Учитель информатики

Как хранится информация на компьютере

Понимание вопроса организации хранения информации в электронных устройствах является одним из важнейших моментов для тех, кто только начинает изучать компьютер. В этом материале вы узнаете, где и в каком виде хранятся личные данные пользователя, нужные программы и прочая необходимая информация.

2.1.2. Устройства компьютера и их функции

Любой компьютер состоит из процессора, памяти, устройств ввода и вывода информации. Функции, выполняемые этими устройствами, в некотором смысле подобны функциям мыслящего человека (рис. 2.3). Но даже столь очевидное сходство не позволяет нам отождествлять человека с машиной хотя бы потому, что человек управляет своими действиями сам, а работа компьютера подчинена заложенной в него программе.

Микропроцессор

Изучив эту тему, вы узнаете:

— что такое микропроцессор и каково его назначение;
— каковы основные характеристики микропроцессора — тактовая частота и разрядность.

Центральным устройством в компьютере является процессор. Он выполняет различные арифметические и логические операции, к которым сводится решение любой задачи обработки информации на компьютере. Кроме того, процессор управляет работой всех устройств компьютера.

image

Процессор — устройство, обеспечивающее преобразование информации и управление другими устройствами компьютера.

image

Что же представляет собой современный процессор? Для ответа на этот вопрос вспомним, что вся история развития компьютеров тесно связана с достижениями человечества в области электроники, материаловедения и других областей науки и техники. Именно открытия некоторых свойств материалов и веществ, в частности на основе кремния, позволили создать процессор для современного компьютера на кремниевом кристалле. Современный процессор представляет собой микросхему, или чип (англ. chip — чип), выполненную на миниатюрной кремниевой пластине — кристалле. Поэтому его принято называть микропроцессором (англ. Central Processing Unit, CPU).

Первый в мире микропроцессор создан в 1971 году инженерами фирмы Intel. Для современных компьютеров микропроцессоры фирмы Intel и фирмы AMD являются наиболее распространенными.

Микропроцессор конструктивно представляет собой интегральную микросхему, а точнее, сверхбольшую интегральную схему (СБИС). Слово «сверхбольшая» относится не к размерам интегральной схемы, а к количеству заключенных в ней электронных компонентов, размещенных на кремниевой пластине. Число таких компонентов достигает нескольких миллионов. Совершенствование технологий позволяет минимизировать электронные компоненты и увеличить их количество на одном кристалле, что влечет за собой уменьшение размеров устройств, повышение скорости работы и увеличение надежности. Микропроцессор имеет контакты в виде штырьков, которые вставляются в специальный разъем, или сокет (англ. socket — разъем), на системной плате. Разъем имеет форму прямоугольника с несколькими рядами отверстий по периметру.

Обработка любой информации на компьютере связана с выполнением процессором различных арифметических и логических операций. Арифметические операции — это базовые математические операции, такие как сложение, вычитание, умножение и деление. Логические операции (логическое сложение, логическое умножение, отрицание и др.) представляют собой некоторые специальные операции, которые чаще всего используются при проверке соотношений между различными величинами. Это необходимо для управления работой компьютера.

В состав процессора входят:
— арифметико-логическое устройство (АЛУ), выполняющее базовые арифметические и логические операции;
— устройство управления (УУ);
— элементы памяти.

Процессор должен обеспечить автоматическое исполнение программы, хранящейся в памяти компьютера, для чего выполняет следующие действия:
— извлечь из памяти команду;
— расшифровать команду;
— выполнить команду.

Эти действия процессор повторяет до команды окончания программы. Важной характеристикой процессора является его производительность (количество элементарных операций, выполняемых им за одну секунду), которая и определяет быстродействие компьютера в целом. В свою очередь, производительность процессора зависит от двух других его характеристик — тактовой частоты и разрядности.

image

Тактовая частота задает ритм жизни компьютера. Тактовая частота — это количество тактов в секунду. Такт — интервал времени между началами двух соседних тактовых импульсов. Единица измерения тактовой частоты — герц (Гц). Для современных компьютеров тактовая частота измеряется единицами гигагерц (ГГц), 1 ГГц = 109 Гц. Чем выше тактовая частота, тем меньше длительность выполнения операций и тем выше производительность компьютера. Тактовая частота определяет число тактов работы процессора в секунду. В течение одного такта может быть выполнена элементарная операция, например сложение двух чисел. Современный персональный компьютер может выполнять миллионы и миллиарды таких элементарных операций в секунду.

Разрядность процессора определяет размер минимальной порции информации, обрабатываемой процессором за один такт. Эта порция информации, часто называемая машинным словом, представлена последовательностью двоичных разрядов (бит). Процессор в зависимости от его типа может иметь одновременный доступ к 8, 16, 32, 64 битам.

С повышением разрядности увеличивается объем информации, обрабатываемой процессором за один такт, что ведет к уменьшению количества тактов работы, необходимых для выполнения сложных операций. Кроме того, чем выше разрядность, тем с большим объемом памяти может работать процессор. Первые микропроцессоры (1971 г. — фирма Intel) имели разрядность 4 бит, тактовую частоту 108 кГц и способность адресовать 640 байт основной памяти. В 2000 году компьютеры оснащались 32-разрядными микропроцессорами с тактовой частотой порядка 1,7-3 ГГц.

Кроме центрального микропроцессора во многих компьютерах имеются сопроцессоры — дополнительные специализированные процессоры. Например, математический сопроцессор — микросхема, которая помогает основному процессору в выполнении вычислений при решении на компьютере математических задач.

Одной из основных тенденций в развитии микропроцессоров до недавнего времени было увеличение тактовой частоты и разрядности. Сегодня ведущие производители микропроцессоров отказались от такой стратегии, теперь важнейшими показателями производительности становятся количество процессорных ядер, которые реализуют полный набор возможностей процессора.

Контрольные вопросы

1. Как вы понимаете назначение микропроцессора?

2. Что такое микропроцессор?

3. Какие характеристики микропроцессора вы знаете?

4. Что такое тактовая частота процессора и как она связана с характеристикой «производительность» ?

Процессор

Процессор представляет собой микросхему, предназначенную для выполнения основных вычислительных операций. Процессоры выпускаются двумя фирмами AMD и Intel. В зависимости от производителя процессора отличается и разъем (место его установки), поэтому при выборе материнской платы следует это не забывать. Вы просто не вставите процессор AMD в материнскую плату для процессоров Intel.

Модель передачи информации

Передача данных – это физический перенос информации в форме сигналов от одной точки к другой по каналу связи с целью последующей обработки.

Чтобы информация приносила пользу, она должна передаваться и приниматься. Это происходит по следующей схеме:

Канал связи

Модель была описана американским математиком и инженером Клодом Шенноном в статье «Математическая теория связи».

Рассмотрим на примере: нужно позвонить приятелю и пригласить его на день рождения. Источник информации (это вы) — объект, который создает передаваемое сообщение. Вы говорите: «Вася, приходи ко мне на день рождения!». Микрофон в трубке телефона улавливает звуковые колебания и преобразует их в электрические сигналы.

Эти сигналы направляются к Васе по каналу связи. А там информационное сообщение подвергается внешним воздействиям — шумам и помехам, что может приводить к искажениям. Вася не понимает: «Куда, куда мне идти? Повтори, не слышу, все шипит».

Чем выше уровень помех, тем сложнее передать сигнал. Для защиты информационного сигнала от внешних воздействий используют различные меры:

  1. экранируют линии связи;
  2. повышают чувствительность и избирательность приемного устройства;
  3. обеспечивают избыточность – лишний код, который можно использовать «на запчасти» при повреждении либо искажении основного.

На стороне другого абонента происходит обратный процесс – полученные электрические сигналы преобразуются в звуковые волны. Они вылетают из динамика телефона и попадают прямо в Васино ухо.

Сбор информации

Сбор информации — это первый шаг в информационных процессах. Благодаря качественному сбору информации, происходит своевременное принятие решений на основе собранной информации.

По большому счету, жизнедеятельность каждого человека — это постоянный сбор информации о жизни, профессии, окружающих людях, других странах и т. д. В более узких смыслах сбор информации — это систематический мониторинг хранилищ информации: баз данных, справочников, библиотек и др.

Человек осуществляет сбор информации следующими методами:

  • наблюдением за объектами;
  • общением с более опытными людьми;
  • чтением тематических книг и статей;
  • просмотром тематических видео;
  • прослушиванием тематических аудио;
  • посещением библиотек и архивов;
  • использованием поисковых систем в интернете;
  • и др.

Простой пример из жизни — вы решили поехать на выходные к другу в соседний город. Для того чтобы это сделать, вам необходимо будет просмотреть план проезда и расписание транспорта из вашего города в соседний. Для этого вы возьмете в руки телефон или сядете за компьютер, соберете всю необходимую информацию. Ваши родители, узнав о вашей поездке, попросят контакты вашего друга, проверят маршрут вашего передвижения, узнают адрес, где вы планируете находиться и др. И вы, и ваши родители произведете сбор информации при помощи технических средств. Сбор нужной информации — это умение, без которого очень трудно жить в современном мире.

Что представляют собой обработка, сбор и передача информации?

Декодирование

Разговор о декодировании придется начать c рассмотрения филологических вопросов. Увы, далеко не все компьютерные термины имеют однозначные соответствия в русском языке. Перевод терминологии зачастую шел стихийно, а поэтому один и тот же английский термин может переводиться на русский несколькими вариантами. Так и случилось с важнейшей составляющей микропроцессорной логики «instruction decoder». Компьютерные специалисты называют его и дешифратором команд и декодером инструкций. Ни одно из этих вариантов названия невозможно назвать ни более, ни менее «правильным», чем другое.

Дешифратор команд нужен для того, чтобы перевести каждый машинный код в набор сигналов, приводящих в действие различные компоненты микропроцессора. Если упростить суть его действий, то можно сказать, что именно он согласует «софт» и «железо».

Рассмотрим работу дешифратора команд на примере инструкции ADD, выполняющей действие сложения:

  • В течение первого цикла тактовой частоты процессора происходит загрузка команды. На этом этапе дешифратору команд необходимо: активировать буфер сортировки для счетчика команд; активировать канал чтения (RD); активировать защелку буфера сортировки на пропуск входных данных в регистр команд
  • В течение второго цикла тактовой частоты процессора команда ADD декодируется. На этом этапе арифметико-логическое устройство выполняет сложение и передает значение в регистр C
  • В течение третьего цикла тактовой частоты процессора счетчик команд увеличивает свое значение на единицу (теоретически, это действие пересекается с происходившим во время второго цикла)

Каждая команда может быть представлена в виде набора последовательно выполняемых операций, которые в определенном порядке манипулируют компонентами микропроцессора. То есть программные инструкции ведут ко вполне физическим изменениям: например, изменению положения защелки. Некоторые инструкции могут потребовать на свое выполнение двух или трех тактовых циклов процессора. Другим может потребоваться даже пять или шесть циклов.

Вопрос 6

Двоичный код каждого символа при кодировании текстовой информации (в кодах ASCII) занимает в памяти персонального компьютера:

Какой принцип является основополагающим при создании и развитии автоматизированной информационной системы?

Векторная графика

Изображение может быть описано и по-другому. Для этого оно разбивается на элементарные фигуры – отрезки, дуги, круги. Каждая часть может быть описана с помощью математических формул. Так, круг представляется совокупностью координаты центра и радиуса окружности. Такой способ описания графики называется векторным.

Способы представления в ЭВМ информации о звуках значительно сложнее. Они активно развиваются, но еще далеки от стандартизации. Существует два основных направления обработки звуковых сигналов:

  1. Частотные модуляции (FM) – это попытка разложить звук на последовательность простых правильных гармонических сигналов, параметры которых можно описать. Основная сложность в том, что звук по своей природе непрерывен, а преобразование аналогового сигнала в дискретный всегда сопровождается потерями данных.
  2. Таблично-волновой синтез предполагает использование сэмплов – образцов звуков. При этом кодируется тип музыкального инструмента, высота тона, интенсивность и длительность сигнала. Качество полученного звука получается выше, чем в предыдущем способе, так как используются реальные образцы.

Представление звуковой информации

Мир заполнен информацией самых разных видов. Чтобы с ней работать, человек придумал кодирование – перевод сложных данных в простую форму для удобства хранения, передачи и обработки. В ЭВМ представление информации осуществляется в виде бинарного кода – последовательности отдельных битов. Любые данные могут быть зашифрованы таким методом. Все операции над числами компьютер производит по правилам двоичной системы счисления.

Adblock
detector