Магистрально-модульный принцип построения компьютера
В основу архитектуры современных персональных компьютеров положен магистрально-модульный принцип. Модульный принцип позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Модульная организация компьютера опирается на магистральный (шинный) принцип обмена информацией между модулями.
Магистральный (шинный) принцип обмена информацией
Обмен информацией между отдельными устройствами компьютера производится по трем многоразрядным шинам (многопроводным линиям), соединяющим все модули: шине данных, шине адресов и шине управления.
Разрядность шины данных связана с разрядностью процессора (имеются 8-, 16-, 32-, 64-разрядные процессоры).
Данные по
шине данных могут передаваться от процессора к какому-либо устройству, либо, наоборот, от устройства к процессору, т. е. шина данных является двунаправленной. К основным режимам работы процессора с использованием шины данных можно
отнести следующие: запись/чтение данных из оперативной памяти, запись/чтение данных из внешней памяти, чтение данных с устройства ввода, пересылка данных на устройство вывода.
Выбор абонента по обмену данными производит процессор, который формирует код адреса данного устройства, а для оперативной памяти код адреса ячейки памяти. Код адреса передается по адресной шине, причем сигналы по ней передаются в одном направлении от процессора к оперативной памяти и устройствам, т. е. шина адреса является однонаправленной.
Разрядность шины адреса определяет объем адресуемой процессором памяти. Имеются 16-, 20-, 24- и 32-разрядные шины адреса.
Каждой шине соответствует свое адресное пространство, т. е. максимальный объем адресуемой памяти:
В персональных компьютерах величина адресного пространства процессора и величина фактически установленной оперативной памяти практически всегда различаются. В первых отечественных персональных компьютерах величина адресного пространства была иногда меньше, чем величина реально установленной в компьютере оперативной памяти. Обеспечение доступа к такой памяти происходило на основе поочередного (так называемого постраничного) подключения дополнительных блоков памяти к адресному пространству.
В современных персональных компьютерах с 32-разрядной шиной адреса величина адресуемой памяти составляет 4 Гб, а величина фактически установленной оперативной памяти значительно меньше и составляет обычно 16 или 32 Мб.
По шине управления передаются сигналы, определяющие характер обмена информацией (ввод/вывод), и сигналы, синхронизирующие взаимодействие устройств, участвующих в обмене информацией.
Аппаратно на системных платах реализуются шины различных типов. В компьютерах РС/286 использовалась шина ISA (Industry Standard Architecture), имевшая 16-разрядную шину данных и 24-разрядную шину адреса. В компьютерах РС/386 и РС/486 используется шина EISA (Extended Industry Standard Architecture), имеющая 32-разрядные шины данных и адреса. В компьютерах PC/ Pentium используется шина PCI (Peripheral Component Interconnect), имеющая 64-разрядную шину данных и 32-разрядную шину адреса.
Подключение отдельных модулей компьютера к магистрали на физическом уровне осуществляется с помощью контроллеров, адаптеров устройств (видеоадаптер, контроллер жестких дисков и т. д.), а на программном уровне обеспечивается загрузкой в оперативную память драйверов устройств, которые обычно входят в состав операционной системы.
Контроллер жестких дисков обычно находится на системной плате. Существуют различные типы контроллеров жестких дисков, которые различаются по количеству подключаемых дисков, скорости обмена информацией, максимальной емкости диска и др.
Тип | Количество устройств | Скорость обмена | Макс. емкость |
IDE | 1Мб/С | 540Мб | |
EIDE | 2+2 | 3—4 Мб/с | 8Г6 |
SCSI | 5—10 Мб/с | 8Г6 |
IDE — Integrated Device Electronics
EIDE — Enhanced Integrated Device Electronics
SCSI — Small Computers System Interface
В стандартный набор контроллеров, разъемы которых имеются на системном блоке компьютера, обычно входят:
— видеоадаптер (с помощью него обычно подключается дисплей);
— последовательный порт СОМ1 (с помощью него обычно подключается мышь);
— последовательный порт COM2 (с помощью него обычно подключается модем);
— параллельный порт (с помощью него обычно подключается принтер); — контроллер клавиатуры.
Через последовательный порт единовременно может передаваться 1 бит данных в одном направлении, причем данные от процессора к периферийному устройству и в обратную сторону, от периферийного устройства к процессору, передаются по разным проводам. Максимальная дальность передачи составляет обычно несколько десятков метров, а скорость до 115 200 бод. Устройства подключаются к этому порту через стандартный разъем RS-232.
Через параллельный порт может передаваться в одном направлении одновременно 8 бит данных. К этому порту устройства подключаются через разъем Centronics. Максимальное удаление принимающего устройства обычно не должно превышать 3 м.
Подключение других периферийных устройств требует установки в компьютер дополнительных адаптеров (плат).
Уинн Л. Рош. Библия по модернизации персонального компьютера. ИПП ”Тивали-Стиль», 2002г.
Журналы ”HARD’n’SOFT” 2007-08гг.
Виктор Устинов, Хранение данных на CD — и DVD-дисках: на наш век хватит?
ECMA-стандарт (аналог ISO) на диски CD-ROM
Скотт Мюллер. Глава 6. Оперативная память // Модернизация и ремонт ПК = Upgrading and Repairing PCs. — 17 изд. — М.: «Вильямс», 2007. — С.499-572. — ISBN 0-7897-3404-4
Урок 1
§1.1. Магистрально-модульный принцип построения компьютера
Инструктаж по техники безопасности
В основу архитектуры современных персональных компьютеров положен магистрально-модульный принцип. Этот принцип предусматривает построение компьютера из функциональных блоков, взаимодействующих посредством общего канала (каналов) — шины. В сочетании с открытой (общеизвестной) архитектурой это позволяет потребителю собирать машину нужной конфигурации.
Магистраль включает в себя три многоразрядные шины: шину данных, шину адреса и шину управления, которые представляют собой многопроводные линии (рис. 1.1). К магистрали подключаются процессор и оперативная память, а также периферийные устройства ввода, вывода и хранения информации, которые обмениваются информацией в форме последовательностей нулей и единиц, реализованных в виде электрических импульсов.
Рис. 1.1. Магистрально-модульное устройство компьютера
Шина данных. По этой шине данные передаются между различными устройствами. Например, считанные из оперативной памяти данные могут быть переданы процессору для обработки, а затем полученные данные могут быть отправлены обратно в оперативную память для хранения. Таким образом, данные по шине данных могут передаваться от устройства к устройству через области оперативной памяти.
Разрядность шины данных определяется разрядностью процессора, т. е. количеством двоичных разрядов, которые процессор обрабатывает за один такт. Разрядность процессоров постоянно увеличивалась по мере развития компьютерной техники и в настоящее время составляет 64 бита.
Шина адреса. Выбор устройства или ячейки памяти, куда пересылаются или откуда считываются данные по шине данных, производит процессор. Каждое устройство или ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине, причем сигналы по ней передаются в одном направлении от процессора к оперативной памяти и устройствам (однонаправленная шина).
Разрядность шины адреса определяет объем адресуемой памяти, т. е. количество ячеек оперативной памяти, которые могут иметь уникальные адреса. Количество адресуемых ячеек памяти можно рассчитать по формуле:
N = 2 i , где I — разрядность шины адреса.
Разрядность шины адреса постоянно увеличивалась и в процессорах Pentium Extreme Edition составляет 64 бита. Таким образом, количество адресуемых ячеек памяти в таких процессорах равно:
Шина управления. По шине управления передаются сигналы, определяющие характер обмена информацией по магистрали. Сигналы управления определяют, какую операцию — считывание или запись информации из памяти нужно производить, синхронизируют обмен информацией между устройствами И т. д.
Следующая страница Системная плата
Cкачать материалы урока
Зачем нужна шина адреса?
Магистрально-модульный принцип, как мы выяснили ранее, предполагает наличие трех шин. Назначение первой из них мы уже разобрали. А с вопросом о том, зачем нужна шина адреса, разберемся сейчас.
Итак, представьте себе такую вещь: пусть каждое устройство компьютера (ну или же можно взять ячейку планки оперативной памяти) имеет определенный адрес. К этим устройствам, к слову, процессор и передает данные. Чтобы адрес передать, как раз и используют адресную шину. На этом этапе следует сделать одно достаточно важное замечание: адрес передается исключительно в одностороннем порядке. Инициатором-источником сигнала служит центральный процессор, а вот роль приемников в этой своеобразной системе играют устройства компьютера. Это, как говорилось ранее, и оперативная память, и периферийный устройства, и так далее.
И вот когда разговор заходит уже о том, с чем связана разрядность шины адреса, можно выяснить одну очень интересную вещь. На самом деле разрядность данной шины будет оказывать влияние на объем так называемой адресуемой памяти. Его специалисты также называют адресным пространством. Причем будет оказываться даже не влияние, а полное определение. Иначе говоря, количество ячеек, приходящихся на оперативную память, и является адресуемой памятью. Она рассчитывается согласно следующей формуле: X = 2^y. Здесь Y – разрядность шины.
Магистрально – модульный принцип построения ЭВМ
Под архитектурой компьютера понимается его логическая организация, структура, ресурсы, т. е. средства вычислительной системы. Архитектура современных ПК основана на магистрально-модульном принципе.
Модульный принцип позволяет потребителю самому подобрать нужную ему конфигурацию компьютера и производить при необходимости его модернизацию. Модульная организация системы опирается на магистральный (шинный) принцип обмена информации. Магистраль или системная шина — это набор электронных линий, связывающих воедино по адресации памяти, передачи данных и служебных сигналов процессор, память и периферийные устройства.
Обмен информацией между отдельными устройствами ЭВМ производится по трем многоразрядным шинам, соединяющим все модули, — шине данных, шине адресов и шине управления.
Подключение отдельных модулей компьютера к магистрали на физическом уровне осуществляется с помощью контроллеров, а на программном обеспечивается драйверами. Контроллер принимает сигнал от процессора и дешифрует его, чтобы соответствующее устройство смогло принять этот сигнал и отреагировать на него. За реакцию устройства процессор не отвечает — это функция контроллера. Поэтому внешние устройства ЭВМ заменяемы, и набор таких модулей произволен.
Разрядность шины данных задается разрядностью процессора, т. е. количеством двоичных разрядов, которые процессор обрабатывает за один такт.
Данные по шине данных могут передаваться как от процессора к какому-либо устройству, так и в обратную сторону, т. е. шина данных является двунаправленной. К основным режимам работы процессора с использованием шины передачи данных можно отнести следующие: запись/чтение данных из оперативной памяти и из внешних запоминающих устройств, чтение данных с устройств ввода, пересылка данных на устройства вывода.
Выбор абонента по обмену данными производит процессор, который формирует код адреса данного устройства, а для ОЗУ — код адреса ячейки памяти. Код адреса передается по адресной шине, причем сигналы передаются в одном направлении, от процессора к устройствам, т. е. эта шина является однонаправленной.
По шине управления передаются сигналы, определяющие характер обмена информацией, и сигналы, синхронизирующие взаимодействие устройств, участвующих в обмене информацией.
Внешние устройства к шинам подключаются посредством интерфейса. Под интерфейсом понимают совокупность различных характеристик какого-либо переферийного устройства ПК, определяющих организацию обмена информацией между ним и центральным процессором. В случае несовместимости интерфейсов (например, интерфейс системной шины и интерфейс винчестера) используют контроллеры.
Чтобы устройства, входящие в состав компьютера, могли взаимодействовать с центральным процессором, в IBM-совместимых компьютерах предусмотрена система прерываний (Interrupts). Система прерываний позволяет компьютеру приостановить текущее действие и переключиться на другие в ответ на поступивший запрос, например, на нажатие клавиши на клавиатуре. Ведь с одной стороны, желательно, чтобы компьютер был занят возложенной на него работой, а с другой — необходима его мгновенная реакция на любой требующий внимания запрос. Прерывания обеспечивают немедленную реакцию системы.
Прогресс компьютерных технологий идет семимильными шагами. Каждый год появляются новые процессоры, платы, накопители и прочие периферийные устройства. Рост потенциальных возможностей ПК и появление новых более производительных компонентов неизбежно вызывает желание модернизировать свой компьютер. Однако нельзя в полной мере оценить новые достижения компьютерной технологии без сравнения их с существующими стандартами.
Разработка нового в области ПК всегда базируется на старых стандартах и принципах. Поэтому знание их является основополагающим фактором для (или против) выбора новой системы.
Магистрально-модульный принцип построения ПК
На прошлых уроках вы познакомились с назначением и характеристиками основных устройств компьютера. Очевидно, что все эти устройства не могут работать по отдельности, а только в составе всего компьютера. Поэтому для понимания того, как компьютер обрабатывает информацию, необходимо рассмотреть структуру компьютера и основные принципы взаимодействия его устройств.
В соответствии с назначением компьютера как инструмента для обработки информации взаимодействие входящих в него устройств должно быть организованно таким образом, чтобы обеспечить основные этапы обработки информации. (Какие?) Схему устройства компьютера мы рассмотрели на 5 уроке. (Вспоминаем.)
Информация, представленная в цифровой форме и обрабатываемая на компьютере, называется данными.
Последовательность команд, которую выполняет компьютер в процессе обработки данных, называется программой.
Обработка данных на компьютере:
1. Пользователь запускает программу, хранящуюся в долговременной памяти, она загружается в оперативную и начинает выполняться.
2. Выполнение: процессор считывает команды и выполняет их. Необходимые данные загружаются в оперативную память из долговременной памяти или вводятся с помощью устройств ввода.
3. Выходные (полученные) данные записываются процессором в оперативную или долговременную память, а также предоставляются пользователю с помощью устройств вывода информации.
Для обеспечения информационного обмена между различными устройствами должна быть предусмотрена какая-то магистраль для перемещения потоков информации.
Магистраль (системная шина) включает в себя три многоразрядные шины: шину данных, шину адреса и шину управления, которые представляют собой многопроводные линии. К магистрали подключаются процессор и оперативная память, а также периферийные устройства ввода, вывода и хранения информации, которые обмениваются информацией на машинном языке (последовательностями нулей и единиц в форме электрических импульсов).
Шина данных. По этой шине данные передаются между различными устройствами. Например, считанные из оперативной памяти данные могут быть переданы процессору для обработки, а затем полученные данные могут быть отправлены обратно в оперативную память для хранения. Таким образом, данные по шине данных могут передаваться от устройства к устройству в любом направлении.
Разрядность шины данных определяется разрядностью процессора, то есть количеством двоичных разрядов, которые могут обрабатываться или передаваться процессором одновременно. Разрядность процессоров постоянно увеличивается по мере развития компьютерной техники.
Шина адреса. Выбор устройства или ячейки памяти, куда пересылаются или откуда считываются данные по шине данных, производит процессор. Каждое устройство или ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине, причем сигналы по ней передаются в одном направлении — от процессора к оперативной памяти и устройствам (однонаправленная шина).
Разрядность шины адреса определяет объем адресуемой памяти (адресное пространство), то есть количество однобайтовых ячеек оперативной памяти, которые могут иметь уникальные адреса.
Шина управления. По шине управления передаются сигналы, определяющие характер обмена информацией по магистрали. Сигналы управления показывают, какую операцию — считывание или запись информации из памяти — нужно производить, синхронизируют обмен информацией между устройствами и так далее.
Модульный принцип позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Каждая отдельная функция компьютера реализуется одним или несколькими модулями – конструктивно и функционально законченных электронных блоков в стандартном исполнении. Организация структуры компьютера на модульной основе аналогична строительству блочного дома. Основными модулями компьютера являются память и процессор. Процессор – это устройство управляющее работой всех блоков компьютера. Действия процессора определяются командами программы, хранящейся в памяти.
Модульная организация опирается на магистральный (шинный) принцип обмена информацией между устройствами.
Магистрально-модульный принцип имеет ряд достоинств:
1. для работы с внешними устройствами используются те же команды процессора, что и дл работы с памятью.
2. подключение к магистрали дополнительных устройств не требует изменений в уже существующих устройствах, процессоре, памяти.
3. меняя состав модулей можно изменять мощность и назначение компьютера в процессе его эксплуатации.
Принцип открытой архитектуры – правила построения компьютера, в соответствии с которыми каждый новый блок должен быть совместим со старым и легко устанавливаться в том же месте в компьютере.
В компьютере столь же легко можно заменить старые блоки на новые, где бы они ни располагались, в результате чего работа компьютера не только не нарушается, но и становится более производительной. Этот принцип позволяет не выбрасывать, а модернизировать ранее купленный компьютер, легко заменяя в нем устаревшие блоки на более совершенные и удобные, а так же приобретать и устанавливать новые блоки. Причем во всех разъемы для их подключения являются стандартными и не требуют никаких изменений в самой конструкции компьютера.
Компоненты компьютера
Процессор является основным вычислительным компонентом. Главным его параметром является тактовая частота, то есть число выполняемых операций за одну секунду. Для сегодняшних компьютерных процессоров она измеряется в гигагерцах (ГГц). Важным параметром является также производительность процессора, которая зависит от нескольких характеристик, таких как тактовая частота, разрядность и архитектурное построение процессора. Производительность можно определить при тестировании компьютера по быстроте выполнения некоторых операций.
Оперативная память является составной частью электронной памяти. Существуют несколько типов электронной памяти, которые используется почти в любой вычислительной системе:
- Оперативная или основная память (Main Memory). Этот тип памяти применяется для информационных обменов процессора с внешней памятью (например, ПЗУ) и устройствами ввода-вывода. Данный вид памяти обозначается как RAM ((Random Access Memory, что в переводе означает память с возможностью произвольной выборки). В России эту память принято называть ОЗУ (оперативное запоминающее устройство).
- Память КЭШ (Cache Memory) или сверхоперативная память (СОЗУ). Она выступает как буфер обмена между центральным процессором и оперативной памятью. КЭШ-память сохраняет скопированные массивы данных тех адресов оперативной памяти, с которыми происходил последний обмен, и есть вероятность, что следующий обмен данными с этой же областью адресов будет выполнен более быстро.
- Полупостоянная память. Этот тип памяти применяется для запоминания информационных данных о структуре вычислительной системы, и, кроме того, сохранения времени и даты системы. Для гарантированного сохранения информации применяется питание от аккумулятора.
Системный блок является основной частью компьютера к которой подсоединяются все другие модули и устройства (периферийные или внешние устройства). В состав системного блока входят все главные электронные элементы компьютера.
Персональный компьютер выполняется на базе сверхбольших интегральных микросхем, и практически все они располагаются в системном блоке на отдельных платах. Главной платой системного блока можно считать системную или материнскую плату. На ней расположены центральный процессор, сопроцессор, оперативная память и ряд разъёмов для установки контроллеров внешних устройств или соединения с ними. То есть она представляет собой комплект разных модулей, которые обеспечивают функционирование компьютера.
Блок питания обеспечивает преобразование переменного напряжения электрической сети в несколько постоянных напряжений разной величины и полярности, которые необходимы для работы материнской платы и остальных устройств внутри системного блока. Для охлаждения компонентов системного блока и исключения перегрева, используется регулируемый вентилятор.
Системная шина или магистраль, находящаяся в системном блоке, представляет собой набор электрических соединений для связи процессора с памятью и внешними устройствами.
Клавиатура компьютера предназначается для ввода информационных данных в память компьютера посредством нажатия пользователем нужных клавиш. Обычная клавиатура, как правило, состоит из ста клавиш.
Мышь манипуляторного типа представляет собой устройство, позволяющее синхронизировать движение корпуса мыши по плоскости (коврику) с движением указателя на экране дисплея. Ввод данных выполняется расположением курсора в нужной экранной позиции и нажатием одной из клавиш на корпусе мыши.
Под монитором понимается устройство, которое обеспечивает диалог пользователя с компьютером посредством отображения на экране дисплея информационных данных в виде символов или графики. Графический режим дисплея представляет собой набор точек (пикселей), которые получаются при разбиении экранной поверхности на строки и столбцы. Число экранных пикселей принято называть разрешением дисплея в текущем режиме работы.