Суперсемейка или 5 самых мощных суперкомпьютеров мира
Сегодня, 14 февраля, отмечается не только день Святого Валентина, но и день компьютерщика. В честь праздника мы подготовили для вас материал, в котором расскажем о мировых суперкомпьютерах, почему «профдень» айтишников совпал с днём влюблённых и других интересных фактах.
Сегодня почти никого не удивишь наличием техники — в каждом доме можно встретить ноутбук или персональный компьютер. Многие покупают лучшие видеокарты, передовые процессоры, девайсы с неоновой подсветкой и считают, что у них дома стоит самый мощный компьютер в мире. Но таким ПК ещё далеко до суперкомпьютеров — монстров титанических вычислений (на них все точно пойдёт на максималках ). Но давайте начнём наш рассказ с первого компьютера.
Супер-ЭВМ: квадриллион операций в секунду
Точного определения, что такое «суперкомпьютер», не существует. Компьютерная индустрия находится в постоянном развитии, и сегодняшние супермашины завтра уже будут далеко позади. Можно сказать, что суперкомпьютер – это очень мощный компьютер, который способен обрабатывать гигантские объемы данных и производить сложнейшие расчеты. Там, где человеку для вычислений нужны десятки тысяч лет, суперкомпьютер обойдется одной секундой. И если в 1980-х суперкомпьютером в шутку предлагали называть любые ЭВМ, весящие более тонны, то сегодня они чаще всего представляют собой большое количество серверных компьютеров с высокой производительностью, объединенных высокоскоростной сетью.
Современный суперкомпьютер – это огромное устройство, состоящее из модулей памяти, процессоров, плат, объединенных в вычислительные узлы, связанные между собой сетью. Управляющая система распределяет задания, контролирует загрузку и отслеживает выполнение задач. Системы охлаждения и бесперебойного питания обеспечивают беспрерывную работу супер-ЭВМ. Весь комплекс может занимать значительные площади и потреблять огромное количество энергии.
Производительность суперкомпьютеров измеряется во флопсах – количестве операций с плавающей запятой, которые система может выполнять в секунду. Так, например, один из первых суперкомпьютеров, созданный в 1975 году американский Cray-1, мог совершать 133 миллиона операций в секунду, соответственно, его пиковая мощность составляла 133 мегафлопс. А самый мощный на июнь 2019 года суперкомпьютер Summit Ок-Риджской национальной лаборатории обладает вычислительной мощностью 122,3 петафлопс, то есть 122,3 квадриллиона операций в секунду.
Суперкомпьютер «Ломоносов-2». Фото: «Т-Платформы»
Существует международный рейтинг топ-500, который с 1993 года ранжирует самые мощные вычислительные машины мира. Данные рейтинга обновляются два раза в год, в июне и ноябре. В 2019 году в первую десятку входят суперкомпьютеры США, Китая, Швейцарии, Японии и Германии. Единственный отечественный суперкомпьютер в первой сотне рейтинга − «Ломоносов-2» из Научно-исследовательского вычислительного центра МГУ производительностью 2,478 терафлопс, занявший в июне 2019 года 93-е место.
Чтобы определить мощность суперкомпьютера, или, как его еще называют в английском языке, «числодробилки» (number cruncher), используется специальная тестовая программа, которая предлагает машинам решить одну и ту же задачу и подсчитывает, сколько времени ушло на ее выполнение.
Чем суперкомпьютер отличается от обычного?
Суперкомпьютеры называют «числодробилками» или «числогрызами»: они нужны для супербыстрых вычислений. Главное отличие в том, что обычный компьютер выполняет задачи последовательно, хотя и на высокой скорости — вплоть до доли секунды, поэтому мы этого не замечаем. Суперкомпьютер делает это одновременно и обрабатывает огромный массив данных.
Для этого им нужны тысячи супермощных процессоров. В результате вычисления, на которые у мощного игрового компьютера уйдет неделя, суперкомпьютер выполняет за день. Однако важно, чтобы программы работали корректно, с учетом технических особенностей машины. Иначе то, что корректно работает на 100 процессорах, сильно замедлится на 200.
Современные смартфоны работают так же быстро, как самый мощный суперкомпьютер 1994 года.
Суперкомпьютеры работают на специальном ПО. Например, у Fugaku операционная система Red Hat Enterprise Linux 8 c гибридным ядром, состоящим из одновременно работающих ядер Linux и McKernel. В качестве программных средств используют API — то есть интерфейсы или платформы для программирования — и открытое ПО, которое позволяет создавать виртуальные суперкомпьютеры на базе обычных. Часто суперкомпьютер — это несколько высокомощных компьютеров, которые объединены высокоскоростной локальной сетью.
Обычно производительность компьютеров оценивается во флопсах (FLOPS — FLoating-point Operations Per Second) — то есть количестве операций над числами с плавающей точкой в секунду. Для суперкомпьютеров сначала использовали мегафлопсы — MIPS, количество миллионов операций в секунду, а с 2008 года петафлопсы — то есть количество миллионов миллиардов вычислений в секунду. К примеру, у суперкомпьютера Fugaku производительность составляет 415 петафлопс, а у Summit — 148.
Самые быстрые суперкомпьютеры мира
Сколько существуют компьютеры, столько же существуют и их супер-родственники. Сегодня в статье пойдёт речь о «супер-семейке», или проще говоря, о 10 самых мощных компьютерах мира. Кто же станет победителем?
На десятой позиции расположился окутанный дымкой неизвестности, таинственный Storm CS Cray (Mystery).
Расположен он в США. Точное его месторасположение и цель существования неизвестны, так как является он не только суперкомпьютером, но и суперсекретным объектом.
Обеспечивая 2386.42 мегафлопс на 1 ватт мощности, этот суперкомпьютером считается самым энергоэффективнный. Номинальная же мощность равна 3.57 петафлопс. В данном комплексе используются процессоры Intel Xeon E5-2660v2 10C 2.2ГГц, а суммарное число ядер составляет 72800.
Девятым в списке идёт суперкомпьютер Vulcan
Суперкомпьютер производства IBM из Ливерморской национальной лаборатории Калифорнийского университета, США. Начал свое существование еще в 2013 году. Используется в работе различных научных проектов Livermore’s High Performance Computing (HPC) Innovation Center, который в свою очередь академически сотрудничает с Администрацией по Ядерной безопасности.
Стойки: 24
Ядра: 393216
Производительность Linpack (Rmax): 4293.31 TFlop/s
Теоритическая пиковая производительность: 5033.16 TFlop/s
Мощность: 1972.00 kW
Память: 393216 GB
Процессор: Power BQC 16C 1.6GHz
Интерконнект: Custom Interconnect
ОС: Linux
Восьмое место уже несколько лет подряд (с 2012 года) занимает JUQUEEN
Был разработан компанией IBM специально для Исследовательского центра Юлиха, Германия. Данный суперкомпьютер, основанный на базе Blue Gene/P, успешно заменил своего предшественника JUBL, который создавался по более давней архитектуре.
В момент активации JUQUEEN стал вторым по производительности суперкомпьютером в мире.
Стойки: 28
Ядра: 458752
Производительность Linpack (Rmax): 5008.86 TFlop/s
Теоритическая пиковая производительность: 5872.03 TFlop/s
Мощность: 2301.00 kW
Память: 458752 GB
Процессор: Power BQC 16C 1.6GHz
Интерконнект: Custom Interconnect
ОС: Linux
Седьмая позиция — Stampede
Опять-таки родом из США. А точнее, из Техасского центра продвинутых вычислений, Техасский университет в Остине. Stampede является детищем компании Dell.
Стойки: 182
Ядра: 462462
Производительность Linpack (Rmax): 5168.11 TFlop/s
Теоретическая пиковая производительность: 8520.11 TFlop/s
Мощность: 4510.00 kW
Память: 192192 GB
Процессор: Xeon E5-2680 8C 2.7GHz
Интерконнект: Infiniband FDR
ОС: Linux
Компилятор: Intel
Математическая библиотека: MKL
MPI (интерфейс передачи сообщений): MVAPICH2
На шестом месте разместился Piz Daint (Switzerland)
Запущен в ноябре 2013 года в швейцарском городе Лугано. Располагается в Швейцарском национальном центре суперкомпьютеров (Swiss National Supercomputing Centre / CSCS), основанном еще в далеком 1991 году. Используется для большого числа различных проектов, в основном в сфере компьютерного моделирования. Piz Daint был создан компанией Cray Inc.
Ядра: 115984
Производительность Linpack (Rmax): 6271 TFlop/s
Теоретическая пиковая производительность: 7788.85 TFlop/s
Мощность: 2325.00 kW
Процессор: Xeon E5-2670 8C 2.6GHz
Интерконнект: Aries interconnect
ОС: Cray Linux Environment
Под номером пять у нас Mira
Mira — суперкомпьютер IBM Blue Gene / Q, что располагается в здании Argonne Leadership Computing. Оснащен 786432 ядрами, 768 терабайт памяти и имеет пиковую производительность 10 петафлопс. 49152 вычислительных узлов (compute nodes) оборудованы процессором PowerPC A2 1600 МГц, содержащим 16 ядер, по 4 аппаратных потока в каждом. Частота процессора — 1,6 ГГц. 16 гигабайт памяти DDR3. Семнадцатое ядро используется для связи между библиотеками.
Конфигурация интерконнекта 5D от IBM со скоростью chip-to-chip соединения в 2 Гб/с объединяет узлы, что позволяет значительно увеличить вычислительные возможности путем уменьшения среднего числа промежуточных узлов и задержек между вычислительными узлами. Система Blue Gene / Q также имеет систему из 4 модулей операций с плавающей запятой (FPU), которую можно использовать для выполнения скалярных вычислений с плавающей точкой, 4-мерных инструкций ОКМД (одиночный поток команд, множественный поток данных) или 2-мерных сложных арифметических вычислений ОКМД. Эти модули операций с плавающей запятой (FPU) обеспечивают более высокую вычислительную производительность одного линейного потока для некоторых приложений.
Mira предоставляет доступ к файловой системе GPFS емкостью 24 ПБ и пропускной способностью 240 Гб/с. Пользователи также получат доступ к HPSS архивам данных и Tukey, новому кластеру анализа и визуализации. Все вышеупомянутые ресурсы доступны для использования через быстродействующие сети, включая ESnet, недавно модернизированную до 100 Гб/с.
Стойки: 48
Ядра: 786432
Производительность Linpack (Rmax): 8586.61 TFlop/s
Теоретическая пиковая производительность: 10066.3 TFlop/s
Мощность: 3945.00 kW
Память: 768000 GB
Процессор: Power BQC 16C 1.6GHz
Интерконнект: 5D Torus Proprietary Network
ОС: Linux
Четвёртое место K Computer
Суперкомпьютер от компании Fujitsu, запущенные в 2011 году. Расположен в Институте физико-химических исследований, город Кобе, Япония.
Стойки: 864
Ядра: 705024
Производительность Linpack (Rmax): 10510 TFlop/s
Теоретическая пиковая производительность: 11280.4 TFlop/s
Мощность: 12659.89 kW
Память: 1410048 GB
Процессор: SPARC64 VIIIfx 8C 2GHz
Интерконнект: Custom Interconnect
ОС: Linux
Замыкает тройку лидеров Sequoia
Суперкомпьютер, созданный компанией IBM в июне 2012 года. Используется Национальной администрации по ядерной безопасности для программы Advanced Simulation and Computing Program.
Стойки: 96
Ядра: 1572864
Производительность Linpack (Rmax): 17173.2 TFlop/s
Теоретическая пиковая производительность: 20132.7 TFlop/s
Мощность: 7890.00 kW
Память: 1572864 GB
Процессор: Power BQC 16C 1.6GHz
Интерконнект: Custom Interconnect
ОС: Linux
На втором месте Titan
Суперкомпьютер, изготовленный компанией Cray Inc. в октябре 2012 года. Titan стал обновлением предыдущего суперкомпьютера Jaguar. Расположен в Национальной лаборатории Ок-Ридж Университета Теннесси (город Ок-Ридж, Теннесси, США). По большей части мощности Титана используются для программы Министерства энергетики США Innovative and Novel Computational Impact on Theory and Experiment program (INCITE). Данный суперкомпьютер позиционировался как аппарат для обработки любых проектов, однако из-за большого числа заявок было решено ограничить их количество до 6. Среди них: процессы сгорания топлива, наука о материалах, атомная энергия и изменения климата.
Ядра: 560640
Производительность Linpack (Rmax): 17590 TFlop/s
Теоретическая пиковая производительность: 27112.5 TFlop/s
Мощность: 8209.00 kW
Память: 710144 GB
Процессор: Opteron 6274 16C 2.2GHz
Интерконнект: Cray Gemini interconnect
ОС: Cray Linux Environment
Первое мест возглавляет Tianhe-2 (China)
Сложились стереотипы что в Поднебесной всё самое дешёвое и низкокачественное, это не всегда так.
Суперкомпьютер Tianhe-2, спроектированный компанией Inspur совместно с Оборонным научно-техническим университетом Народно-освободительной армии Китайской Народной Республики, был запущен в 2013 году. Строительство этого гиганта обошлось в 200-300 миллионов долларов. Более 1300 ученых и инженеров трудились над созданием Tianhe-2, что в переводе означает «Млечный путь-2».
Стойки: 125
Cores: 3120000
Производительность Linpack (Rmax): 33862.7 TFlop/s
Теоретическая пиковая производительность: 54902.4 TFlop/s
Мощность: 17808.00 kW
Память: 1024000 GB
Интерконнект: TH Express-2
ОС: Kylin Linux
Компилятор: icc
Математическая библиотека: Intel MKL-11.0.0
MPI (интерфейс передачи сообщений): MPICH2 with a customized GLEX Channel
От облаков до компьютерной симуляции: как рождаются звезды?
Много ли мы знаем о том, как формируются звезды? И какими были самые первые светила, образовавшиеся вскоре после рождения Вселенной? Исследователи надеются, что новый космический телескоп Джеймса Веба позволит получить ответы на многие вопросы, но первые снимки мир увидит не раньше июля. И все же, кое-что мы знаем точно, например, как заканчивается жизнь сверхновых звезд. Их взрывы ускоряют космический круговорот рождения и распада материи. И служат фабрикой химических элементов, из которых состоит мир вокруг нас. Чтобы разобраться в непростой звездной эволюции, ученые создают компьютерные модели, учитывающие множество разных факторов одновременно. Недавно астрономы из обсерватории Карнеги в Калифорнии пришли к интересному выводу – формирование некоторых звезд может занимать больше времени, чем считалось ранее. Но почему и какой вывод из этого следует? Попробуем разобраться.
Облачная инфраструктура AI Bridging
Скорость: 19.8 петафлопс
Ядра: 391,680
Поставщик: Fujitsu
Расположение: Национальный институт передовых промышленных наук и технологий, Япония.
Это первая в мире крупномасштабная вычислительная инфраструктура с открытым ИИ, которая обеспечивает 32,577 петафлопс пиковой производительности. Она насчитывает 1088 узлов, каждый из которых содержит 2 золотых процессора Intel Xenon Gold Scalable, 4 GPU NVIDIA Tesla V100, 2 HCA InfiniBand EDR и 1 твердотельный накопитель NVMe.
Fujitsu Limited утверждает, что суперкомпьютер может достичь 20-кратной тепловой плотности обычных центров обработки данных и охлаждающей способности стойки мощностью 70 кВт с использованием горячей воды и воздушного охлаждения.
10 самых дорогих суперкомпьютеров, которые поражают своей мощностью
Получайте на почту один раз в сутки одну самую читаемую статью. Присоединяйтесь к нам в Facebook и ВКонтакте.
Первый суперкомпьютер Atlas появился в начале 60-х годов и был установлен в Манчестерском университете. Он был в разы менее мощный, чем современные домашние компьютеры. В нашем обзоре собрана «десятка» самых мощных в истории суперкомпьютеров. Правда в связи с быстро развивающимися в этой сфере технологиями устаревают эти мощные машины в среднем за 5 лет..
Производительность современных суперкомпьютеров измеряется в петафлопсах — единице измерения, показывающей, сколько операций с плавающей запятой в секунду выполняет компьютер. Сегодня речь пойдет о десяти самых дорогих современных суперкомпьютерах.
1. IBM Roadrunner (США)
$ 130 млн
Roadrunner был построен IBM в 2008 году для Национальной лаборатории в Лос-Аламосе (Нью-Мексико, США). Он стал первым в мире компьютером, чья средняя рабочая производительность превысила 1 петафлопс. При этом он был рассчитан на максимальную производительность в 1,7 петафлопса. Согласно списка Supermicro Green500, в 2008 году Roadrunner был четвертым по энергоэффективности суперкомпьютером в мире. Списан Roadrunner был 31 марта 2013 года, после чего его заменили меньшим по размерам и более энергоэффективным суперкомпьютером под названием Cielo.
2. Vulcan BlueGene/Q (США)
$ 100 млн
Vulcan – суперкомпьютер, состоящий из 24 отдельных блоков-стоек, который был создан IBM для Министерства энергетики и установлен в Национальной лаборатории Лоуренса Ливермора, штат Калифорния. Он имеет пиковую производительность в 5 петафлопсов и в настоящее время является девятым по скорости суперкомпьютером в мире. Vulcan вступил в строй в 2013 году и сейчас используется Ливерморской национальной лабораторией для исследований в области биологии, физики плазмы, климатических именений, молекулярных систем и т. д.
3. SuperMUC (Германия)
$ 111 млн
SuperMUC в настоящее время является 14-м по скорости суперкомпьютером в мире. В 2013 году он был 10-м, но развитие технологий не стоит на месте. Тем не менее, он в данный момент является вторым по скорости суперкомпьютером в Германии. SuperMUC находится в ведении Лейбницкого суперкомпьютерного центра при Баварской академии наук рядом с Мюнхеном.
Система была создана IBM, работает на оболочке Linux, содержит более 19000 процессоров Intel и Westmere-EX, а также имеет пиковую производительность чуть более 3 петафлопсов. SuperMUC используется европейскими исследователями в областях медицины, астрофизики, квантовой хромодинамики, вычислительной гидродинамики, вычислительной химии, анализа генома и моделирования землетрясений.
4. Trinity (США)
$ 174 млн
Можно было бы ожидать, что подобный суперкомпьютер (учитывая то, для чего он строится) должен быть безумно дорогим, но благодаря развитию технологий стало возможным удешевление цены Trinity. Правительство США собирается использовать Trinity для того, чтобы поддерживать эффективность и безопасность ядерного арсенала Америки.
Trinity, который строится в настоящее время, станет совместным проектом Сандийской национальной лаборатории и Лос-Аламосской национальной лаборатории в рамках программы Прогнозного моделирования и вычислительной обработки данных Национальной администрации по ядерной безопасности.
5. Sequoia BlueGene/Q (США)
$ 250 млн
Суперкомпьютер Sequoia класса BlueGene/Q был разработан IBM для Национальной администрации по ядерной безопасности, в рамках программы Прогнозного моделирования и вычислительной обработки данных. Он был запущен в эксплуатацию в июне 2012 года в Ливерморской национальной лаборатории и стал на тот момент самым быстрым суперкомпьютером в мире. Сейчас он занимает третье место в мире по скорости (теоретический пик производительности Sequoia — 20 петафлопсов или 20 триллионов вычислений в секунду).
Стабильно компьютер работает при 10 петафлопсах. Используется Sequoia для поддержки различных научных приложений, изучения астрономии, энергетики, человеческого генома, изменения климата и разработки ядерного оружия.
6. ASC Purple и BlueGene / L (США)
$ 290 млн
Эти два суперкомпьютера работали вместе. Они были построены IBM и установлены в 2005 году в Ливерморской национальной лаборатории. Из эксплуатации они были выведены в 2010 году. На момент создания ASC Purple занимал 66-е место по скорости в списке топ-500 суперкомпьютеров, а BlueGene / L был предыдущим поколением модели BlueGene / Q.
ASCI Purple был построен для пятого этапа программы Прогнозного моделирования и вычислительной обработки данных Министерства энергетики США, а также Национальной администрации по ядерной безопасности. Его целью являлась симуляция и замена реальных испытаний оружия массового уничтожения. BlueGene/L использовали для прогнозирования глобального изменения климата.
7. Sierra и Summit (США)
$ 325 млн
Nvidia и IBM скоро помогут Америке вернуть лидирующие позиции в области сверхскоростных суперкомпьютерных технологий, научных исследований, а также экономической и национальной безопасности. Оба компьютера будут закончены в 2017 году.
В настоящее время самым быстрым суперкомпьютером в мире является китайский Tianhe-2, который способен достигнуть мощности в 55 петафлопсов, что в два раза больше, чем устройство, находящееся на втором месте в списке. Sierra будет выдавать более чем 100 петафлопсов, в то время как Summit сможет развить 300 петафлопсов.
Sierra, которая будет установлена в Ливерморской национальной лаборатории, будет обеспечивать безопасность и эффективность ядерной программы страны. Summit заменит устаревший суперкомпьютер Titan в национальной лаборатории Oak Ridge и будет предназначаться для тестирования и поддержки научных приложений по всему миру.
8. Tianhe-2 (Китай)
$ 390 млн
Китайский Tianhe-2 (что переводится как «Млечный путь-2») является самым быстрым суперкомпьютером в мире. Компьютер, разработанный командой из 1300 ученых и инженеров, находится в Национальном суперкомпьютерном центре в Гуанчжоу. Он был построен китайским Оборонным научно-техническим университетом Народно-освободительной армии Китая. Tianhe-2 способен выполнять 33 860 триллионов вычислений в секунду. К примеру, один час расчетов суперкомпьютера эквивалентен 1000 годам работы 1,3 миллиарда человек. Используется машина для моделирования и анализа правительственных систем безопасности.
9. Earth Simulator (Япония)
$ 500 млн
«Симулятор Земли» был разработан японским правительством еще в 1997 году. Стоимость проекта составляет 60 млрд иен или примерно $ 500 млн. Earth Simulator был завершен в 2002 году для агентства аэрокосмических исследований Японии, Японского научно-исследовательского института по атомной энергии и Японского центра морских и наземных исследований и технологий.
ES был самым быстрым суперкомпьютером в мире с 2002 по 2004 годы, а служит он и поныне для работы с глобальными климатическими моделями, для оценки последствий глобального потепления и оценки проблем геофизики коры Земли.
10. Fujitsu K (Япония)
$ 1,2 млрд
Самый дорогой в мире суперкомпьютер всего лишь четвертый по скорости в мире (11 петафлопсов). В 2011 году он был самым быстрым суперкомпьютером в мире. Fujitsu K, расположенный в Институте передовых вычислительных технологий RIKEN, примерно в 60 раз быстрее, чем Earth Simulator. На его обслуживание уходит порядка $ 10 млн в год, а использует суперкомпьютер 9,89 МВт (сколько электроэнергии используют 10 000 загородных домов или один миллион персональных компьютеров).
Стоит отметить, что современные учёные шагнули так далеко, что уже появились 10 современных технологий, которые способны превратить человека в киборга .