Создан квантовый компьютер дешевле Mac Pro и «Лады Гранты». Он умещается на столе

Квантовый компьютер — что это простыми словами, принцип действия

Очередной привет всем читателям моего блога! Вчера в новостях проскочила в очередной раз пара сюжетов о «квантовом» компьютере. Мы из школьного курса физики знаем, что квант — это некая одинаковая порция энергии, еще есть словосочетание «квантовый скачок», то есть мнгновенный переход с некоего уровня энергии на еще более высокий уровень.. Давайте вместе разбираться, что такое квантовый компьютер, и что нас всех ожидает, когда появится эта чудо машина

Я впервые начал интересоваться этой темой при просмотре фильмов про Эдварда Сноудена. Как известно, этот американский гражданин собрал несколько терабайт конфиденциальной информации (компромата) о деятельности спецслужб США, хорошенько зашифровал ее и выложил в Интернет. «Если, сказал он, со мной что-нибудь случиться, информация будет расшифрована и станет таким образом доступна для всех.»

Расчет был на то, что информация эта «горячая», будет актуальна еще лет десять. А расшифровать ее можно современными вычислительными мощностями то же не меньше, чем через десять или больше лет. Квантовый же компьютер по ожиданиям разработчиков справится с этой задачей минут за двадцать пять.. Криптографы в панике. Вот такой «квантовый» скачок нас скоро ожидает, друзья.

Как работает «детский» квантовый компьютер

Рабочее вещество квантовой системы SpinQ – это диметилфосфит (dimethylphosphite). Оно представляет собой тетраэдрическую молекулу, в состав которой входят по одному атому фосфора, водорода кислорода, а также две группы CH3O. При комнатной температуре это вещество принимает форму бесцветной жидкости.

По утверждению, Discover Magazine, диметилфосфит идеален для использования в небольших квантовых компьютерах, потому что атомы фосфора и водорода связаны друг с другом и достаточно близки, чтобы взаимодействовать, плюс ими также можно управлять независимо друг от друга.

chin602.jpg

Специалисты SpinQ поместили несколько капель диметилфосфита в жидком виде в небольшую герметичную емкость, а ее саму разместили в центре магнитного поля. Притом, в отличие от квантовых компьютеров 30-летней давности, в новинке SpinQ не используются сверхпроводящие магниты, поскольку для отвода от них тепла пришлось бы строить гигантскую систему охлаждения. В этом суперкомпьютере разработчики отдали предпочтение постоянным магнитам, способным создавать магнитное поле силой до 1 тесла.

Для квантовых вычислений магнитное поле должно быть очень равномерным. Для выполнения этого условия команда использовала метод, называемый «шиммингом» (shimming), который генерирует другое магнитное поле, способное нейтрализовать любые неоднородности в более сильном поле.

В использовании диметилфосфита и мощных постоянных магнитов и заключается секрет миниатюрности и дешевизны нового квантового компьютера SpinQ. Для управления спинами (кубитами) его необходимо подключить к обычному ПК с установленным на него специализированным ПО.

Несмотря на то, что устройство SpinQ обрабатывает только два кубита, оно способно выполнять ряд типичных квантовых вычислений. Например, оно может реализовать версию алгоритма Гровера, который может выполнять поиск в базе данных быстрее, чем классический поисковый алгоритм.

Контролируемые кубиты

Intel в январе 2018 года объявила о поставке тестового квантового процессора с 49 кубитами под названием Tangle Lake. Но более интересна работа другого подразделения компании, которое пытается разработать кубиты из традиционного кремния. Толщина таких кубитов составляет всего около 50 нанометров, или 1/1500 ширины человеческого волоса. Это открывает возможности для производства крошечных квантовых процессоров с миллионами кубитов, которые можно охлаждать почти до абсолютного нуля. Кстати, компания работает и над этим. Инженеры Intel совместно с компанией QuTech разрабатывают систему контроля «горячих» кубитов с температурой чуть больше –272,15ºC. Кроме того, Intel в 2019 году показала контроллер кубитов Horse Ridge, который может работать даже при очень низких температурах и выдерживает охлаждение до −269 ºC. Horse Ridge в будущем поможет масштабировать многокубитовые квантовые системы.

Horse Ridge

Чаша Грааля

— Известный итальянский ученый Томмазо Каларко, с которым сотрудничает ваша лаборатория, заявил, что никто в мире до сих пор не знает, как построить универсальный КК. Мы, дескать, даже не можем нормально транспортировать атомы. Руководитель квантовой лаборатории в США, в Гарварде, Михаил Лукин, выпускник, кстати, нашего Физтеха, и профессор Кристофер Монро из университета Мэриленда, напротив, уверены, что он появится в ближайшие 10 лет. Ваш прогноз?

— В ближайшие три года будут созданы прототипы КК, перешагнувшие рубеж в тысячу кубит. Тысячные кубитники намереваются сделать тот же Миша Лукин на «холодных» атомах, Кристофер Монро на ионах, француз Антуан Брауэрс на атомах, компания IBM на сверхпроводниках. Ориентировочно к 2030 г. использовать квантовый компьютер станет экономически выгодно. К этому времени появится и универсальный КК, и мощные квантовые симуляторы. Они будут применяться при разработке вакцин от большинства тяжелых болезней, того же рака, например, а также для создания уникальных материалов с новыми, фантастическими по сегодняшним меркам характеристиками. Это кардинально изменит транспорт, всю нашу жизнь. Если уходить от прогнозов к совсем фантастической футурологии, то когда-нибудь с помощью КК мы поймем, как устроена наша Вселенная и создадим модель новой Вселенной, нового мира. А заодно и новых людей. Вот тут и начнется самое интересное. (смеется).

— Сделаем такие же атомы с ножками, как мы сами. И с большими амбициями, что нехарактерно для атомов, поэтому экзамен на цивилизацию они тоже не пройдут. А можете поделиться своими соображениями по поводу модели Вселенной, загодя, так сказать? Вы же, наверняка, не раз об этом думали.

— Мне кажется, что мы вполне можем существовать в матрице. Эта теория очень хорошо согласуется и с нашей реальностью, и с законами квантового мира. Но так ли это, нам, вполне возможно, расскажет именно квантовый компьютер.

— То есть наш мозг додуматься до модели не в состоянии. Слабоват. Хотя многие ученые считают его чуть ли не самым загадочным объектом в той же Вселенной.

— Видите ли, человеческий мозг изначально не создавался для научных открытий. Его задачей было наладить коммуникацию в социальном обществе — с остальными нашими прародителями, человекообразными обезьянами и т.д. Все гениальные идеи, невероятный креатив, талантливые творческие произведения — для мозга всего лишь побочные явления. Поэтому-то мы и пришли к неизбежности создания КК. Знаете закон Мура, одного из основателей Intel? Что каждые 18 месяцев производительность компьютеров удваивается. То есть за последние 50 лет эта производительность увеличилась в миллиард раз. Транзисторы уже стали размером порядка 10 нанометров, это примерно в 10 раз меньше диаметра частицы коронавируса. Дальше уже фундаментальный предел. А человечеству для разных нужд нужны еще более мощные машины. Что делать? Всю Землю обложить процессорами? Но и тогда мы не получим требуемой скорости вычислений. А КК масштабируется очень быстро, уже со ста кубитами он недостижим для настоящих и будущих суперкомпьютеров.

— Другими словами, КК — это что-то вроде чаши Грааля для современной науки и нашей будущей жизни.

Источник — https://zen.yandex.ru/media/otkritaya_seminariya/sozdanie-kvantovogo-interneta-o-samom-bolshom-proryve-v-nauke-zaiavleno-segodnia-27-fevralia-chto-eto-znachit-dlia-chelovechestva-6039ed0b6cd9133fa6eb5fa8?&disable_feed_under_article=false

Рассекречен документ ЦРУ описывающий эксперименты по телепортации предметов и других паранормальных способностях проведенные в Китае

ИНСТИТУТ АЭРОКОСМИЧЕСКОЙ МЕДИЦИНЫ

Исследовательская группа: Сун Кончжи, Ли Сянгао и Чжоу Лянчжун
Субъект с паранормальными способностями: Чжан Баошэн

В этой статье используются строгие научные процедуры. образцы, видеокассеты и высокоскоростная фотография для демонстрации
наличия паранормальной способности преодолевать пространственные барьеры. Исследование также показывает физический процесс этой способности. Это демонстрирует, что через функцию паранормальных способностей, твердое тело смогло пройти через стенку контейнера без видимых повреждений, как самого телепортируемого объекта, так и контейнера.

Преодоление пространственных барьеров — один из видов паранормальных способностей. Характеристика этой способности заключается в том, что человек с этой паранормальной способностью способен извлекать заранее помещенный в герметичный контейнер предмет без повреждение контейнера.

В Китае Ли Шухуан, Чжан Чунци1 и еще одиннадцать ученых обнаружили, что люди с паранормальными способностями могли убирать такие объекты, как гайки, гвозди и связки спичек из герметичной пластиковой канистры с толщиной стенок 35 мм.

В крышке канистры было отверстие 1,55 мм, но крышка не открывалась. Всекитайским паранормальным физическим центром, было установлено, что люди с паранормальными способностями могли извлечь целевую стационарную бумагу из запечатанного конверта из плотной-бумаги не открывая его.

Затем Лю Шухуан, Чжоу Бинхуан и еще 17 человек провели специальное исследование. тестирование на преодоление пространственных барьеров. Они не только продемонстрировали, что люди с паранормальными способностями могли извлекать канцелярские товары из запечатанных конвертов, но они также могут удалить насекомых из стеклянных трубок закрытых плотными колпачками без какого-либо заметного воздействия на жизнь или действия
насекомого.

В то же время в этом эксперименте они также провели эксперимент, в котором испытуемые удаляли губку, смоченную в FeCla. из двухслойного запечатанного бумажного пакета типа KCNS без видимого изменения окраска тестовой бумаги. Это исследование открыло путь для изучения способности преодолевать пространственные преграды.

На основании этих экспериментов мы сочли необходимым использовать даже более строгие методы для дальнейшего доказательства реальности этой способности.

Поэтому целью этого эксперимента было: Использовать более крупные и длинные объекты и сочетать это с видеозаписью и особенно при высокоскоростной фотосъемке, чтобы точно наблюдать, где пространственный барьер был преодолен.

1. Чтобы в полной мере продемонстрировать реальность умения преодолевать пространственные барьеры мы разработали следующие два образца.

ТЕСТОВЫЙ ОБРАЗЕЦ: Мы использовали герметичные прозрачные стеклянные трубки четырех сантиметров в диаметре и от 12 до 13 сантиметров в длину. Внутри этих бутылочек мы поместили 30 таблеток лекарств, окрашенных либо в красный или фиолетовый цвет. Таблетки имели диаметр 5,5 мм и три миллиметра толщиной. Таблетки были помещены в разные флаконы. Каждая бутылка была пронумерована индивидуально. Номера каждой таблетки разного цвета, количество образец, и серийный номер бутылки с образцом были отмечены на тесте.

В экспериментах, помимо обычной видеосъемки, мы также проводили высокоскоростную фотосъемку 200 кадров в секунду, 400 кадров в секунду и 1000 кадров в секунду.

СУБЪЕКТЫ ПАРАНОРМАЛЬНЫХ СПОСОБНОСТЕЙ

Субъект Z с паранормальными способностями, мужчина, 26 лет. История болезни — туберкулез, в настоящее время полностью излечившийся. Нормальное физическое развитие.

1. Всего проведено 50 экспериментов на возможность прорыва пространственного препятствия. Из 50 экспериментов 25 были успешными, 17 были записаны на видео и скоростную фотографию использовали в шести.

ПРИМЕР ПЕРВОГО ЭКСПЕРИМЕНТА: Были получены успешные результаты с двумя бутылками.которые также были сняты на видео. Результаты приведены во второй таблице. Во время обоих экспериментов произошло явление удаления одной половинки таблетки. Это было потому что когда субъект с паранормальными способностями упражнял свои способности и приложив энергию, чтобы встряхнуть бутылки, таблетки разбились надвое. Следует отметить, что хотя они и были разбиты пополам, они были все еще толщиной 1,5 мм, и не мог выйти через прорезь в крышке.

Таблетки действительно были извлечены из закрытой бутылки. Не было повреждения бутылок.

Результаты этой группы экспериментов не только демонстрируют, что точка прорыва — это стена контейнера, но эта точка прорыва возникает во временной последовательности.

Были проведены эксперименты, когда внутрь стеклянной колбы помещалась железная гайка, которую испытуемый перемещал из нее наружу не повредив колбу — железная гайка проходила сквозь стенку контейнера не повреждая ее.

Внутрь контейнера помещался моток эмалированной проволоки, которую испытуемый не дотрагиваясь до контейнера, протягивая пальцы мысленно брал и вытаскивал из контейнера. Проволока проходила сквозь стенку контейнера не повреждая ее.

Объекты проходили сквозь стенки контейнеров на разных скорости. В эксперименте с бутылками потребовалось около 2,5
миллисекунды, чтобы пройти две трети таблетки диаметром один сантиметр через стенку емкости. Средняя скорость была V = 7мм / 2,5 мэ = 2,8.метров в секунду.

Если предположить, что они телепортируются с постоянной скоростью, скорость будет на этом уровне. Несколько медленнее, чем скорость бега спортсмена.

Удаление неэкспонированного пакета фотобумаги из 500 м1 из контейнера заняло более 10 миллисекунд или скорость 30 см / секунду.

Для вытягивания экранированной или эмалевой проволоки из стеклянной трубки скорость может быть еще медленнее, или остановиться на несколько секунд. ‘

Таким образом, из этих экспериментов видно, что скорость, с которой твердое тело (целевые объекты) проходят через пространственные барьеры, могут быть очень медленными, достаточно, чтобы за ним мог наблюдать человеческий глаз.

Однако если стенки контейнера тоньше, телепортация происходит мгновенно и человеческий глаз не может ее зафиксировать. Мы не можем видеть процессы, если целевые объекты гранулированной формы, проходят через тонкие стенки за миллисекунды. Высокоскоростные камеры или видеокамеры с замедленной съемкой могут показать видимую временную прогрессию. Это более четко подтверждает реальность паранормальной способности преодолевать пространственные барьеры.

Где будут востребованы квантовые суперновые компьютеры

Задач, в разрешении которых можно использовать квантовые компьютеры, множество. Главная из них – обработка больших баз данных, то есть работа с Big Data. Поиск сложных решений, прокладывание оптимальных маршрутов, искусственный интеллект, умные нейронные сети – все эти технологии смогут выйти на совершенно новый уровень, получить мощный толчок в развитии.

Моделирование квантовых систем даст возможность строить цепочки сложных белковых соединений. Это откроет новые горизонты в области медицины, фармакологии, вирусологии.

Все решения уже известны

Ещё одна особенность кубитов — зависимость значения от измерения. Это значит, что программист не узнает значение кубита до тех пор, пока его не измерит, а сам факт измерения тоже влияет на значение кубита. Звучит странно, но это особенность квантовых частиц.

Именно благодаря тому, что кубит находится во всех состояниях одновременно до тех пор, пока его не измерили, компьютер мгновенно перебирает все возможные варианты решения, потому что кубиты связаны между собой. Получается, что решение становится известно сразу, как только введены все данные. Суперпозиция и даёт ту параллельность в вычислениях, которая ускоряет работу алгоритмов в разы.

Вся сложность в том, что результат работы квантового компьютера — это правильный ответ с какой-то долей вероятности. И нужно строить алгоритмы таким образом, чтобы максимально приблизить вероятность правильного ответа к единице.

Рабочая температура внутри таких компьютеров — минус 273 градуса по Цельсию

Квантовые компьютеры (перевод с сайта Explaining Computers)

Квантовые вычисления — это быстро развивающаяся область компьютерных исследований, коммерческое применение которой ожидается в ближайшее время. К этому времени квантовые компьютеры превзойдут традиционные компьютеры в определённых задачах, к которым относятся молекулярное и материальное моделирование, оптимизация логистики, финансовое моделирование, криптография и обучение искусственного интелекта.

Основы квантовых вычислений

Традиционные компьютеры построены из кремниевых микросхем, содержащих миллионы или миллиарды миниатюрных транзисторов. Каждый из них может быть включен — в понимании машины это состояние «0» или «1». Впоследствии компьютер хранит и обрабатывают данные, используя «двоичные числа» или «биты».

Квантовые компьютеры работают с «квантовыми битами» или «кубитами». Они могут поддерживаться аппаратно разными способами — например, с помощью квантово-механических свойств сверхпроводящих электрических цепей или отдельных захваченных ионов.

Кубиты могут существовать более чем в одном состоянии или «суперпозиции» в один и тот же момент времени. Что позволяет кубиту принимать значение «1», «0» или оба значения одновременно. Это позволяет квантовому компьютеру обрабатывать гораздо большее количество данных, чем классический компьютер, и выполнять массовую параллельную обработку. Это также означает, что каждый кубит, добавленный в квантовый компьютер, экспоненциально увеличивает его мощность.

Большинство людей теряется, когда слышит про свойства кубита. Подброшенная монета не может выпадать одновременно орлом и решкой. И всё же, квантовому состоянию кубита под силу что-то подобное. Поэтому неудивительно, что известный физик-ядерщик Нильс Бор однажды заявил: «Всякий, кого не шокирует квантовая теория, просто её не понимает!»

Помимо суперпозиций, кубиты могут «запутываться». «Запутанность» — ещё одно ключевое квантово-механическое свойство, означающее, что состояние одного кубита может зависеть от состояния другого. Это означает, что наблюдение за одним кубитом может выявить состояние его ненаблюдаемой пары.

Создавать кубиты и управлять ими очень сложно. Многие из сегодняшних экспериментальных квантовых процессоров используют квантовые явления, возникающие в сверхпроводящих материалах, и, следовательно, нуждаются в охлаждении почти до абсолютного нуля (около минус 272 градусов Цельсия). Также требуется защита от фонового шума, и даже в этом случае выполнение вычислений с использованием кубитов потребуют исправления ошибок. Основной задачей квантовых вычислений является создание отказоустойчивой машины.

Квантовые первопроходцы

К компаниям, которые в настоящее время разрабатывают оборудование для квантовых компьютеров, относятся: IBM, Alibaba, Microsoft, Google, Intel, D-Wave Systems, Quantum Circuits, IonQ, Honeywell, Xanadu и Rigetti. Многие из них работают совместно с исследовательскими группами крупных университетов, и все они продолжают добиваться значительных успехов. Дальше приводится обзор работы каждой из этих компаний.

IBM работает над созданием квантового компьютера уже более 35 лет. Она добилась значительного прогресса с несколькими работающими машинами. Согласно веб-сайту IBM-Q: «Сегодня квантовые вычисления — это игровая площадка для исследователей, но через пять лет они станут мейнстримом». Через пять лет эффект квантовых вычислений выйдет за рамки исследовательской лаборатории. Он будет широко использоваться новыми категориями профессионалов и разработчиков, которые используют этот новый метод вычислений для решения проблем, которые когда-то считались неразрешимыми».

В 2016 году IBM запустила сайт под названием IBM Q Experience, который показал 5-кубитный квантовый компьютер всему интернету. С этого времени, к нему присоединились вторая машина на 5 кубитов и машина на 16 кубитов, обе из которых доступны для экспериментов. Чтобы помочь тем, кто хочет узнать о квантовых вычислениях и принять участие в их разработке, IBM предлагает программную платформу для квантовых вычислений с открытым исходным кодом под названием Qiskit.

В ноябре 2017 года IBM объявила, что к её квантовому облаку добавляются две 20-кубитные машины. Их могут использовать клиенты, которые являются зарегистрированными членами IBM Q Network. IBM описывает это как «всемирное сообщество ведущих компаний, стартапов, академических институтов и национальных исследовательских лабораторий из списка Fortune 500, работающих с IBM над продвижением квантовых вычислений и изучением практических приложений для бизнеса и науки».

Также в ноябре 2017 года IBM объявила что сконструировала квантовый процессор на 50 кубитов, который на тот момент считался самым мощным квантовым оборудованием.

50-кубитный квантовый компьютер IBM

В январе 2019 года IBM объявила о выпуске своей IBM Q System One как «первой в мире интегрированной универсальной системы приближенных квантовых вычислений, разработанной для научного и коммерческого использования». Эта модульная и относительно компактная система предназначена для использования вне лабораторных условий. Вы можете узнать больше о IBM Q System One в этом пресс-релизе.

Google

Ещё один технологический гигант, который усердно работает над тем, чтобы квантовые вычисления стали реальностью, — это Google, у которой есть лаборатория квантового ИИ. В марте 2017 года инженеры Масуд Мохсени, Питер Рид и Хартмут Невен, которые работают на этом объекте, опубликовали статью в Nature. В ней они рассказали, что квантовые вычисления возможны на относительно небольших устройствах, которые появятся в течение следующих пяти лет. Это подтверждает взгляды IBM на сроки появления коммерческих квантовых вычислений.

На раннем этапе развития квантовых вычислений компания Google использовала машину от канадской компании D-Wave Systems. Однако сейчас компания активно разрабатывает собственное оборудование, а в марте 2018 года анонсировала новый 72-кубитный квантовый процессор под названием Bristlecone.

В июне 2019 года директор лаборатории квантового искусственного интеллекта Google Хартмут Невен отчитался, что мощность их квантовых процессоров в настоящее время растет вдвое экспоненциально. Это было названо «законом Невана» и предполагает, что мы можем достичь точки квантового превосходства, когда квантовый компьютер может превзойти любой классический компьютер к концу 2019 года.

В октябре 2019 года команда инженеров Google опубликовала в Nature статью, в которой утверждала, что достигла квантового превосходства. В частности, учёные Google использовали квантовый процессор под названием Sycamore для выборки выходного сигнала псевдослучайной квантовой схемы. Sycamore потребовалось около 200 секунд, чтобы выполнить выборку одного экземпляра схемы миллион раз. Для сравнения, команда Google подсчитала, что классическому суперкомпьютеру потребуется около 10 000 лет для выполнения тех же вычислений. Далее команда пришла к выводу: «Квантовые процессоры на основе сверхпроводящих кубитов теперь могут выполнять вычисления за пределами досягаемости самых быстрых классических суперкомпьютеров, доступных сегодня. Этот эксперимент знаменует собой первое вычисление, которое может быть выполнено только на квантовом процессоре. Таким образом, квантовые процессоры достигли режима квантового превосходства».

Это откровение инженеров Google было большой новостью, но вскоре вызвало споры. IBM опубликовала сообщение в блоге, сказав, что вычисления в эксперименте Google могут быть выполнены на классическом компьютере за два с половиной дня, а не за 10 000 лет. И по утверждению IBM: «Поскольку первоначальное значение термина ‘квантовое превосходство’, предложенное Джоном Прескиллом в 2012 году, заключалось в описании точки, в которой квантовые компьютеры могут делать то, что не могут классические компьютеры — эта граница ещё не преодолена».

Alibaba

В Китае главным интернет-гигантом является Alibaba, а не Google. А в июле 2015 года они объединилась с Китайской Академией Наук, чтобы сформировать «Лабораторию квантовых вычислений CAS — Alibaba». Как пояснил профессор Цзянвэй Пан, их цель состоит в том, чтобы «провести передовые исследования систем, которые кажутся наиболее многообещающими для реализации практических приложений квантовых вычислений, а также разрушить узкие места закона Мура и классических вычислений». Вы можете посетить сайт лаборатории здесь.

Как и IBM, Alibaba сделала экспериментальный квантовый компьютер доступным в Интернете. В частности, в марте 2018 года китайский гигант электронного бизнеса запустил своё «сверхпроводящее облако квантовых вычислений», чтобы обеспечить доступ к 11-кубитному квантовому компьютеру. Он был разработан с Китайской Академией Наук и позволяет пользователям запускать квантовые программы и загружать результаты.

Microsoft

Как и следовало ожидать, Microsoft тоже заинтересована в квантовых вычислениях и работает с некоторыми ведущими учёными и университетами мира. С этой целью Microsoft создала несколько лабораторий «Station Q», например лабораторию в Калифорнийском университете. В феврале 2019 года компания также анонсировала Microsoft Quantum Network, чтобы объединить вместе все партнёрские коалиции.

Ключевым элементом стратегии Microsoft является разработка квантовых компьютеров на основе «топологических кубитов», которые, по мнению компании, будут менее подвержены ошибкам (следовательно, для исправления ошибок потребуется меньшее количество системных ресурсов). Microsoft также считает, что топологические кубиты будет легче масштабировать для коммерческого применения. Согласно статье в Computer Weekly за май 2018 года, вице-президент Microsoft, отвечающий за квантовые вычисления, считает, что коммерческие квантовые компьютеры могут появиться на их облачной платформе Azure всего через пять лет.

Что касается программного обеспечения, то в декабре 2017 года Microsoft выпустила предварительную версию своего инструмента разработчика вычислительной техники. Его можно загрузить бесплатно, он включает язык программирования под названием Q# и симулятор квантовых вычислений. В мае 2019 года Microsoft сообщила, что собирается открыть исходный код инструмента разработчика. А в мае 2020 года компания анонсировала свой сервис облачных вычислений Azure Quantum.

Intel

Intel, как ведущий производитель микропроцессоров в мире, тоже работает над созданием микросхем для квантовых вычислений. Компания применяет два различных подхода. Одно из этих направлений проводится совместно с ведущим голландским пионером квантовых вычислений QuTech. 17 ноября 2017 года Intel объявила о поставке своему партнеру в Нидерландах тестового чипа на 17 кубитов. Затем, в январе 2018 года на выставке CES, компания объявила о поставке тестового квантового процессора на 49 кубитов под названием Tangle Lake.

Второе направление исследований Intel в области квантовых вычислений проводится исключительно внутри компании и включает в себя создание процессоров на основе технологии, называемой «спиновой кубит». Это важное нововведение, поскольку чипы спиновых кубитов производятся с использованием традиционных методов изготовления кремния Intel. В июне 2018 года Intel сообщила, что начала тестирование 26-спинового кубитного чипа.

Спиновые кубиты Intel имеют диаметр всего около 50 нанометров, или 1/1500 ширины человеческого волоса. Это означает, что, возможно, через десять лет Intel сможет производить крошечные квантовые процессоры, содержащие тысячи или миллионы кубитов. В отличие от обычных процессоров, их нужно охлаждать почти до абсолютного нуля. Но потенциал поистине захватывающий. Согласно разделу сайта Intel, посвященному квантовым вычислениям, компания нацелена на производство квантовых процессоров в течение десяти лет и ожидает, что технология начнет входить в свою «коммерческую фазу» примерно в 2025 году.

D-Wave Systems

D-Wave Systems — пионер квантовых вычислений, базирующийся в Канаде, и ещё в 2007 году продемонстрировавший 16-кубитный квантовый компьютер. В 2011 году компания продала 128-кубитную машину D-Wave One за 10 миллионов долларов американской военно-промышленной корпорации Lockheed Martin. В 2013 году — 512-кубитные D-Wave Two ведомству NASA и компании Google. К 2015 году D-Wave преодолела барьер в 1000 кубитов со своим D-Wave 2X, а в январе 2017 года продала свою первую 2000-кубитную машину D-Wave 2000Q фирме, специализирующейся в кибербезопасности, Temporal Defense Systems.

Читая этот список достижений, вы, возможно, пришли к выводу, что D-Wave должен быть ведущим производителем квантовых компьютеров в мире. В конце концов, это единственная компания, которая торгует такими машинами. Тем не менее, работа компании остаётся спорной. Это потому, что их оборудование основано на «адиабатическом» процессе, называемом «квантовый отжиг», который другие пионеры отвергли как «ограничительный» и «тупиковый». IBM, например, использует подход к квантовым вычислениям «на основе затвора», который позволяет ей управлять кубитами аналогично тому, как транзистор управляет потоком электронов в обычном микропроцессоре. Но в системе D-Wave такого контроля нет.

Вместо этого квантовый компьютер D-Wave использует факт того, что все физические системы стремятся к состояниям с минимальной энергией. Так, например, если вы заварите чашку чая и отлучитесь по делам — когда вы вернетесь, она будет холодной, потому что содержимое стремится к минимальному энергетическому состоянию. Кубиты в системе D-Wave также этому подвержены, и поэтому компания использует своё оборудование для решения проблем оптимизации, которые могут быть выражены как «проблемы минимизации энергии». Это ограничивает в возможностях, но всё же позволяет аппаратному обеспечению выполнять определенные алгоритмы намного быстрее, чем классический компьютер. Вы можете ознакомиться с видео, в котором D-Wave объясняет свой подход к квантовым вычислениям.

В августе 2016 года в статье Physical Review X сообщалось, что некоторые алгоритмы работают до 100 миллионов раз быстрее на D-Wave 2X, чем на одноядерном классическом процессоре. Одним из авторов этого исследования оказался технический директор Google. Всё это говорит о том, что мнение о ценности работы D-Wave для развития квантовых вычислений остаётся спорным.

Компания продолжает продвигать свои квантовые компьютеры. В октябре 2018 года D-Wave запустила облачную квантовую среду приложений под названием Leap. Она обеспечивает доступ в реальном времени к квантовому компьютеру D-Wave 2000Q, а в марте 2019 года доступ был расширен, чтобы предоставить такую возможность Японии и всей Европе.

Rigetti

Ещё один игрок в области квантовых вычислений — это стартап под названием Rigetti. В компании уже работает более 120 сотрудников, и они собрали 19-кубитный квантовый компьютер доступный онлайн через свою среду разработки под названием Forest.

Quantum Circuits

Другой стартап — Quantum Circuits, основанный ведущим профессором квантовых вычислений Робертом Шёлкопфом и другими коллегами из Йельского университета. Компания привлекла 18 миллионов долларов венчурного капитала и планирует «победить гигантов компьютерной индустрии» в гонке за создание жизнеспособного квантового компьютера.

IonQ — специализируется в области квантовых вычислений с захваченными ионами. Компания утверждает, что её технология «сочетает в себе непревзойденную физическую производительность, идеальную репликацию кубитов, возможность подключения к оптическим сетям и высокооптимизированные алгоритмы», чтобы «создать квантовый компьютер, который является столь же масштабируемым, сколь и мощным и который будет поддерживать широкий спектр приложений в самых разных отраслях». Если вы хотите узнать больше о квантовых вычислениях, на сайте IonQ есть отличное учебное пособие.

Xanadu

Xanadu разрабатывает фотонные квантовые вычисления, интегрируя «квантовые кремниевые фотонные чипы в существующее оборудование для создания полнофункциональных квантовых вычислений». Как отмечает компания, по сравнению с другими технологиями кубитов, «фотоны очень стабильны и почти не подвержены влиянию случайного шума от тепла. Мы используем фотонные чипы для генерации, управления и измерения фотонов способами, обеспечивающими чрезвычайно быстрые вычисления».

Honeywell

Еще одна компания, которая применяет способ квантовых вычислений с захваченными ионами, является Honeywell. У компании огромный опыт в области бизнес-вычислений. В июне 2020 года Honeywell объявила о создании самого высокопроизводительного квантового компьютера в мире. Остальные компании отнеслись к этому скептически. Но, тем не менее, это ещё одна важная разработка — особенно потому, что как стало известно, американский финансовый холдинг JPMorgan Chase уже экспериментирует со этой системой для разработки приложений финансовых услуг, включая обнаружение мошенничества и торговлю под управлением ИИ.

Amazon

Amazon не объявила о разработке аппаратного или программного обеспечения для квантовых вычислений. Однако, 2 декабря 2019 года гигант запустил ряд квантовых сервисов Amazon Web Services. К ним относится Amazon Bracket, который позволяет учёным, исследователям и разработчикам начинать эксперименты с квантовыми компьютерами от нескольких поставщиков оборудования. В частности, клиенты могут получить доступ к оборудованию от Rigetti, Ion-Q и D-Wave Systems, что означает, что они могут экспериментировать с системами, основанными на трёх различных технологиях кубитов.

Помимо Bracket, Amazon также запустила лабораторию Amazon Quantum Solutions Lab. Она предназначена, чтобы помочь компаниям «подготовиться к квантовым вычислениям», позволяя им работать с ведущими экспертами. Таким образом, ключевая вещь, которую Amazon делает со своими предложениями по квантовым вычислениям, — это действовать в качестве облачного брокера. То есть стать посредником между производителями квантовых компьютеров и теми, кто захочет воспользоваться их мощностями.

Разработчики программного обеспечения для квантовых компьютеров

Даже лучшее всего оборудованный квантовый компьютер не сможет использоваться без соответствующего программного обеспечения, и многие из производителей этих машин разрабатывают собственное. Тем не менее, количество стороннего ПО под квантовые компьютеры постоянно растет.

1QBit

1QBit сотрудничает с крупными компаниями и «ведущими поставщиками оборудования для решения отраслевых задач в области оптимизации, моделирования и машинного обучения». Компания разрабатывает программное обеспечение как для классических, так и для квантовых процессоров.

Cambridge Quantum Computing разрабатывает ПО для квантовых компьютеров под решения «самых интригующих задач» в таких областях, как квантовая химия, квантовое машинное обучение и квантовая кибербезопасность. В число клиентов входят компании, входящие в «некоторые из крупнейших в мире химических, энергетических, финансовых и материаловедческих организаций», которые пробуют использовать возможности квантовых вычислений.

QC Ware

QC Ware разрабатывает «корпоративное программное обеспечение и услуги для квантовых вычислений» с клиентами, включая Airbus, BMW и Goldman Sachs, и партнерами по оборудованию, включая AWS, D-Wave Systems, Google, IBM, Microsoft и Rigetti.

QSimulate

QSimulate разрабатывает ПО, чтобы «использовать возможности количественного моделирования для решения насущных проблем в фармацевтической и химической областях».

Rahko

Rahko создаёт ПО, которое предназначено для использования квантового машинного обучения (квантового ИИ) под решения задач квантовой химии.

Zapata

Zapata работает со своими клиентами над разработкой ПО для квантовых компьютеров под решения сложных вычислительных задач в таких областях, как химия, финансы, логистика, фармацевтика, машиностроение и материалы.

Пользователи приложений квантовых компьютеров

Приложения для квантовых компьютеров включают молекулярное моделирование (также известное как квантовая химия), оптимизацию логистики, финансовое моделирование, криптографию и обучение искусственного интеллекта. Некоторые крупные предприятия уже активно изучают — что именно квантовые машины смогут сделать для их исследований и разработок, продуктов и услуг, а также их чистой прибыли. Я приведу несколько примеров.

Daimler работает как с IBM, так и с Google, чтобы исследовать, как квантовые компьютеры могут использоваться в логистике, чтобы оптимизировать маршруты доставки автомобилей или поток запчастей через фабрики. Компания также изучает, как квантовые компьютеры можно использовать для моделирования химических структур и реакций внутри батарей, чтобы помочь в усовершенствовании электромобилей.

Другой автомобильный гигант — Volkswagen работает с Google и с D-Wave Systems, чтобы применить квантовые компьютеры в решении проблем оптимизации транспортного потока и в разработке лучших аккумуляторов.

В финансовом секторе, JPMorgan работает с IBM, чтобы изучить, как квантовые компьютеры смогут помочь в разработке торговых стратегий, оптимизации портфеля, ценообразования на активы и анализа рисков. Другой финансовый конгломерат — Barclays участвует в сети IBM Q Network, чтобы выяснить, можно ли использовать квантовые компьютеры для оптимизации расчётов по крупным пакетам финансовых транзакций.

В 2011 году аэрокосмический гигант Lockheed Martin стал первым покупателем квантового компьютера, произведенного D-Wave Systems, и продолжил изучение возможности использования этой технологии для приложений, включая управление воздушным движением и проверку системы. Airbus аналогичным образом исследует, как квантовые компьютеры могут ускорить его исследовательскую деятельность, и вложил средства в компанию QC Ware, производящую программное обеспечение для квантовых машин.

Тем временем Accenture Labs и биотехнологическая компания Biogen сотрудничают с 1QBit, исследуя, как можно ускорить открытие лекарств, применив квантовые компьютеры для молекулярных сравнений. В сентябре 2017 года IBM использовала своё 7-кубитное оборудование для моделирования структуры трёхатомной молекулы гидрида бериллия. В октябре 2017 года Google и Rigetti также анонсировали OpenFermion, программу для моделирования химических процессов на квантовом компьютере.

Квантовое будущее

Я надеюсь, что эта статья продемонстрировала вам, как квантовые вычисления довольно быстро превращаются из фантазий в реальность. Разумно предположить, что в 20-х годах из облака будут доступны квантовые суперкомпьютеры, которым найдут практичное применение и это будет стоить недорого. Вполне возможно, что через десять лет основные службы интернет-поиска и облачного ИИ будут использовать возможности квантовых машин, а большинство пользователей этого и не осознают.

Для тех, кто хочет узнать больше, приведу несколько избранных источников для получения дополнительной информации:

  • Кевин Хартнет «Рассвет квантовых вычислений», Quanta Magazine, 18 июня 2019 г.
  • Статья Масуд Мохсени 2017 года «Коммерциализация ранних квантовых технологий»
  • Статья Джона Прескилла «Квантовые вычисления в эпоху NISQ и за её пределами» от 2018 года
  • Сайт IonQ Technology D-Wave Systems, объясняющее квантовый отжиг IBM-Q квантовых вычислений Microsoft Google Quantum AI Intel Quantum Computing D-Wave Systems Quantum Circuits HQS Quantum Simulations

В книге «Digital Genesis» Кристофера Барнатта — автора этой статьи и сайта explainingcomputers.com, вы сможете прочитать о квантовых вычислениях и многом другом, связанном с будущими вычислительными разработками, например органическими компьютерами.

Об авторе

Работаю дворником, в свободное время обустраиваю квартиру, люблю видеоигры и аниме, ну и про тренировки не забываю.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector