временем эта проблема будет, я думаю, тоже решена.
Основная характеристика у HDD и SSD – объём для хранения данных. Чем он больше, тем, соответственно, больше вы сможете хранить на компьютере всякого барахла и важных документов 🙂 На данный момент объёмы и тех, и других примерно уравниваются. Объёмы HDD для домашних компьютеров достигают уже 10 Тб. (терабайт). 10 Тб = 10 000 Гб. Это просто огромное пространство для хранения данных! Также не менее важной характеристикой для SDD является скорость записи / считывания. Чем она больше, тем лучше и хорошо если будет в районе 500 Мб/cек. Для HDD похожий параметр – скорость вращения шпинделя. Здесь вполне подойдут диски со скоростью 7200 оборотов в минуту.
Вот так выглядит жесткий диск (HDD):
А вот так выглядит диск SSD:
Видеокарта (видеоадаптер или «видюха», как называют её более-менее продвинутые пользователи компьютеров). Это устройство отвечает за формирование и вывод изображения на экран монитора или любого другого аналогичного подключенного устройства. Видеокарты бывают встроенными (интегрированными) и внешними (дискретными). Встроенная видеокарта на сегодняшний день имеется в подавляющем большинстве материнских плат и визуально мы видим лишь её выход – разъём для подключения монитора. Внешняя видеокарта подключается к плате отдельно в виде ещё одной платы со своей системой охлаждения (радиатор или вентилятор).
Какая разница между ними, спросите вы? Разница в том, что встроенная видеокарта не предназначена для запуска ресурсоёмких игр, работы в профессиональных редакторах изображения и видео. Ей просто не хватит мощности для обработки такой графики и всё будет сильно тормозить. Встроенная видюха на сегодняшний день может использоваться скорее как запасной временный вариант. Для всего остального нужна хоть какая-то простенькая внешняя видеокарта и какая именно уже зависит от предпочтений пользования компьютером: для интернет-сёрфинга, работы с документами или же для игр.
Основной характеристикой видеокарты является: разъём для подключения к плате, частота графического процессора (чем она больше, тем лучше), объём и тип видеопамяти, разрядность шины видеопамяти.
Вот так выглядит видеокарта:
Звуковой адаптер. В каждом компьютере имеется, как минимум, встроенная звуковая карта и отвечает, соответственно, за обработку и вывод звука. Очень часто именно встроенная и далеко не все покупают себе дискретную звуковую карту, которая подключается к материнской плате. Лично мне, например, встроенной вполне достаточно и на этот компонент компьютера я, в принципе, и внимания вообще не обращаю. Дискретная звуковая карта будет выдавать намного качественнее звук и незаменима если вы занимаетесь музыкой, работаете в каких-либо программах для обработки музыки. А если ничем подобным не увлекаетесь, то можно спокойно пользоваться встроенной и не задумываться об этом компоненте при покупке.
Вот так выглядит дискретная звуковая карта:
Сетевой адаптер. Служит для подключения компьютера к внутренней сети и к интернету. Также, как и звуковой адаптер, очень часто может быть встроенным, чего многим достаточно. Т.е. в таком случае в компьютере вы не увидите дополнительной платы сетевого адаптера. Основной характеристикой является пропускная способность, измеряемая в Мбит / сек. Если на материнской плате имеется встроенный сетевой адаптер, а он, как правило, имеется в подавляющем большинстве материнских плат, то и новый покупать для дома не за чем. Определить его наличие на плате можно по разъёму для подключения интернет-кабеля (витая пара). Если такой разъём имеется, значит в плате есть встроенный сетевой адаптер, соответственно.
Вот так выглядит дискретная сетевая карта:
Блок питания (БП). Очень важный компонент компьютера. Он подключается к электросети и служит для снабжения постоянным током всех других компонентов компьютера, преобразуя сетевое напряжения до требуемых значений. А устройства компьютера работают на напряжениях: +3.3В, +5В, +12В. Отрицательные напряжения практически не используются. Основной характеристикой блока питания является его мощность и измеряется, соответственно, в Ваттах. В компьютер ставится блок питания с такой мощностью, чтобы её хватило для питания всех компонентов компьютера. Больше всего будет потреблять видеоадаптер (потребляемая им мощность будет обязательно указана в документации), поэтому ориентироваться нужно на него и брать просто с небольшим запасом. Также блок питания должен иметь все необходимые разъёмы для подключения ко всем имеющимся компонентам компьютера: материнской плате, процессору, HDD и SSD дискам, видеоадаптеру, дисководу.
Вот так выглядит блок питания:
Дисковод (привод). Это уже дополнительное устройство, без которого, в принципе, можно и вообще обойтись. Служит, соответственно, для чтения CD/DVD/Blu-Ray дисков. Если планируется на компьютере читать или записывать какие-либо диски, то, конечно же, такое устройство необходимо. Из характеристик можно отметить только способность дисковода читать и записывать различные типы дисков, а также разъём для подключения к плате, который на сегодняшний день практически всегда – SATA.
Вот так выглядит дисковод:
Всё что перечислено выше – основное, без чего, как правило, не обходится ни один компьютер. В ноутбуках всё аналогично, только часто может отсутствовать дисковод, но это уже зависит от того, какую модель вы выбираете и нужен ли вам вообще этот дисковод. Также могут быть и другие компоненты, которые тоже будут подключаться к материнской плате, например: Wi-Fi адаптер, TV тюнер, устройства для видео захвата. Могут быть и другие дополнительные компоненты, которые являются совсем не обязательными, поэтому останавливаться на них пока что не будем. Сейчас практически в каждом ноутбуке имеется Wi-Fi адаптер для подключения к интернету по беспроводной сети, а также бывает и встроенный TV-тюнер. В стационарных домашних компьютерах, всё это приобретается, как правило, отдельно!
Заключение
Итак, какое устройство используется для обработки информации в компьютере? Верно, процессор компьютера. Теперь вы знаете ответ не только на этот вопрос, но также и особенности данного прибора и существующие проблемы и перспективы. А значит, есть информация о том, как действует такая важная составляющая сложной технической системы и в каком устройстве компьютера производится обработка информации.
Для успешного «общения» с компьютером вредно воспринимать его как черный ящик, который вот-вот выдаст что-то неожиданное. Чтобы понимать реакцию компьютера на Ваши действия, нужно знать как он устроен и как работает .
В этом IT-уроке узнаем, как работает большинство вычислительных устройств (к которым относятся не только персональные компьютеры).
Что обрабатывает всю информацию в компьютере
Основная задача компьютера – обрабатывать информацию , то есть выполнять вычисления. Большую часть вычислений выполняет специальное устройство – . Это сложная микросхема, содержащая сотни миллионов элементов (транзисторов).
Что в данный момент времени делать процессору говорит программа, она указывает, какие данные необходимо обработать и что с ними нужно сделать.
Программы и данные загружаются с накопителя (жесткого диска).
Но жесткий диск – относительно медленное устройство , и если бы процессор ждал, пока будет считываться информация, а потом записываться после обработки обратно, то он бы долго оставался без дела.
Не оставим процессор без дела
Поэтому между процессором и жестким диском установили более быстрое запоминающее устройство – (оперативное запоминающее устройство, ОЗУ). Это небольшая печатная плата, на которой находятся быстрые микросхемы памяти.
В оперативную память заранее считываются с жёсткого диска все необходимые программы и данные. Во время работы процессор обращается к оперативной памяти , считывает команды программы, которая говорит какие данные нужно взять и как именно их обработать.
При выключении компьютера содержимое оперативной памяти не сохраняется в ней (в отличие от жесткого диска).
Процесс обработки информации
Итак, теперь мы знаем, какие устройства участвуют в обработке информации. Посмотрим теперь на весь процесс вычислений.
Когда компьютер выключен, все программы и данные хранятся на жестком диске. При включении компьютера и запуске программы , происходит следующее:
Ввод и вывод информации
Чтобы компьютер получил информацию для обработки, её нужно ввести. Для этого используются устройства ввода данных :
- Клавиатура (с помощью неё мы вводим текст и управляем компьютером);
- Мышь (с помощью мыши мы управляем компьютером);
- Сканер (заносим изображение в компьютер);
- Микрофон (записываем звук) и т.д.
Для вывода результата обработки информации используются устройства вывода данных :
- Монитор (выводим изображение на экран);
- Принтер (выводим текст и изображение на бумагу);
- Акустические системы или «колонки» (слушаем звуки и музыку);
Кроме того, мы можем вводить и выводить данные на другие устройства с помощью:
- Внешних накопителей (с них мы копируем уже имеющиеся данные в компьютер):
- флэшка,
- компакт-диск (CD или DVD),
- переносной жесткий диск,
- дискета;
- Компьютерной сети (получаем данные с других компьютеров через Интернет или городскую сеть).
Если в нашу схему добавить устройства ввода-вывода, то получится вот такая диаграмма:
То есть компьютер работает с ноликами и единичками , а когда информация поступает на устройство вывода, она переводится в привычные нам образы (изображение, звук).
Подводим итог
Итак, сегодня мы вместе с сайтом узнали, как работает компьютер . Если кратко, то компьютер получает данные с устройств ввода (клавиатура, мышь и т.д.), заносит их на жесткий диск, затем передает в оперативную память и обрабатывает с помощью процессора. Результат обработки возвращается сначала в оперативную память, затем либо на жесткий диск, либо сразу на устройства вывода (например, монитор).
Если появились вопросы, можно задать их в комментариях к этой статье.
Обо всех перечисленных в сегодняшнем уроке устройствах Вы можете узнать подробнее из последующих уроков на сайте IT-уроки. Чтобы не пропустить новые уроки – подпишитесь на новости сайта .
Копирование запрещено
Напомню, что на сайте IT-уроки есть постоянно обновляемые справочники:
Видео-дополнение
Сегодня небольшое познавательное видео о производстве процессоров.
P.S. В следующем уроке – Внешнее устройство компьютера , описание внешних разъемов, индикаторов и кнопок. Не пропустите!
Рис. 23. Схема обработки информации на компьютере
Рассмотрим процесс обработки информации на примере программы:
var CHISLO: integer;
Обработка информации происходит несколько этапов:
1. Источником информации является программист, если выполняется отладка программы, или пользователь, если программа используется. В качестве сигнала S1 выступают входные данные, например, значения переменной CHISLO. Носитель информации произволен.
2. Восприятие сигнала S1 инициируется при выполнении команды, соответствующей оператору input (CHISLO). Введенная с клавиатуры информация размещается в промежуточной буферной памяти устройства ввода. Носитель сигнала S2 носит электронный характер.
3. Введенная информация передается из буферной памяти по адресу основной памяти, указанному в загрузочном модуле для размещения соответствующей переменной. Например, для переменной CHISLO отведена область памяти размером два байта по адресу 0002:0008. Сигнал S3 носит электронный характер.
4. Обработка выполняется процессором и заключается в выполнении оператора присваивания из приведенной программы. Этому оператору соответствует код, по которому выполняются следующие действия:
· в регистр АХ помещается 1;
· в регистр СХ помещаются данные, расположенные по адресу 0002:0008, – это введенное при восприятии значение переменной CHISLO;
· содержимое регистров АХ и СХ складывается, результат помещается в регистр АХ;
· содержимое регистра АХ помещается по адресу 0002:0008, т.е. присваивается переменной CHISLO. При этом отведенная под переменную память может быть недостаточна для размещения результата, если, например, введенное значение было слишком большим. Тогда возникает ситуация переполнения. Таким образом, семантика сигнала S4 различается в зависимости от результатов вычислений:
· если вычисления корректны, то это значение переменной CHISLO, которое размещено по адресу 0002:0008, а потому носит электронный характер;
· если вычисления некорректны, тогда сигнал S4 – это диагностические сообщения о недостатке памяти для переменной; также носит электронный характер.
5. Хранение не выполняется, поскольку в программе отсутствуют команды по привлечению внешней памяти.
6. Передача информации – это перенос сигнала S4 от основной памяти компьютера к промежуточной буферной памяти устройства вывода, в роли которого для нашей программы выступает монитор. Инициируется оператором write (CHISLO), если обработка прошла корректно, или средствами ОС при наличии ошибки в программе. В любом случае выполняется средствами ОС и каналами сопряжения устройства вывода и других устройств компьютера. Сигналы S4 и S5 в таком случае тождественны по синтаксису и носителю, а различаются лишь местом нахождения.
7. Представление информации заключается в преобразовании сигнала S5 к виду, понятному и удобному потребителю. Выполняется устройством вывода, в роли которого в данном случае выступает монитор, тогда сигнал S6 – электронный.
ОТОБРАЖЕНИЕ ИНФОРМАЦИИ
Графическая подсистема ПК
Графическая подсистема любого ПК состоит из трёх частей. В одной из них создаётся и хранится информация об изображении; эта часть называется графическим адаптером (видеоадаптером) . Другая часть служит для отображения этой информации; это монитор . Оставшаяся часть – кабель, связывающий первые две.
Монитор состоит из устройства отображения (дисплея), аппаратного обеспечения, которое непосредственно создаёт изображение на экране, и электронных схем, управляющих работой самого экрана. Монитор отличается от телевизора тем, что в нём применяются отдельные синхронизирующие сигналы и сигналы цветности. В противоположность ему телевизор декодирует только один составной сигнал, содержащий сигналы синхронизации, цвета и звука одновременно.
Созданием изображения на мониторе управляет обычно аналоговый видеосигнал, формируемый видеоадаптером. Компьютер формирует цифровые данные об изображении, которые из оперативной памяти поступают в специализированный процессор видеоплаты, где обрабатываются и сохраняются в видеопамяти. Параллельно с накоплением в видеопамяти полного цифрового «слепка» изображения на экране данные считываются цифроаналоговым преобразователем (Digital Analog Converter, DAC). Поскольку DAC обычно (хотя и не всегда) включает собственную память произвольного доступа (Random Access Memory, RAM) для хранения палитры цветов в 8-разрядных режимах, его еще называют RAMDAC. На последнем этапе DAC преобразует цифровые данные в аналоговые и посылает их на монитор. Эта операция выполняется DAC несколько десятков раз за одну секунду; данная характеристика называется частотой обновления (или регенерации) экрана. Согласно современным эргономическим стандартам, частота обновления экрана должна составлять не менее 85 Гц, в противном случае человеческий глаз замечает мерцание, что отрицательно влияет на зрение.
Дисплей –устройство визуализации (отображения) текстовой и графической информации без ее долговременной фиксации.
Дисплей служит как для отображения информации, вводимой посредством клавиатуры или других устройств ввода, так и для выдачи пользователю сообщений, а также для вывода полученных в ходе выполнения программ результатов.
По физическим принципам формирования изображения дисплеи бывают:
1) на базе электронно-лучевой трубки;
3) плазменные (газоразрядные).
Дисплеи на базе электронно-лучевой трубки традиционны, а принцип их работы аналогичен бытовому телевизору. В электронно-лучевой трубке формируется луч (или три луча для цветных трубок), управляя перемещением и интенсивностью которого можно получить изображение на люминофоровом экране.
Жидкокристаллический экран (индикатор) представляет собой совокупность сегментов для воспроизведения элементарных частей изображения (в частности, точек). Каждый сегмент состоит из нормально прозрачной анизотропной жидкости, заключенной между двумя прозрачными электродами. При подаче на электроды напряжения коэффициент отражения жидкости меняется, и сегмент при освещении его внешним источником света темнеет. В ПК в последнее время широкое распространение получили жидкокристаллические индикаторы с обратной (задней) подсветкой (backlit). Их конструктивная особенность заключается в том, что за экраном размещается источник света, а сам экран состоит из жидкокристаллических ячеек, которые в нормальном состоянии являются непрозрачными. При приложении к такой ячейке напряжения она начинает пропускать свет, что и приводит к получению изображения на экране. Такой принцип формирования изображения облегчает создание цветных дисплеев. Для этого достаточно иметь на экране тройки жидкокристаллических ячеек, обеспечивающие на просвет воспроизведение основных цветов (красного, зеленого и синего).
Экран плазменного дисплея представляет собой матрицу газоразрядных элементов. При приложении к электродам газоразрядного элемента напряжения возникает электрический разряд красного или оранжевого свечения в газе, которым этот элемент заполнен. По сравнению с жидкокристаллическими плазменные индикаторы имеют более высокую контрастность, однако обладают и повышенным энергопотреблением.
Видеоадаптер включает в себя видеопамять, в которой хранится изображение, отображаемое в данный момент на экране дисплея, постоянное запоминающее устройство, в котором записаны наборы шрифтов, отображаемые видеоадаптером в текстовых и графических режимах, и функции BIOS для работы с видеоадаптером. Кроме того, видеоадаптер содержит видеопроцессор – сложное управляющее устройство, обеспечивающее обмен данными с компьютером, формирование изображения и некоторые другие действия.
Принцип работы видеоадаптера . Прежде чем стать изображением на мониторе, двоичные цифровые данные обрабатываются центральным процессором, затем через шину данных направляются в видеоадаптер, где начинают обрабатываться. Обработанные цифровые данные направляются в видеопамять, где создается образ изображения, которое должно быть выведено на дисплее. Затем, все еще в цифровом формате, данные, образующие образ, передаются в RAMDAC, где они конвертируются в аналоговый вид, после чего передаются в монитор, на котором выводится требуемое изображение.
Режимы работы видеоадаптера. Видеоадаптеры могут работать в различных текстовых и графических режимах, различающихся разрешением, количеством отображаемых цветов и некоторыми другими характеристиками.
Текстовый режим. Основной видеорежим у персональных компьютеров – это текстовый режим. В этом режиме линии и прямоугольники создаются с использованием псевдографических символов. 256 таких 8-байтовых (или 12-байтовых, или 14-байтовых, или 16-байтовых) кодовых групп хранятся в памяти для рисунков всех изображаемых символов, и вся эта область памяти называется буфером знакогенератора . Адаптер дисплея «узнает» начальный адрес этого буфера (порядковый номер его начального байта, отсчитанный от начала памяти), берет из видеопамяти код символа, означающий порядковый номер его кодовой группы в буфере знакогенератора, умножает на число пиксельных строк в изображении символа и прибавляет полученное число к начальному адресу буфера знакогенератора. Полученное число есть начальный адрес кодовой группы изображения символа. Далее видеоадаптер берет каждый байт кодовой группы изображения и работает уже с отдельными битами байта: для нулевых битов выводит пиксел цветом фона, а для единичных – цветом рисунка (коды цвета фона и рисунка он тоже берет из видеопамяти – из байта атрибутов). Вот так появляются на экране дисплея рисунки букв, тоже, как и все в компьютере, закодированные двоичными числами. Очень похожа картина при выводе изображений символов на печать, только коды изображений символов и их порядковые номера хранятся в памяти печатающего устройства постоянно либо заносятся туда из памяти компьютера перед началом печати. Единицы в кодах рисунков символов расшифровываются при этом как необходимость, например, удара соответствующей иголки в игольчатых устройствах печати.
Графический режим. В графических режимах видеобуфер организован как последовательность битовых полей, состояние битов каждого поля определяет цвет отдельной точки экрана. В графическом режиме экран разделяется на отдельные светящиеся точки, количество которых зависит от типа дисплея, например 640 по горизонтали и 480 по вертикали. Светящиеся точки на экране обычно называют пикселами , их цвет и яркость может меняться. Именно в графическом режиме появляются на экране компьютера все сложные графические изображения, создаваемыми специальными программами, которые управляют параметрами каждого пиксела экрана. Графические режимы характеризуются такими показателями, как разрешающая способность и палитра.
Разрешающая способность – количество точек, с помощью которых на экране воспроизводится изображение. Типичные в настоящее время уровни разрешения 800х600 точек или 1024 х 768 точек. Однако для мониторов с большой диагональю может использоваться разрешение 1152 х 864 точки.
Размер на экране в длину равен ширине всей видимой области экрана, умноженной на количество пикселов изображения, поделенной на количество элементов изображения в строке (это первое из чисел, определяющих режим развёртки монитора).
Пример: у 17″ монитора ширина видимой области около 32 см. Если установлен режим 1024 х 768, то изображение в 640 пикселов будет иметь ширину 32 х 640: 1024 = 20 см.
Аналогично определяется и высота изображения на экране.
Палитра – количество цветов, которые используются для воспроизведения изображения, например, 4 цвета, 16 цветов, 256 цветов, 256 оттенков серого цвета, 2 16 цветов в режиме, называемом High color, или 2 24 цветов в режиме True color.
Можно изменить возможности графической подсистемы путём замены используемого в ней аппаратного обеспечения. В большинстве случаев это означает замену видеокарты. Поскольку каждый графический адаптер использует свои видеорежимы и каждый режим имеет свои особые требования к памяти, дисплейная память, которой пользуются компьютеры, расположена физически на самой плате графического адаптера, так что если мы меняем адаптер, то меняем также и память. Таким образом, мы автоматически получаем необходимый объём и тип дисплейной памяти, когда устанавливаем тот или иной графический адаптер.
Специальные видеоадаптеры. Для компьютерных систем, критичных к быстродействию видеоподсистемы, выпускаются специальные видеоадаптеры с графическими сопроцессорами. Такие видеоадаптеры могут брать на себя часть вычислительной работы, связанной с построением изображения, они могут, например, самостоятельно строить окружность, определенную ее центром и радиусом, могут аппаратно выполнять перемещение областей изображений на экране. Вы можете даже самостоятельно программировать такие видеоадаптеры на выполнение определенных действий, освобождая процессорное время для других нужд.
Для облегчения использования графических сопроцессоров вместе с ними поставляются драйверы к различным программам – системам втоматизированного проектирования, моделирования, операционной системе Windows.
Видеопамять. Видеопамять предназначена для хранения видеоинформации –двоичного кода изображения, выводимого на экран.
Видеопамять – это электронное энергозависимое запоминающее устройство. В ней могут храниться одновременно несколько страниц высококачественного графического изображения. От объема видеопамяти зависит доступное графическое и цветовое разрешение.
Большинство видеосистем имеет видеопамять, достаточную для хранения более чем одной экранной страницы отображения данных, поэтому на экране в каждый момент видна только часть того, что хранится в видеопамяти.
В видеопамяти хранится информация о цвете каждой точки экрана. Чем большее количество различных цветов используется, тем больший объем видеопамяти требуется.
Страница – раздел видеопамяти, вмещающий информацию об одном образе экрана (одной картинке на экране). В видеопамяти могут размещаться одновременно несколько страниц.
Объем видеопамяти (V) определяется по формуле:
V = n . M . N . b ,
где n – число страниц;
М – количество пикселов в строке;
N – количество строк;
B – битовая глубина.
Сейчас наиболее популярными видеоадаптерами у нас в стране являются SVGA и графические акселераторы Windows.
Для компьютерных систем, критичных к быстродействию видеоподсистемы, выпускаются специальные видеоадаптеры с графическими сопроцессорами.
Графический сопроцессор – сердце видеоадаптера. Он занимается отображением информации на экране, обменом данными с центральным процессором и решает многие другие задачи. У современных адаптеров графический процессор разгружает центральный процессор компьютера и берет на себя ряд проблем, связанных с формированием изображения.
Частным случаем видеоадаптеров с графическими сопроцессорами являются графические акселераторы для Windows. Они специально предназначены для повышения производительности видеоподсистемы компьютера при работе в среде Windows.
Следует подчеркнуть, что, в отличие от более универсальных графических сопроцессоров, акселератор Windows ориентирован исключительно на использование совместно с Windows.
Платы графического акселератора и графические сопроцессоры могут работать в режимах High Color и даже True Color. Однако при таких объемах изображения, которые содержит видеопамять в режимах High Color и True Color, количество информации, передаваемое из оперативной памяти компьютера в видеопамять адаптера, становится просто огромно.
D-акселераторы
Видеоадаптеры, способные ускорять операции трехмерной графики, получили название 3D-ускорителей (синонимом является 3D-акселератор). Какие же действия ускоряет 3D-акселератор?
Перечислим наиболее распространенные операции, которые 3D-ускоритель выполняет на аппаратном уровне.
Удаление невидимых поверхностей . Обычно выполняется по методу Z-буфера, который заключается в том, что проекции всех точек трехмерной модели объекта на плоскость изображения сортируются в специальной памяти (Z-буфере) по расстоянию от плоскости изображения.
Закрашивание (Shading) придает треугольникам, составляющим объект, определенный цвет, зависящий от освещенности. Оно бывает: равномерным (Flat Shading), когда каждый треугольник закрашивается равномерно, что вызывает эффект не гладкой поверхности, а многогранника; по Гуро (Gouraud Shading), когда интерполируются значения цвета вдоль каждой грани, что придает криволинейным поверхностям более гладкий вид без видимых ребер; по Фонгу (Phong Shading), когда интерполируются векторы нормали к поверхности, что позволяет добиться максимальной реалистичности, однако требует больших вычислительных затрат и в массовых 3D-ускорителях пока не используется. Большинство 3D-ускорителей умеет выполнять закрашивание по Гуро.
Отсечение (Clipping) определяет часть объекта, видимую на экране, и обрезает все остальное, чтобы не выполнять лишних расчетов.
Расчет освещения. Для выполнения этой процедуры часто применяют метод трассировки лучей (Ray Tracing), позволяющий учесть переотражение света между объектами и их прозрачность. Эту операцию с разным качеством умеют выполнять все 3D-ycкорители.
Наложение текстур (Texture Mapping ), или наложение плоского растрового изображения на трехмерный объект с целью придания его поверхности большей реалистичности. Например, в результате такого наложения деревянная поверхность будет выглядеть именно как сделанная из дерева, а не из неизвестного однородного материала. Качественные текстуры обычно занимают много места. Для работы с ними применяют 3D-ускорители на шине AGP, которые поддерживают технологию сжатия текстур. Наиболее совершенные карты поддерживают мультитекстурирование — одновременное наложение двух текстур.
Фильтрация (Filtering) и сглаживание (Anti-aliasing). Под сглаживанием понимается уменьшение искажений текстурных изображений с помощью их интерполяции, особенно на границах, а под фильтрацией понимается способ уменьшения нежелательной «зернистости» при изменении масштаба текстуры при приближении к 3D-объекту или при удалении от него.
Прозрачность , или альфа-канал изображения (Transparency, Alpha Blending) — это информация о прозрачности объекта, позволяющая строить такие прозрачные и полупрозрачные объекты, как вода, стекло, огонь, туман и дымка. Наложение тумана (Fogging) часто выделяется в отдельную функцию и вычисляется отдельно.
Дизеринг или смешение цветов применяется при обработке двух- и трехмерных изображений с большим количеством цветов на устройстве с меньшим их количеством. Этот прием заключается в рисовании малым количеством цветов специального узора, создающего при удалении от него иллюзию использования большего количества цветов.