Состояние и перспективы развития вычислительных систем и проектных технологий их создания

Основная классификация современных компьютеров

Современные компьютеры различаются по многим критериям: размерам, возможностям, а также по назначению. Прогресс движется семимильными шагами и сегодня на полках магазинов можно найти такую технику, которую еще недавно мы ассоциировали с далеким будущим. Классификация компьютеров и ее понимание помогут потребителю совершить максимально эффективную покупку, а игнорирование подобной информации приведет к необдуманным тратам, которые не вызовут ничего кроме разочарования.

Классификация Флинна

Классификация М. Флинна [38, 303] является одной из самых ранних и наиболее известных классификацией архитектур вычислительных систем. В основу классификации положено понятие потока. Поток — это последовательность, под которой понимается последовательность данных или команд, обрабатываемых процессором. Рассматривая число потоков данных и потоков команд, М. Флинн предложил рассматривать следующие классы архитектур: MIMD, SIMD, SISD , MISD .

Single Instruction Single Data [stream] — «один поток команд, один поток данных», архитектура SISD ( ОКОД ). Описание архитектуры компьютерной системы, подразумевающее исполнение одним процессором одного потока команд, который обрабатывает данные, хранящиеся в одной памяти (рис. 2.1а.).

Multiple Data stream processing — «один поток команд, много потоков данных», архитектура SIMD ( ОКМД ). Описание архитектуры параллельной компьютерной системы, подразумевающее исполнение одной текущей команды несколькими процессорами. Эта команда выбирается из памяти центральным контроллером SIMD-системы, но работает она над разными элементами данных (чаще всего — элементами массива). Для этого каждый процессор имеет ассоциированную с ним память, где хранятся массивы однородных данных. В эту категорию попадают, в частности, векторные процессоры . (рис. 2.1б.).

Multiple Instruction Single Data [stream] — «много потоков команд, один поток данных», архитектура MISD (МКОД). Одна из четырёх возможных архитектур параллельного компьютера в классификации М. Флинна. В этой архитектуре данные подаются на набор процессоров, каждый из которых исполняет свою программу их обработки. Подобная архитектура ещё никогда не была реализована (рис. 2.1в.).

Multiple Instructions — Multiple Data [stream] — «много потоков команд, много потоков данных», архитектура MIMD (МКМД). Одна из четырёх возможных архитектур параллельного компьютера. В этой архитектуре набор процессоров независимо выполняет различные наборы команд, обрабатывающих различные наборы данных. Системы в архитектуре MIMD делятся на системы с распределённой памятью (слабо связанные системы), к которым относятся кластеры, и системы с совместно используемой памятью ( shared-memory multiprocessors ). К последним относятся симметричные мультипроцессорные системы.

В класс SISD входят однопроцессорные последовательные компьютеры. Векторно-конвейерные компьютеры также могут быть отнесены к этому классу, если рассматривать вектор как одно неделимое данное для машинной команды. Это отмечают критики этой классификации.

К классу SIMD относятся классические процессорные матрицы. В них множество процессорных элементов контролируется общим управляющим устройством. Все процессорные элементы одновременно получают от устройства одинаковые команды и обрабатывают свои локальные данные. Если рассматривать каждый элемент вектора как отдельный элемент потока данных, то к этому классу можно отнести и векторно-конвейерные компьютеры .

Класс MIMD включает в себя все многообразие многопроцессорных систем. Если рассматривать конвейерную обработку как выполнение множества команд не над одиночным векторным потоком данных, а над

множественным скалярным потоком, то в этот класс могут быть включены векторно-конвейерные компьютеры .

Классификация Флинна широко используется и сегодня для начального описания вычислительных систем.

У этой классификации есть очевидные недостатки:

  • в нее четко не вписываются отдельные нашедшие применение архитектуры. Например, векторно-конвейерные компьютеры и компьютеры, управляемые потоками данных;
  • класс MIMD очень перегружен: в него вошли все многопроцессорные системы. При этом они существенно отличаются по ряду признаков (числом процессоров, природе и топологией и видами связей между ними, способами организации памяти и технологиями программирования).

Несколько классификаций, предложенных позже, расширяют классификацию М. Флинна. Примером такой классификации может служить классификация Ванга и Бригса.

Статьи к прочтению:

2.1.1. Этапы развития вычислительных машин Компьютер– это универсальное, электронное программно-управляемое устройство для хранения, обработки и передачи…

Физические принципы работы электронных устройств ЭВМ таковы, что компьютер может воспринимать команды, состоящие только из единиц и нулей, т. е. машинный…

1. Первое поколение компьютерной техники

К первому поколению обычно относят машины, созданные на рубеже 50_х гг.

Особенностями этих машин являются: пользование в качестве элементной базы электронных ламп, применение ЗУ на линиях задержки, наличие ЗУ. В большинстве машин первого поколения была реализована концепция хранимой программы.

Эти компьютеры были огромными, неудобными и слишком дорогими машинами, которые мог приобрести только крупные корпорации и правительства. Лампы потребляли огромное количество электроэнергии и выделяли много тепла.

Набор команд был небольшой, схема арифметико-логического устрой­ства и устройства управления достаточно проста, программное обеспечение практически отсутствовало. Показатели объема оперативной памяти и быстродействия были низкими. Для ввода-вывода использовались перфоленты, перфокарты, магнитные ленты и печатающие устройства. Быстродействие — порядка 10-20 тыс. операций в секунду, емкость оперативной памяти – 2К или 2048 машинных слов длиной 48 двоичных знаков.

Программы для этих машин писались на языке конкретной машины. Математик, составивший программу, садился за пульт управления машины, вво­дил и отлаживал программы и производил по ним счет.

Несмотря на ограни­ченность возможностей, эти машины позволили выполнить сложней­шие расчеты, необходимые для прогнозирования погоды, решения за­дач атомной энергетики и др.

Опыт использования машин первого поколения показал, что существует огромный разрыв между временем, затрачиваемым на раз­работку программ, и временем счета. Эти трудности начали преодо­левать путем интенсивной разработки средств автоматизации про­граммирования, создания систем обслуживающих программ, упрощающих работу на машине и увеличивающих эффективность ее использования.

Отечественные машины первого поколения: МЭСМ (малая электронная счетная машина), БЭСМ-1, «Стрела», «Урал-1», «Урал-2», М-20, М-3.

Что такое микроэлектроника

Электроника прошла несколько этапов развития, за время которых сменилось несколько поколений элементной базы: дискретная электроника электровакуумных приборов, дискретная электроника полупроводниковых приборов, интегральная электроника микросхем (микроэлектроника), интегральная электроника функциональных микроэлектронных устройств (функциональная микроэлектроника).

Что такое элементная база и где она применяется

Элементная база электроники развивается непрерывно возрастающими темпами. Каждое из приведенных поколений, появившись в определенный момент времени, продолжает совершенствоваться в наиболее оправданных направлениях. Развитие изделий электроники от поколения к поколению идет в направлении их функционального усложнения, повышения надежности и срока службы, уменьшения габаритных размеров, массы, стоимости и потребляемой энергии, упрощения технологии и улучшения параметров электронной аппаратуры.

Современный этап развития электроники характеризуется широким применением интегральных микросхем (ИМС). Это связано со значительным усложнением требований и задач, решаемых электронной аппаратурой, что привело к росту числа элементов в ней. Число элементов постоянно увеличивается. Разрабатываемые сейчас сложные системы содержат десятки миллионов элементов. В этих условиях исключительно важное значение приобретают проблемы повышения надежности аппаратуры и ее элементов, микроминиатюризация электронных компонентов и комплексной миниатюризации аппаратуры. Все эти проблемы успешно решает микроэлектроника.

Становление микроэлектроники как самостоятельной науки стало возможным благодаря использованию богатого опыта и базы промышленности, выпускающей дискретные полупроводниковые приборы. Однако по мере развития полупроводниковой электроники выяснились серьезные ограничения применения электронных явлений и систем на их основе. Поэтому микроэлектроника продолжает продвигаться быстрыми темпами как в направлении совершенствования полупроводниковой интегральной технологии, так и в направлении использования новых физических явлений.

Разработка любых ИМС представляет собой довольно сложный процесс, требующий решения разнообразных научно-технических проблем. Вопросы выбора конкретного технологического воплощения ИМС решаются с учетом особенностей разрабатываемой схемы, возможностей и ограничений, присущих различным способам изготовления, а также технико-экономического обоснования целесообразности массового производства.

ЭВМ

Эти вопросы находят решение путем использования двух основных классов микросхем — полупроводниковых и гибридных. Оба эти класса могут иметь различные варианты структур, каждый из которых с точки зрения проектирования и изготовления обладает определенными преимуществами и недостатками. По своим конструктивным и электрическим характеристикам полупроводниковые и гибридные интегральные схемы дополняют друг друга и могут одновременно применяться в одних и тех же радиоэлектронных комплексах.
При массовом выпуске различных ИМС малой мощности, особенно предназначенных для ЭВМ, используются, в основном, полупроводниковые ИМС. Гибридные микросхемы заняли доминирующее положение в схемах с большими электрическими мощностями, а также в устройствах СВЧ, в которых можно применять как толстопленочную технологию, не требующую жестких допусков и высокой точности нанесения и обработки пленок, так и тонкопленочную технологию для обеспечения нанесения пленочных элементов очень малых размеров.

Элементная база радиолюбителя

Интересный исторический факт: когда еще не было электрических паяльников, то выручала обычная пятикопеечная монета. Ее определенным образом затачивали и приклепывали к железной проволоке с деревянной ручкой. Будучи нагретой в пламени спиртовки монета вполне справлялась с функцией паяльника. Сейчас, конечно, такой совет кажется просто нелепым, но ведь было же!

При современной элементной базе, которая постоянно пополняется новыми микросхемами и транзисторами, таким «паяльником» просто нечего делать, ведь в некоторых случаях при ремонте электронной техники приходится пользоваться микроскопом. Таким образом, элементная база определяет не только конструкцию электронных устройств, а еще и то, какими инструментами эти устройства будут собираться или ремонтироваться.

Достаточно просто и наглядно развитие элементной базы можно проследить на различных поколениях ЭВМ, по современной терминологии компьютеров. Вот уже почти сорок лет развивающийся рынок персональных компьютеров как локомотив тащит за собой кремниевые технологии, что вызывает появление все новых и новых электронных компонентов.

Таблица элементная база в поколениях ЭВМ

Электромеханические вычислительные машины

Еще до создания ЭВМ использовались электромеханические вычислительные устройства – табуляторы. Первый табулятор был изобретен еще в 1890 году Германом Хопперитом в США, для подсчета результатов переписи населения. Ввод информации осуществлялся с перфокарт, а результаты обработки выдавались в виде распечатки на бумаге. Табуляторы были основным оборудованием машиносчетных станций – МСС. В СССР МСС дожили до семидесятых годов двадцатого столетия, по крайней мере, в составе крупных госпредприятий.

Основной задачей МСС был расчет заработной платы. Именно оттуда появлялись расчетные листки, которые до сих пор называют «корешками». Внешний вид «современного» табулятора показан на рисунке (квадрат с правого бока это рабочая программа, набранная проводами на коммутационной панели). Вес такой вычислительной техники достигал 600 кг. В 1939 году в США по заказу военных фирмой IBM была разработана вычислительная машина Mark 1.

Ее элементной базой были электромеханические реле. Сложение двух чисел она выполняла за 0,3 сек, а умножение за 3. Mark 1 предназначалась для расчета баллистических таблиц. Компьютер Mark 1 содержал около 750 тысяч деталей, для соединения которых потребовалось 800 км проводов. Его размеры: высота 2,5м, длина 17 м.

Поколения ЭВМ и элементная база

Первое поколение ЭВМ было построено на электронных лампах. Так в Великобритании в 1943 году была создана ЭВМ Colossus. Правда, она была узкоспециализированная, ее назначение состояло в расшифровке немецких кодов путем перебора разных вариантов. Устройство содержало 2000 ламп, при этом скорость работы составляла 500 знаков в секунду.

Что такое элементная база и где она применяется

Первым универсальным ламповым компьютером считается ENIAC, созданный в 1946 году в США по заказу военных. Размеры этой ЭВМ очень впечатляют: 25 м в длину и почти 6 м в высоту. Машина содержала 17000 электронных ламп и выполняла в секунду около 300 операций умножения, что намного больше, чем у релейной машины Mark 1. Потребляемая мощность была около 150 КВт. С помощью расчетов на ЭВМ ENIAC была доказана теоретическая возможность создания водородной бомбы.

В Советском Союзе в период с 1948…1952 год также проводились разработки ламповых ЭВМ, как и в США, использовавшихся в основном военными. Одной из лучших ламповых ЭВМ советского производства следует признать машины серии БЭСМ (большая электронная счетная машина). Всего было выпущено шесть моделей БЭСМ-1 … БЭСМ-2 (ламповые) БЭСМ-3 … БЭСМ-6 уже на транзисторах. На момент создания каждая модель этой серии была лучшей в мире в классе универсальных ЭВМ.

Второе поколение ЭВМ 1955 – 1970 гг

Элементной базой второго поколения были транзисторы и полупроводниковые диоды. По сравнению с ламповыми, транзисторные ЭВМ были менее габаритны, потребляемая мощность также была намного ниже. Быстродействие ЭВМ второго поколения достигало до полумиллиона операций в секунду, появились внешние запоминающие устройства на магнитных носителях – магнитные ленты и магнитные барабаны, были созданы алгоритмические языки и операционные системы.

Второе поколение ЭВМ

Третье поколение ЭВМ 1965 – 1980 гг

Для третьего поколения в качестве элементной базы использовались микросхемы малой и средней степени интеграции – в одном корпусе содержалось до нескольких десятков полупроводниковых элементов. Прежде всего это были микросхемы серий К155, К133. Быстродействие таких ЭВМ достигало 1 млн. операций в секунду, появились монохромные алфавитно – цифровые видеотерминалы (у машин второго поколения использовались телетайпы и специальные пишущие машинки).

Дальнейшее развитие элементной базы привело к созданию микросхем большой (БИС) и сверхбольшой (СБИС) степени интеграции. В одном корпусе таких микросхем содержится несколько сотен элементов. Эти микросхемы в СССР были представлены серией К580.

Третье поколение ЭВМ

Четвертое поколение ЭВМ 1980 – настоящее время

Это поколение появилось на свет благодаря созданию фирмой Intel в 1971 году микропроцессора, что было явлением просто революционным. Чип Intel 4004 при размерах кристалла 3,2*4,2 мм, содержал 2300 транзисторов и имел тактовую частоту 108 КГц. Его вычислительная мощность была эквивалентна ЭВМ ENIAC. На базе этого устройства был создан новый тип компьютера микро – ЭВМ. Первые персональные компьютеры (ПК) были выпущены в 1976 году фирмой Apple, но в 1980 году фирма IBM перехватила инициативу, создав свой ПК IBM PC, архитектура которого стала международным стандартом профессиональных ПК. Современные процессоры второго поколения Core i7 фирмы Intel содержат свыше миллиарда транзисторных структур.

Сверхпроизводительные СуперКомпьютеры и системы ЭВМ

это самые мощные вычислительные системы. В настоящее время к ним относятся: суперЭВМ «Gray» и «IBM SP2» (США). СуперКомпьютер требуют особого температурного режима при эксплуатации, например, охлаждения жидким азотом. Их производительность несопоставима с производительностью компьютеров других классов. Например, модель «Gray-3» является 16-процессорной машиной с быстродействием более 10 млрд операций в секунду, а в модели СS 5400 число процессоров доведено до 64.

классификация эвм

Что такое микроэлектроника

Электроника прошла несколько этапов развития, за время которых сменилось несколько поколений элементной базы: дискретная электроника электровакуумных приборов, дискретная электроника полупроводниковых приборов, интегральная электроника микросхем (микроэлектроника), интегральная электроника функциональных микроэлектронных устройств (функциональная микроэлектроника).

Что такое элементная база и где она применяется

Элементная база электроники развивается непрерывно возрастающими темпами. Каждое из приведенных поколений, появившись в определенный момент времени, продолжает совершенствоваться в наиболее оправданных направлениях. Развитие изделий электроники от поколения к поколению идет в направлении их функционального усложнения, повышения надежности и срока службы, уменьшения габаритных размеров, массы, стоимости и потребляемой энергии, упрощения технологии и улучшения параметров электронной аппаратуры.

Современный этап развития электроники характеризуется широким применением интегральных микросхем (ИМС). Это связано со значительным усложнением требований и задач, решаемых электронной аппаратурой, что привело к росту числа элементов в ней. Число элементов постоянно увеличивается. Разрабатываемые сейчас сложные системы содержат десятки миллионов элементов. В этих условиях исключительно важное значение приобретают проблемы повышения надежности аппаратуры и ее элементов, микроминиатюризация электронных компонентов и комплексной миниатюризации аппаратуры. Все эти проблемы успешно решает микроэлектроника.

Становление микроэлектроники как самостоятельной науки стало возможным благодаря использованию богатого опыта и базы промышленности, выпускающей дискретные полупроводниковые приборы. Однако по мере развития полупроводниковой электроники выяснились серьезные ограничения применения электронных явлений и систем на их основе. Поэтому микроэлектроника продолжает продвигаться быстрыми темпами как в направлении совершенствования полупроводниковой интегральной технологии, так и в направлении использования новых физических явлений.

Разработка любых ИМС представляет собой довольно сложный процесс, требующий решения разнообразных научно-технических проблем. Вопросы выбора конкретного технологического воплощения ИМС решаются с учетом особенностей разрабатываемой схемы, возможностей и ограничений, присущих различным способам изготовления, а также технико-экономического обоснования целесообразности массового производства.

ЭВМ

Эти вопросы находят решение путем использования двух основных классов микросхем — полупроводниковых и гибридных. Оба эти класса могут иметь различные варианты структур, каждый из которых с точки зрения проектирования и изготовления обладает определенными преимуществами и недостатками. По своим конструктивным и электрическим характеристикам полупроводниковые и гибридные интегральные схемы дополняют друг друга и могут одновременно применяться в одних и тех же радиоэлектронных комплексах.
При массовом выпуске различных ИМС малой мощности, особенно предназначенных для ЭВМ, используются, в основном, полупроводниковые ИМС. Гибридные микросхемы заняли доминирующее положение в схемах с большими электрическими мощностями, а также в устройствах СВЧ, в которых можно применять как толстопленочную технологию, не требующую жестких допусков и высокой точности нанесения и обработки пленок, так и тонкопленочную технологию для обеспечения нанесения пленочных элементов очень малых размеров.

Элементная база радиолюбителя

Интересный исторический факт: когда еще не было электрических паяльников, то выручала обычная пятикопеечная монета. Ее определенным образом затачивали и приклепывали к железной проволоке с деревянной ручкой. Будучи нагретой в пламени спиртовки монета вполне справлялась с функцией паяльника. Сейчас, конечно, такой совет кажется просто нелепым, но ведь было же!

При современной элементной базе, которая постоянно пополняется новыми микросхемами и транзисторами, таким «паяльником» просто нечего делать, ведь в некоторых случаях при ремонте электронной техники приходится пользоваться микроскопом. Таким образом, элементная база определяет не только конструкцию электронных устройств, а еще и то, какими инструментами эти устройства будут собираться или ремонтироваться.

Достаточно просто и наглядно развитие элементной базы можно проследить на различных поколениях ЭВМ, по современной терминологии компьютеров. Вот уже почти сорок лет развивающийся рынок персональных компьютеров как локомотив тащит за собой кремниевые технологии, что вызывает появление все новых и новых электронных компонентов.

Таблица элементная база в поколениях ЭВМ

Электромеханические вычислительные машины

Еще до создания ЭВМ использовались электромеханические вычислительные устройства – табуляторы. Первый табулятор был изобретен еще в 1890 году Германом Хопперитом в США, для подсчета результатов переписи населения. Ввод информации осуществлялся с перфокарт, а результаты обработки выдавались в виде распечатки на бумаге. Табуляторы были основным оборудованием машиносчетных станций – МСС. В СССР МСС дожили до семидесятых годов двадцатого столетия, по крайней мере, в составе крупных госпредприятий.

Основной задачей МСС был расчет заработной платы. Именно оттуда появлялись расчетные листки, которые до сих пор называют «корешками». Внешний вид «современного» табулятора показан на рисунке (квадрат с правого бока это рабочая программа, набранная проводами на коммутационной панели). Вес такой вычислительной техники достигал 600 кг. В 1939 году в США по заказу военных фирмой IBM была разработана вычислительная машина Mark 1.

Ее элементной базой были электромеханические реле. Сложение двух чисел она выполняла за 0,3 сек, а умножение за 3. Mark 1 предназначалась для расчета баллистических таблиц. Компьютер Mark 1 содержал около 750 тысяч деталей, для соединения которых потребовалось 800 км проводов. Его размеры: высота 2,5м, длина 17 м.

Поколения ЭВМ и элементная база

Первое поколение ЭВМ было построено на электронных лампах. Так в Великобритании в 1943 году была создана ЭВМ Colossus. Правда, она была узкоспециализированная, ее назначение состояло в расшифровке немецких кодов путем перебора разных вариантов. Устройство содержало 2000 ламп, при этом скорость работы составляла 500 знаков в секунду.

Что такое элементная база и где она применяется

Первым универсальным ламповым компьютером считается ENIAC, созданный в 1946 году в США по заказу военных. Размеры этой ЭВМ очень впечатляют: 25 м в длину и почти 6 м в высоту. Машина содержала 17000 электронных ламп и выполняла в секунду около 300 операций умножения, что намного больше, чем у релейной машины Mark 1. Потребляемая мощность была около 150 КВт. С помощью расчетов на ЭВМ ENIAC была доказана теоретическая возможность создания водородной бомбы.

В Советском Союзе в период с 1948…1952 год также проводились разработки ламповых ЭВМ, как и в США, использовавшихся в основном военными. Одной из лучших ламповых ЭВМ советского производства следует признать машины серии БЭСМ (большая электронная счетная машина). Всего было выпущено шесть моделей БЭСМ-1 … БЭСМ-2 (ламповые) БЭСМ-3 … БЭСМ-6 уже на транзисторах. На момент создания каждая модель этой серии была лучшей в мире в классе универсальных ЭВМ.

Второе поколение ЭВМ 1955 – 1970 гг

Элементной базой второго поколения были транзисторы и полупроводниковые диоды. По сравнению с ламповыми, транзисторные ЭВМ были менее габаритны, потребляемая мощность также была намного ниже. Быстродействие ЭВМ второго поколения достигало до полумиллиона операций в секунду, появились внешние запоминающие устройства на магнитных носителях – магнитные ленты и магнитные барабаны, были созданы алгоритмические языки и операционные системы.

Второе поколение ЭВМ

Третье поколение ЭВМ 1965 – 1980 гг

Для третьего поколения в качестве элементной базы использовались микросхемы малой и средней степени интеграции – в одном корпусе содержалось до нескольких десятков полупроводниковых элементов. Прежде всего это были микросхемы серий К155, К133. Быстродействие таких ЭВМ достигало 1 млн. операций в секунду, появились монохромные алфавитно – цифровые видеотерминалы (у машин второго поколения использовались телетайпы и специальные пишущие машинки).

Дальнейшее развитие элементной базы привело к созданию микросхем большой (БИС) и сверхбольшой (СБИС) степени интеграции. В одном корпусе таких микросхем содержится несколько сотен элементов. Эти микросхемы в СССР были представлены серией К580.

Третье поколение ЭВМ

Четвертое поколение ЭВМ 1980 – настоящее время

Это поколение появилось на свет благодаря созданию фирмой Intel в 1971 году микропроцессора, что было явлением просто революционным. Чип Intel 4004 при размерах кристалла 3,2*4,2 мм, содержал 2300 транзисторов и имел тактовую частоту 108 КГц. Его вычислительная мощность была эквивалентна ЭВМ ENIAC. На базе этого устройства был создан новый тип компьютера микро – ЭВМ. Первые персональные компьютеры (ПК) были выпущены в 1976 году фирмой Apple, но в 1980 году фирма IBM перехватила инициативу, создав свой ПК IBM PC, архитектура которого стала международным стандартом профессиональных ПК. Современные процессоры второго поколения Core i7 фирмы Intel содержат свыше миллиарда транзисторных структур.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector