Как работает процессор?
Инструмент проще, чем машина. Зачастую инструментом работают руками, а машину приводит в действие паровая сила или животное.
Компьютер тоже можно назвать машиной, только вместо паровой силы здесь электричество. Но программирование сделало компьютер таким же простым, как любой инструмент.
Процессор — это сердце/мозг любого компьютера. Его основное назначение — арифметические и логические операции, и прежде чем погрузиться в дебри процессора, нужно разобраться в его основных компонентах и принципах их работы.
Микропроцессоры
По мере развития компьютерной техники в структуру ПК стали внедряться девайсы, получившие название «микропроцессор». Одним из первых устройств такого типа стало изделие Intel 4004, выпущенное американской корпорацией в 1971 году. Микропроцессоры в масштабе одной микросхемы объединили в своей структуре те функции, что мы определили выше. Современные девайсы, в принципе, работают на основе той же самой концепции. Таким образом, центральный процессор ноутбука, ПК, планшета содержит в своей структуре: логическое устройство, регистры, а также модуль управления, отвечающие за конкретные функции. Однако на практике компоненты современных микросхем чаще всего представлены в более сложной совокупности. Изучим данную особенность подробнее.
Центральный процессор современного ПК, ноутбука или планшета представлен ядром — теперь уже нормой считается, что их несколько, кэш-памятью на различных уровнях, а также контроллерами: ОЗУ, системной шины. Производительность микросхемы соответствующего типа определяется ее ключевыми характеристиками. В какой совокупности они могут быть представлены?
Наиболее значимые характеристики центрального процессора на современных ПК таковы: тип микроархитектуры (обычно указывается в нанометрах), тактовая частота (в гигагерцах), объем кэш-памяти на каждом уровне (в мегабайтах), энергопотребление (в ваттах), а также наличие или отсутствие графического модуля.
Изучим специфику работы некоторых ключевых модулей центрального процессора подробнее. Начнем с ядра.
Центральный процессор
CPU, Центральный процессор Вид сверху
CPU, Центральный процессор Вид снизу
Центральный процессор [Central Processing Unit, CPU] — главный чип компьютера который обрабатывает большинство команд (инструкций), которые он получает от аппаратного или программного обеспечения, запущенного на компьютере. Большинство новых процессоров могут включать графический процессор (GPU).
Характеристики
Характеристики любого центрального процессора оказывают большое влияние на быстродействие как отдельных элементов системы, так и всего комплекса устройств в целом. Среди основных характеристик, влияющих на параметры производительности, выделяют:
- Тактовая частота; Для обработки одного фрагмента данных, передаваемых внутри ПК, требуется один такт времени. Отсюда следует, что чем выше тактовая частота приобретаемого ЦП, тем быстрее работает устройство обрабатывая за раз большие массивы информации. Измеряется тактовая частота в мегагерцах. Один мегагерц эквивалентен 1 миллиону тактов в секунду. Старые модели имели маленькую частоту, из-за чего скорость работы оставляла желать лучшего. Современные модели имеют большие показатели тактовой частоты, позволяя быстро обрабатывать и выполнять самые сложные наборы команд.
- Разрядность; Информация, предназначенная для обработки ЦП, попадает в него через внешние шины. От разрядности зависит какой объем данных передается за один раз. Это влияет на быстродействие. Старые модели были 16 разрядными, а современные имеют 32 или 64 разряда. 64 разрядная система на сегодняшний день считается самой продвинутой и под нее разрабатываются современные программные продукты и устройства.
- Кеш – память; Используется для увеличения работы устройства в компьютере, создавая буферную зону, хранящую копию последнего массива данных, обработанного процессором. Это дает возможность быстро выполнить схожую операцию в случае необходимости, без траты времени на обращение к общей памяти персонального компьютера.
- Сокет; Вариант крепления устройства к материнской плате. Разные поколения процессоров, как и материнских плат имеют собственный поддерживаемых сокетов. Это стоит учитывать при покупке. У разных производителей сокеты также отличаются друг от друга.
- Внутренний множитель частоты; Процессор и материнская плата работают на разных частотах и для их синхронизации друг с другом существует множитель частоты. Базовой или опорной считается рабочая частота материнской платы, которая умножается на персональный коэффициент ЦП.
Из побочных характеристик, напрямую не относящихся от технологии производства, выделяют тепловыделение и количество потребляемой во время работы энергии. Мощные устройства выделяют много тепла и требуют большую энергетическую подпитку во время работы. Для их полноценной работы применяются вспомогательные системы охлаждения.
Способы адресации. Функции способов адресации (и механизма трансляции адреса)
Способы адресации
Простейшая структура адресной части команды:
Адресные поля содержат физические адреса.
1) Для ЭВМ 1 — .2 поколений были характерны небольшой обьем ОЗУ (4. 32 Кслов) и значительная длина машинного слова (40. 64 и более бит). Длина слова выбиралась обычно достаточной для представления числа с инженерной точностью в плавающем формате. При этом в поле адреса мог поместиться полный физический адрес (для маленького объема ОЗУ он был коротким).
2) В ходе развития ЭВМ
•увеличивался обьем ОЗУ, а, следовательно, и длина требуемого физического адреса;
•желательно было вычислять / модифицировать адреса. Это давало возможность одному участку программы обрабатывать данные, расположенные в разных адресах.
Перешли к следующей структуре (см. рисунок ниже):
Двухуровневая схема трансляции адреса
Простейший вариант: физический адрес содержится в адресном регистре, а адресное поле содержит имя (код, номер) адресного регистра плюс код, обозначающий способ адресации (в данном случае косвенно-регистровую адресацию — см. далее). Длина такого поля адреса, могла быть гораздо меньше длины адреса. Например, если процессор содержит восемь регистров общего назначения и использует не более 8 разных способов адресации, длина номера регистра = 3 бита, длина кода способа адресации — также 3 бита. Адресное поле в команде будет содержать всего 6 бит.
3) При дальнейшем развитии ЭВМ — увеличивается размер адресного пространства.
При 32-разрядном адресе размер адресного пространства = 4 ГБайт. В то же время реальный обьем ОЗУ составляет 16. 128 МБайт (длина физического адреса: 24. 27 разрядов). Таким образом, имеет место несовпадение диапазона логических адресов (в частности, тех чисел, которые могут храниться в адресных регистрах процессора) и диапазона физических адресов, нумерующих реально существующие ячейки ОЗУ. Поэтому все более широко используется следующая схема преобразования адресов (см. следующий рисунок):
Трехуровневая схема трансляции адреса
В результате вычисления в соответствии со способом адресации формируется объект, называемый исполнительным (executive) или эффективным (так переводят английский термин effective, хотя более правильным является перевод “исполнительный” или “действующий” адрес). Это понятие уровня языка ассемблера почти эквивалентно используемому в языках высокого уровня понятию указатель(pointer). Все перечисленные в данном абзаце понятия — прежде всего суть понятия логические (логические адреса).
Логические адреса требуется отображать на физические адреса фактически имеющейся памяти. В простейшем случае можно это делать «один в один», начиная (размещая, загружая) всю программу целиком в определенное место памяти. В то же время, как увидим далее, такое взаимно-однозначное отображение адресов не всегда удобно, а иногда даже и невозможно.
Понятие «Способ адресации» включает:
•1)Способ кодирования адреса в адресном поле команды;
•2)Условное обозначение (синтаксис) способа адресации при записи команды на языке ассемблера;
•3)Алгоритм вычисления исполнительного адреса по информации, содержащейся в адресном поле, а также в других элементах процессора, имеющих отношение к вычислению адреса (хранящих адресную информацию, компоненты адреса).
Функции способов адресации (и механизма трансляции адреса)
1. Обеспечить удобство вычисления логических адресов при отображении на память компонентов сложных структур данных (массив, структура и поля ее записей, список и т.п.) Это одно из свойств, которые обычно имеют в виду, когда говорят, что «микропроцессор оснащен средствами для программирования на языках высокого уровня».
2. Обеспечить переход от содержимого адресного поля команды к логическому адресу и отображение пространства логических адресов на пространство физических адресов.
3. Обеспечить перемещаемость программных модулей (для легкости компоновки из этих модулей большой программы) или обеспечения позиционной независимости программы.
Под термином «перемещаемость» могут иметь в виду одно из двух различных свойств программы. Статическая перемещаемостьсостоит в том, что оттранслированную программу можно, без модификации адресных частей команд, загружать, начиная с различных адресов, при этом программа сохраняет работоспособность. Динамическая перемещаемость — более сильное свойство, состоящее в том, что загруженную и выполняющуюся программу можно в любой точке остановить, переместить, как единое целое, в другое место памяти и затем успешно продолжить выполнение с точки останова.
4. Для настройки на реально существующую в системе физическую память.
5. Обеспечить возможность многозадачного режима работы, когда в памяти одновременно находятся и выполняются несколько программ: надо разрешить этим программам обмениваться информацией, но защитить их друг от друга (чтобы одна программа не имела возможности испортить другую).
Что такое «многозадачность»?
В простейшем случае есть две задачи: программа пользователя ПрП и операционная система ОС. ПрП не должна иметь возможности испортить ОС.
Другой пример: кроме ОС, две ПрП, из которых одна работает в фоновом режиме. Например, основная задача — текстовый процессор, с которым работает человек, редактируя текст. В паузах, когда человек думает, какую клавишу нажать, работает фоновая задача, например, распечатывается на принтере другой текст. Еще более сложный случай — многопользовательская система, когда на одном процессоре работает несколько пользователей одновременно, они разделяют процессорное время, пространства памяти и другие ресурсы. Механизм трансляции адреса позволяет отображать логические адреса программ, выполняемых на вычислительной системе именно в тот диапазон физических адресов, который соответствует реально установленной памяти.
Характеристики стационарного компьютера и ноутбука
Как я рассказывал ранее, каждый компьютер состоит из материнской платы, процессора и других компонентов, которые отличаются друг от друга по выпуску и мощности.
Сейчас же я дам рекомендации, как выбрать подходящий ПК для работы или отдыха.
Стандартный домашний и офисный компьютер
В обязанности обычного офисного сотрудника входит работа с почтой, документами и интернетом. Для этих целей нам не нужен слишком мощный ПК. Хорошо подойдет компьютер на базе процессора Core i3 седьмого или восьмого поколения.
Данный процессор имеет 4 ядра, и он хорошо справится со всеми офисными задачами.
- Оперативной памяти будет достаточно в объёме 4 Гб.
- Жесткий диск можно установить от 500 до 1000 Гб, подойдет и HDD диск формата SATA 3.0.
- Дополнительную видеокарту можно не приобретать – встроенной вполне достаточно.
- Блок питания подойдет 450-500 Вт.
- Монитор, клавиатуру и мышку можете выбрать на свое усмотрение.
Производители также выпускают готовое фирменное решение для офиса и дома. В такие компьютеры, как правило, уже установлена операционная система Windows и пакет Microsoft Office, что позволит сэкономить на покупке программного обеспечения.
Что касается ноутбуков – они уже идут в готовой комплектации. Вам остается только выбрать на каком процессоре он работает, объем оперативной памяти и какая в нем установлена видеокарта. Для офисных задач подойдет ноутбук на базе процессора I3 и 4 Гб оперативной памяти.
Монтажный или игровой компьютер
Для сборки мощного монтажного или игрового ПК потребуется солидная сумма, так как чем круче комплектующие, тем они дороже. Как я писал ранее, для таких целей больше подойдет стационарный ПК.
Рекомендую собирать компьютер на базе процессора Core i9 9900K. Он имеет разблокированный множитель, что позволит произвести разгон и увеличить мощность. И не экономьте на охлаждении!
Данный процессор имеет 8 физических ядер и 8 виртуальных, что дает в сумме 16 потоков. На сегодняшний день этой мощности вполне хватит для работы с монтажом и играми.
- Материнскую плату нужно выбирать формата ATX, желательно у проверенных производителей (Gigabyte, Asus).
- Оперативную память лучше сразу покупать объемом 32 Гб.
- Видеокарта для данной сборки является ключевой, так как именно ее мощность задействуется при работе с монтажом и играми.
- На сегодняшний день топовой считается модель Nvidia GeForce RTX 2080Ti.
- Жесткий диск для данной сборки нужно устанавливать скоростной M2. В дополнение можно установить второй объемный HDD диск для хранения данных.
- Основой такой сборки является блок питания. Если вы решитесь приобрести хорошую видеокарту, то понадобится БП мощностью от 800 Вт. В идеале 1000 Вт и более – главное, отличного качества.
- Собирать все это нужно в корпус Full Tower для хорошей вентиляции и охлаждения.
- Монитор, мышку и клавиатуру можете выбирать по вашим предпочтениям. Но экономить на этом не стоит, чтобы почувствовать всю мощь данного ПК.
Также на рынке существуют профессиональные брендовые графические станции. В них могут быть установлены серверные процессоры (от двух и более), несколько профессиональных видеокарт и несколько сотен гигабайт оперативной памяти. На таких станциях работают профессиональные монтажеры для студий. И, конечно, цена такой станции просто заоблачная.
Игровые ноутбуки покупать не рекомендую – на мой взгляд, это нецелесообразно. Но если вы все же решитесь, присмотритесь к серии с процессорами Intel Core i9.
Декодирование
Разговор о декодировании придется начать c рассмотрения филологических вопросов. Увы, далеко не все компьютерные термины имеют однозначные соответствия в русском языке. Перевод терминологии зачастую шел стихийно, а поэтому один и тот же английский термин может переводиться на русский несколькими вариантами. Так и случилось с важнейшей составляющей микропроцессорной логики «instruction decoder». Компьютерные специалисты называют его и дешифратором команд и декодером инструкций. Ни одно из этих вариантов названия невозможно назвать ни более, ни менее «правильным», чем другое.
Дешифратор команд нужен для того, чтобы перевести каждый машинный код в набор сигналов, приводящих в действие различные компоненты микропроцессора. Если упростить суть его действий, то можно сказать, что именно он согласует «софт» и «железо».
Рассмотрим работу дешифратора команд на примере инструкции ADD, выполняющей действие сложения:
- В течение первого цикла тактовой частоты процессора происходит загрузка команды. На этом этапе дешифратору команд необходимо: активировать буфер сортировки для счетчика команд; активировать канал чтения (RD); активировать защелку буфера сортировки на пропуск входных данных в регистр команд
- В течение второго цикла тактовой частоты процессора команда ADD декодируется. На этом этапе арифметико-логическое устройство выполняет сложение и передает значение в регистр C
- В течение третьего цикла тактовой частоты процессора счетчик команд увеличивает свое значение на единицу (теоретически, это действие пересекается с происходившим во время второго цикла)
Каждая команда может быть представлена в виде набора последовательно выполняемых операций, которые в определенном порядке манипулируют компонентами микропроцессора. То есть программные инструкции ведут ко вполне физическим изменениям: например, изменению положения защелки. Некоторые инструкции могут потребовать на свое выполнение двух или трех тактовых циклов процессора. Другим может потребоваться даже пять или шесть циклов.
Внутреннее устройство ПК
Давайте заглянем внутрь, чтобы узнать из чего состоит ПК. Полный список комплектующих:
- процессор,
- оперативная память,
- материнская плата,
- система охлаждения,
- видеокарта,
- дисковая система (жёсткий диск и SSD),
- блок питания,
- корпус,
- звуковая карта,
- оптический привод.
Необходимый перечень аппаратного обеспечения
Первые 7 комплектующих строго необходимы для работы компьютера. Корпус тоже почти всегда используется, хоть и не несёт критических функций. Таким образом, в состав системного блока обычно входит 8 компонентов.
Видеокарта — крайне нужный компонент, который отвечает за вывод изображения, но вместо отдельной видеокарты может использоваться видеочип расположенный внутри процессора. Таким образом, отдельной карты в ПК может и не быть.
Рассмотрим каждую часть по отдельности.
Процессор (ЦПУ, ЦП)
ЦПУ (центральное процессорное устройство) — это главный компонент аппаратного обеспечения компьютера, который управляет работой ПК и производит все вычисления. Процессор — мозг, обдумывающий и решающий все задачи.
Основные характеристики ЦП:
- частота,
- количество ядер,
- объем кэша,
- техпроцесс.
Частота процессора показывает количество операций, выполняемых в единицу времени. Чем выше показатель, тем выше производительность, но больше потребление энергии и тепловыделение.
В последнее время, всё больше классификатором процессоров по скорости становится количество ядер. «Одна голова хорошо, а две лучше». Во втором десятилетии 21 века четыре ядра больше не вызывают удивления. Сейчас на массовом рынке в ходу восьмиядерные ЦП и даже доступны решения на 10, 12 и 16 ядер. Но их количество в отличие от частоты не всегда дают прирост. Дело в том, что далеко не каждая программа умеет распределять задачи по всем доступным потокам.
Кэш — это память внутри ЦПУ, которая характеризуется наивысшей скоростью и используется процессором в первую очередь. Чем больше у микропроцессора такой памяти, тем лучше.
При производстве микросхем применяется специальное литографическое оборудование, которое имеет определённую разрешающую способность (техпроцесс). Уменьшение технологического процесса позволяет уместить больше транзисторов на подложке меньшего размера.
Оперативная память (ОЗУ)
ОЗУ — временная память, в которой хранятся данные во время работы ЭВМ. Кэш процессора отличается крайне ограниченным объёмом, поэтому большинство данных, нужных для выполнения программ, загружаются в оперативную память.
Основные характеристики: поколение DDR, объем, частота. Сейчас актуален стандарт DDR4, но уже не за горами внедрение DDR5. Новые поколения приносят более высокие частоты и меньшее энергопотребление.
Объём памяти измеряется в гигабайтах. Само собой, больше — лучше. Так как, чаще всего, ОЗУ функционирует в двухканальном режиме, то желательно количество планок кратное двум. Например, две планки на 4 гигабайта, которые дадут 8Гб в сумме. На массовых материнских платах почти всегда 4 слота для оперативной памяти, но на компактных версиях МП может быть и 2 слота.
Материнская плата
Материнская плата — системная плата, предназначенная для соединения и обеспечения взаимодействия всех компонентов персонального компьютера.
- Сокет, в который устанавливается процессор.
- Чипсет — микросхема, которая регулирует работу внутренних компонентов системного блока.
- Слоты для установки оперативной памяти.
- PCI слоты для подключения видеокарты и других плат расширения.
- SATA разъёмы для подключения жёстких дисков и SSD дисков.
- Другие внутренние разъёмы.
- Внешние порты для пользователя.
МП определяет количество модулей, которые можно подключить к компьютеру. Также она разрешает пользователю присоединять внешние устройства. Сейчас платы почти всегда содержат в себе звуковой чип (звук) и сетевой чип (выход в интернет), то есть, больше нет необходимости в отдельной звуковой карте или сетевой карте. Материнская плата не оказывает прямого влияния на производительность системы, но ощутимо влияет на функциональность.
Система охлаждения (кулер)
Во время работы процессор нагревается, поэтому приходится использовать охлаждение. Кулер представляет собой радиатор с вентилятором. Радиатор рассеивает тепло, а вентилятор выталкивает горячий воздух из рёбер. На эффективность охлаждения влияет размер и качество радиатора, а также количество, качество и скорость вентиляторов. Для компенсации неровностей поверхности кулера и крышки ЦПУ используется теплопроводящая паста. Термопопасту наносят тонким слоем, чтобы заполнить мелкие неровности и улучшить контакт между поверхностями.
Также в корпус ставят один или больше вентиляторов для лучшей циркуляции воздушных потоков. Как правило, спереди ставят вентиляторы на вдув для притока холодного воздуха, а сзади и сверху на выдув горячего воздуха из системного блока.
Видеокарта
Видеокарта — графический адаптер, отвечающий за обработку и вывод изображения на экран монитора. Кстати, ПК может действовать без видеокарты, но вы попросту ничего не увидите на экране, поэтому для вывода изображения нужен хоть какой-то графический адаптер.
Процессор покупается отдельно, его питание распаяно на материнской плате, кулер тоже самостоятельный компонент, который каждый приобретает самостоятельно или использует стандартный из BOX комплектации ЦП. Видеоадаптер — это комплексный компонент, которое включает в себя видеочип, собственную память, систему питания и охлаждение.
В современных компьютерах видеокарта — это второй вычислительный элемент. Чаще всего, мощные графические адаптеры используются для прорисовки графики в играх, но и для рабочих приложений (например, видеомонтаж, 3d-моделирование) видеокарта тоже полезна. Профессиональное программное обеспечение ощутимо чаще использует не только процессор, но и графическую плату.
Графическое ядро, встроенное в ЦП значительно менее производительное ввиду ограниченности пространства и проблем с нагревом, однако, позволяет отказаться от отдельной платы в системном блоке, а для офисных задач такой мощности вполне хватает.
Дисковая система
Для хранения данных в ПК присутствует дисковая система. Благодаря ей вы можете сохранять документы, книги, фильмы и другие данные. Также дисковая система может быть использована и для хранения временных данных. Когда заканчивается место в оперативной памяти, операционная система переносит данные в файл подкачки. Такая виртуальная память позволяет выполнять программы, которые требует оперативной памяти больше чем доступно в ПК. Скорость хранилища значительно меньше скорости ОЗУ, поэтому выполнения задачи будет длиться намного дольше.
Существует два основных вида накопителей. Жёсткий диск — накопитель на жёстких магнитных дисках. Внутри него установлена одна или несколько алюминиевых пластин. ЖД обычно вращается со скоростью 5400 об/мин или 7200 об/мин. Но даже таких скоростей не хватает для того, чтобы бороться с новым поколением накопителей.
Твердотельный накопитель – немеханическое запоминающее устройство, внутри которого нет движущихся деталей. В SSD дисках используется флеш-память, которая более дорогая, но значительно быстрее и полностью бесшумна при работе. Твердотельные накопители даже преодолели порог скорости порта SATA, поэтому появились NVMe модели, которые использует шину PCI Express, как и видеокарты.
SSD более быстрые, но цена за гигабайт всё ещё очень высока, но уже сейчас есть тенденция к отказу от жёстких дисков.
Блок питания
Компьютер, как и другая техника не может функционировать без электричества, поэтому нужен блок питания. БП не только выдаёт нужное количество мощности, но и производит преобразования для всех устройств. Для разных компонентов подаётся разное постоянное напряжение, используются различные коннекторы.
Блок питания, прежде всего, выбирают по выходной мощности. Стандарт эффективности 80 Plus поможет определить уровень КПД, а длительность гарантии укажет на качество схемотехники.
Корпус
Компьютерный корпус выполняет следующие задачи:
- Объединяет комплектующие в одной коробке и защищает компоненты от механических повреждений. Также закрепляет составляющие ПК. Например, жёсткие диски боятся тряски во время работы.
- Ограждает человека от компьютера, например, на случай возгорания.
- Поглощает лишний шум и вибрации.
- Грамотно спроектированный корпус охлаждает компоненты лучше, чем открытый стенд.
- Несёт эстетическую функцию.
При выборе корпуса убедитесь, что он подходящего размера и содержит все требуемые слоты расширения.
Звуковая карта
Отдельная звуковая карта давно не является требуемым компонентом ПК. Материнские платы содержат в себе звуковой чип, который хорошо справляется со своей задачей. Тем не менее, звуковые карты до сих пор обладают спросом среди людей, которые хотят получить высокий уровень качества звука. Также музыканты используют специальные ЗК для записи и мониторинга полученного материала.
Оптический привод
Дисковод уже практически не используется, но пока ещё заслуживает упоминания. С развитием флеш-памяти (флешек) и интернета дисковые накопители практически полностью изжили себя. Скорость чтения и особенно записи по нынешним меркам оставляет желать лучшего. Привод шумит во время своей работы, а также диски легко повредить.
Например, компания Apple начала отказываться от дисковода в MacBook уже в 2012 году. В данный момент даже бюджетные компьютерные корпуса часто идут без разъёма для привода. Ещё пару лет и оптический привод окончательно отправится в музей компьютерных комплектующих.