Системная шина — важнейший элемент компьютера

Что такое компьютерная шина (computer bus)

Персональный компьютер — устройство сколь сложное, столько и простое. Сложное оно потому, что за его элементами стоит многолетний труд инженеров. Просто из-за того, что внутреннее его устройство спроектировано как можно проще. Основным фактором этого является стандартизация узлов ПК. Сегодня речь пойдёт об одной из важнейших его составляющих — компьютерных шинах.

Как правило, на обывательском уровне принято уравнивать компьютерную шину и используемые ею разъём. Конечно, это неправильный подход. Разъём это один из составляющих компьютерной шины.

Если говорить обобщённо, то компьютерная шина это специализированная подсистема, которая отвечает за передачу данных между комплектующими персонального компьютера или между функциональными блоками.

Прародителями современных компьютерных шин были группы проводников, чья функция состояла в том, чтобы подключить оперативную память и различные периферийные устройства к центральному процессору. Уже на начальном этапе сложилась практика использования различных интерфейсов (разъёмов) для подключения устройств. Кроме того, определилось разделение шин на локальные (или внутренние) и периферийные (внешние). И те, и другие отвечают за подключение к материнской плате. Разница в том, что локальные шины отвечают за подключение к материнской плате внутренних устройств компьютера (т.е. тех, что внутри корпуса), а внешние шины отвечают за подключение периферийных устройств (которых находятся вне корпуса компьютера).

Во всей этой схеме центральным звеном является материнская плата. Именно на ней мы можем увидеть множество разъёмов. Это должно сказать нам, что материнская плата представляет собой скопление множества шин. В общем-то, её главная функция как раз и заключается в том, чтобы связывать между собой внутренние и внешние устройства.

Что такое компьютерная шина (computer bus)

Материнская плата это множество разъемов и габариты побольше прочих.

Различные устройства подключаются через северный и южный мосты на материнской плате. Данная концепция зарекомендовала себя как проверенная временем. И, несмотря на появление большого числа новых интерфейсов и эволюцию типоразмеров ПК, эта схема остаётся неизменной уже долгое время.

Говоря о компьютерных шинах, невозможно не упомянуть две важнейших категории — последовательные и параллельные шины. Это разделение основывается на количестве сигнальных линий, используемых в шине.

В последовательной компьютерной шине сигнальная линия одна. При этом допускается использование двух каналов для разделения потоков приёма и передачи. Чтобы не слишком усложнять описание, скажем, что в последовательной шине биты передаются один за другим (последовательно, как ни странно).

Что такое компьютерная шина (computer bus)

Передача информации через последовательную шину.

Передаваемые биты облекаются в байт (8 бит = 1 байт). Первым делом передаётся так называемый стартовый бит. Он является противоположной полярностью состоянию незанятой линии. После этого передаются 8 бит полезной информации. После этого идёт бит чётности, а последним стоповый бит. Он говорит о том, что передача завершена.

Из описания последовательной шины может показаться, что их «ширина» составляет только один бит. Но это совсем не так. Хотя принцип устройства последовательной шины и подразумевает передачу бит за битом, ширина это шины может быть и 2 бита, и 8 бит, и так далее. При этом данные разделены на логическом уровне.

Из примеров последовательной шины очень распространенным является стандарт RS-232, применяемый, как правило, при соединении различного компьютерного и телекоммуникационного оборудования.

Параллельные шины представляют собой своего рода совокупность сигнальных линий. В параллельных шинах ширина соответствует количеству сигнальных линий. Другими словами, ширина параллельных шин соответствует количеству передаваемых битов информации. Сигнал каждой линии может принимать два значения — 0 или 1. На физическом уровне это означает, что в параллельной шине используется большее число проводов или стекловолокон, нежели в последовательной. Если последовательная и параллельные шины работают на одной и той же частоте, то параллельный канал окажется быстрее.

Для стабильной передачи сигнала параллельные каналы передачи данных обладают дополнительными контрольными сигналами и, как следствие, контроллером, который отвечает за управление процессом обмена данными. Это несколько усложняет процесс обмена данными, поскольку контроллеру требуется внешних синхронизирующий сигнал.

Из известных примеров параллельных шин можно вспомнить ISA, ATA (также известен как IDE или PATA), SCSI или PCI.

Скорее всего, читателя интересует вопрос, какой из двух подходов лучше. Как ни странно, живы оба. Причина лежит на физическом уровне.

По сути, скорость передачи данных это тактовая частота, которую надо помножить на разрядность. В параллельных шинах на скорость передачи данных влияют следующие факторы: неэффективная проводимость материалов, помехи, недостатки конструкции и сборки и прочее. В последовательных шинах повышение частоты упирается в возможности приемопередающих цепей. Фактически, если говорить о последовательных шинах, то всё упирается в свойства используемого кабеля. На текущий момент свойств оптического кабеля хватает для передачи данных. Поэтому последовательный способ передачи данных рано сбрасывать со счетов. Тем более, если речь идёт о передачи на дальние расстояния.

Также необходимо упомянуть такие понятия, как шина адреса, шина данных и шина управления.

Шина адреса — это компьютерная шина, которая используется центральным процессором или другими устройствами, обладающими прямым доступом к памяти, для указания физического адреса слова ОЗУ (или начала блока слов), к которому устройство может обратиться для проведения чтения или записи.

Шина данных — это компьютерная шина, отвечающая за передачу данных между компонентами компьютера.

Шина управления — это компьютерная шина, передающая сигналы, которые сообщают устройствам, какую операцию необходимо проводить.

Напоследок о такой важной характеристике компьютерных шин как пропускная способность, которая измеряется в количестве бит в секунду (бит/с) или байт в секунду (Б/с). Скорость работы параллельных шин обычно измеряют в байтах в секунду, а последовательных — в битах в секунду.

Системная шина

Системная шина – это совокупность путей передачи данных, которые обеспечивают взаимосвязанную работу между остальными элементами компьютера: процессором, видеоадаптером, жесткими дисками и другими компонентами. Данное устройство состоит из нескольких уровней:

  • механического;
  • электрического или физического;
  • логического и уровня управления.

Что называют шинами процессора?

Ш инами процессора называются специальные линии, которые обеспечивают обмен информацией между ним и всеми остальными компонентами компьютера. Шины подразделяются на несколько видов. Давайте рассмотрим каждый вид в отдельности.

За копирование данных между регистрами процессора и оперативной памятью отвечает шина данных.

Чтобы процессор имел возможность считывать данные из « оперативки » у него имеется специальная адресная шина. Через эту шину процессор указывает ОЗУ адрес той ячейки, информация из которой нужна ему в данный момент, чтобы оперативная память считала её и передала ему.

Адресная шина это дорога с односторонним движением, так как она служит для передачи сигналов только от процессора к ОЗУ, но не обратно.

Чтобы процессор имел возможность обрабатывать информацию ему необходимо знать, что делать с байтами данных, которые на данный момент присутствуют в его регистрах. А для этого ему нужно передавать команды, именно этой цели служит шина команд.

Все команды поступают в процессор от « оперативки » из тех областей, где базируются программы. Все команды передаются в виде байтов – простые занимают всего 1 байт, но есть и такие, для передачи которых нужно занять несколько байтов.

Каждая шина — это как отдельный канал, который служит для скоростного обмена информацией с процессором .

Количество бит данных, которые можно передать за единицу времени определяют разрядность шины, а от разрядности зависит её пропускная способность. Разрядность разных шин может быть различной, чаще всего различается разрядность у адресной шины и шины данных.

В современных материнских платах чаще всего применяются 32 и 64-разрядные шины данных и 32-разрядная адресная шина. От разрядности адресной шины зависит объём адресного пространства – количество ячеек памяти, которые может занять процессор.

Разрядность шин определяет величину такого параметра как разрядность процессора.

Какие бывают шины в современном компьютере?

Собственно, поводом для данной статьи послужила некоторая запутанность терминологии, связанной с архитектурой современных компьютеров. Шин становится все больше, чипсеты все интегрированнее и что есть где, разобраться все сложнее. Так что окинем беглым взглядом современную архитектуру PC.

Итак, всем известно, что основой любого современного персонального компьютера, то бишь PC, является процессор. Он же CPU, он же «камень», он же «проц». Основная задача процессора — обработка данных в соответствии с заданными правилами. То есть подавая на процессор два числа и команду «сложить», мы получим в результате сумму этих чисел. И глубже в дебри того, как именно это происходит, лезть не будем. Но естественным образом встает вопрос, откуда процессор берет данные и куда они потом отправляются. Для этих операций требуется интерфейс с устройствами ввода-вывода. И это именно то, для чего нужна так называемая материнская или системная плата. На плате расположен чипсет (chipset) или, попросту говоря, набор микросхем, обеспечивающий взаимодействие процессора с окружающей действительностью (устройствами ввода-вывода и хранения информации). Собственно говоря, можно интегрировать чипсет вместе с процессором на один полупроводниковый кристалл и получить так называемую однокристальную систему (system-on-chip), но пока что в области PC это не выгодно, что убедительно продемонстрировал Intel, отказавшись от разработки Timna.

По современным архитектурным канонам чипсет состоит из двух микросхем (число два тоже, в общем-то, определяется соотношением цены и степени интегрированности). Вполне возможно, что в скором будущем эти два кристалла сольются в экстазе (как будет видно позже, к тому все и идет), но пока экономически и технологически выгоднее их разделять. Две составляющие чипсета называются «северным мостом» (он же Host Bridge) и «южным мостом» (PCI-to-ISA Bridge). Северный мост непосредственно соединен с процессором специальной шиной, которая называется системной (эта же шина носит гордое имя FSB — Front side bus). С другой стороны северный мост соединен с оперативной памятью (для чего содержит контроллер памяти). С третьей стороны он соединяется с шиной AGP (тоже при помощи соответствующего контроллера) и таким образом обеспечивает вывод на экран. И, наконец, с четвертой стороны северный мост связан с шиной PCI. Южный мост находится по другую сторону шины PCI и общение с процессором и памятью у него происходит через эту шину и северный мост. По крайней мере, так было до недавнего времени — то есть до Intel BX и VIA KT133 включительно. Южный мост обеспечивает работу шины ISA (и устройств, работающих через ISA — клавиатуры, мыши и портов), IDE (жесткие диски, CD-ROM и прочее), USB и взаимодействие с BIOS’ом. То есть, практически, северный мост обеспечивает работу внутрисистемных ресурсов, а южный — периферии. Схема системы с подобной архитектурой на рис. 1.

Однако, начиная с чипсета i810 у Intel и VIA Apollo Pro266/KT266 у VIA (Ali, кстати, тоже обещает в ближайших чипсетах), была введена так называемая хабовая (от слова Hub) архитектура (рис. 2).

Северный мост был переименован в GMCH (Graphics and Memory Controller Hub), а южный — в ICH (Input/Output Controller Hub). При этом основная раскладка ресурсов осталась прежней, но шина PCI полностью отошла к ICH, а передача данных между хабами осуществлялась по выделенной высокоскоростной шине. Зачем это было сделано, опять-таки, речь ниже.

Теперь рассмотрим отдельные шины подробнее. Начнем, естественно, с системной шины. Итак, шина FSB соединяет процессор и северный мост и имеет иширину 64 бита или 8 байт (здесь и дальше имеется в виду ширина той части шины, по которой передаются данные). У Intel эта шина называется AGTL+, у AMD — EV6. Частота шины FSB — это именно та частота, которая умножается на коэффициент умножения процессора и определяет его рабочую частоту. Так, номинальная частота FSB для процессоров Celeron — 66 МГц, для Pentium III — 100 или 133 МГц, для последних процессоров AMD (Athlon, Duron) — 100 МГц (но поскольку спецификация EV6 предусматривает передачу данных по фронту и спаду синхроимпульса, то эффективная частота в этом случае получается 200 МГц).

Еще одна важная (скорее, даже основная) характеристика любой шины — максимальная пропускная способность. Она определяет максимальный объем данных, который можно передать по шине в единицу времени, и получается простым умножением разрядности на частоту. Соответственно, для Celeron (неразогнанного) пропускная способность FSB будет 533 Мб/с, для PIII — 800 или 1066 Мб/с, для Athlon — 1600 Мб/с. Естественно, полностью потенциал шины в реальных системах никогда не реализуется, поскольку любой запрос данных от процессора предусматривает некоторую задержку перед их передачей.

Шина памяти. Соединяет северный мост (контроллер памяти) и память. Тоже имеет ширину 64 бита (для процессоров класса Pentium и выше, у 486 было 32 бита). До недавнего времени частота шины памяти и FSB всегда совпадала. Однако в современных чипсетах можно устанавливать для этих шин различные рабочие частоты. Скажем, чипсет VIA Apollo Pro 133A позволяет устанавливать частоту шины памяти на 33 МГц больше или меньше частоты FSB (то есть 66, 100 и 133 МГц). Чипсет VIA KT133 (под Athlon) позволяет ставить частоты 100 или 133 МГц. Аналогичная ситуация и с последними чипсетами от Intel. Таким образом, для типичной на сегодня памяти стандарта PC100 SDRAM мы получаем пропускную способность 800 Мб/с, для PC133 — 1066 Мб/с. Реальный поток данных для шины памяти будет, минимум, раза в два (а скорее, в 5-6 раз) меньше в силу различных задержек, связанных с механизмом работы схем памяти. Собственно говоря, именно это перманентное несовпадение пропускной способности шин FSB, памяти и реального быстродействия памяти и двигало технологический прогресс: DRAM->FPM DRAM ->EDO DRAM ->PC66 SDRAM -> PC100 SDRAM -> PC133 SDRAM.

Один из вариантов решения проблемы был предложен компанией Rambus с ее печально знаменитой DRDRAM (Direct Rambus DRAM). Эта память предусматривала 16-разрядную шину данных и работу на частоте 400 МГц по обоим фронтам синхросигнала. Соответственно, эффективная частота получалась 800 МГц, а пропускная способность — 1600 Мб/с (для одного канала Rambus, а их может быть несколько). Однако, несмотря на радужные перспективы, Rambus не получила распространения (в основном, по экономическим и, опять же, технологическим соображениям) и нынче все больше занимается судебными искми, а не технологиями. Единственный чипсет i820, поддерживающий DRDRAM, медленно, но верно ползет на свалку истории. Второй вариант — DDR SDRAM в стандарте PC266. То есть та же самая SDRAM, но работающая по обоим фронтам 133 МГц синхросигнала. Соответственно, пропускная способность 2.1 Гб/с. Ну и реальный поток данных побольше, чем у SDRAM. Сейчас VIA объявила первые массовые DDR чипсеты VIA Apollo Pro266/KT266, так что скоро посмотрим, что будет в реальности.

Следующая шина — шина AGP. Расшифровывается это как Accelerated Graphics Port. Разработан стандарт APG был фирмой Intel, и, соответственно, впервые поддержка AGP появилась в чипсете Intel BX. С появлением APG видеокарте фактически была выделена собственная скоростная шина к памяти (контроллер AGP находится в северном мосту, контроллер памяти — там же). Сделано это было, чтобы освободить шину PCI от потока данных, требующегося для работы появившихся примерно в то же время 3D-ускорителей. Шина AGP 32-разрядная и работает на частоте 66 МГц. Соответственно ее пропускная способность — 266 Мб/с. Затем последовали спецификации AGP 2X и 4X, обеспечивающие пропускные способности 532 Мб/с и 1064 Мб/с. AGP позволяет видеокарте напрямую работать с оперативной памятью и использовать часть ее в качестве текстурной памяти. Особенно это актуально для видеоконтроллеров, интегрированных непосредственно в северный мост (например, i810). Кстати, чипсеты, поддерживающие частоту FSB 133 МГц «по-настоящему», отличаются от тех, которые просто можно разогнать до 133 МГц тем, что используют при тактировании AGP переменный коэффициент умножения и частота APG остается равной 66 МГц. В остальном же смотрите статью Макса Курмаза «AGP: полное руководство».

Из шин, поддерживаемых северным мостом, у нас остается только шина PCI (Peripherial Component Interconnect). Тоже разработана Intel и служит для подключения устройств расширения (звук, сеть и прочее). Шина 32-разрядная, работает на частоте 33 МГц (тоже должна обеспечиваться переменным делителем). Соответственно, пропускная способность — 133 МГц. Шина PCI поддерживает режим работы Bus Mastering. То есть PCI-устройство может захватить управление шиной и организовать передачу данных без участия процессора. В мостовой архитектуре чипсета поддержка PCI обеспечивалась северным мостом, в хабовой за нее отвечает южный. В первом случае кроме передачи данных от PCI-устройств, шина PCI выполняла еще одну задачу — обеспечивала связь между северным и южным мостами (то есть, фактически, между оперативной и дисковой памятью).

В хабовой архитектуре эта связь осуществляется по специальной шине. Intel ввела ее, начиная с чипсета i810, VIA — со свежеобъявленных Apollo Pro266/KT266, ALi тоже намеревается последовать их примеру в ближайших чипсетах. У Intel эта шина называется Intel Hub Interface, у VIA — V-Link. С разрядностью и рабочей частотой ситуация не совсем понятна, поскольку обе компании особо не распространяются о спецификациях. Точно известна только пропускная способность — в обоих случаях 266 Мб/с.

Далее следует шина IDE (integrated drive electronics), служащая для связи с внешними накопителями — винчестерами, CD-ROM и т.д. Подключение устройств осуществляется 40- или 80-жильным кабелем, тактовая частота 16.5 МГц (половина частоты PCI), контроллер расположен в южном мосту (в случае ATA-100 может использоваться внешний контроллер). Соответственно, пропускная способность в режиме PIO Mode 4 — 16.5 Мб/с, в режиме Ultra DMA33 — 33 Мб/с (работа по обоим фронтам), Ultra DMA66 — 66 Мб/с (используется 80-жильный кабель, в котором сигнальные провода экранированы друг от друга земляными, что позволило существенно улучшить временные параметры сигнала) и, наконец, новомодный Ultra DMA100 — 100 Мб/с. Тут, как обычно, максимальная пропускная способность недостижима, и в любом случае скорость передачи ограничивается скоростью линейного чтения с диска. Единственный случай, когда скорость может приближаться к максимальной — если данные берутся непосредственно из буфера винчестера.

Такова, вкратце, архитектура современного компьютера. Мы еще не коснулись шин ISA, USB и прочих внешних устройств, но эти вопросы не так принципиальны. А оценить путь данных и возможные узкие места на этом пути вы теперь можете сами.

Системная шина — что это?

Здравствуйте, уважаемые читатели блога Pc-information-guide.ru. Очень часто на просторах интернета можно встретить много всякой компьютерной терминологии, в частности — такое понятие, как «Системная шина». Но мало кто знает, что именно означает этот компьютерный термин. Думаю, сегодняшняя статья поможет внести ясность.

sistemnaia-shina-komp`iutera

Системная шина (магистраль) включает в себя шину данных, адреса и управления. По каждой их них передается своя информация: по шине данных — данные, адреса — соответственно, адрес (устройств и ячеек памяти), управления — управляющие сигналы для устройств. Но мы сейчас не будем углубляться в дебри теории организации архитектуры компьютера, оставим это студентам ВУЗов. Физически магистраль представлена в виде многочисленных дорожек (контактов) на материнской плате.

Я не случайно на фотографии к этой статье указал на надпись «FSB». Дело в том, что за соединение процессора с чипсетом отвечает как раз шина FSB, которая расшифровывается как «Front-side bus» — то есть «передняя» или «системная». И , на который обычно ориентируются при разгоне процессора, например.

Существует несколько разновидностей шины FSB, например, на материнских платах с процессорами Intel шина FSB обычно имеет разновидность QPB, в которой данные передаются 4 раза за один такт. Если речь идет о процессорах AMD, то там данные передаются 2 раза за такт, а разновидность шины имеет название EV6. А в последних моделях CPU AMD, так и вовсе — нет FSB, ее роль выполняет новейшая HyperTransport.

Итак, между чипсетом и центральным процессором данные передаются с частотой, превышающей частоту шины FSB в 4 раза. Почему только в 4 раза, см. абзац выше. Получается, если на коробке указано 1600 МГц (эффективная частота), в реальности частота будет составлять 400 МГц (фактическая). В дальнейшем, когда речь пойдет о разгоне процессора (в следующих статьях), вы узнаете, почему необходимо обращать внимание на этот параметр. А пока просто запомните, чем больше значение частоты, тем лучше.

Кстати, надпись «O.C.» означает, буквально «разгон», это сокращение от англ. Overclock, то есть это предельно возможная частота системной шины, которую поддерживает материнская плата. Системная шина может спокойно функционировать и на частоте, существенно ниже той, что указана на упаковке, но никак не выше нее.

Вторым параметром, характеризующим системную шину, является . Это то количество информации (данных), которая она может пропустить через себя за одну секунду. Она измеряется в Бит/с. Пропускную способность можно самостоятельно рассчитать по очень простой формуле: частоту шины (FSB) * разрядность шины. Про первый множитель вы уже знаете, второй множитель соответствует разрядности процессора — помните, x64, x86(32)? Все современные процессоры уже имеют разрядность 64 бита.

Итак, подставляем наши данные в формулу, в итоге получается: 1600 * 64 = 102 400 МБит/с = 100 ГБит/с = 12,5 ГБайт/с. Такова пропускная способность магистрали между чипсетом и процессором, а точнее, между северным мостом и процессором. То есть системная, FSB, процессорная шины — все это синонимы. Все разъемы материнской платы — видеокарта, жесткий диск, оперативная память «общаются» между собой только через магистрали. Но FSB не единственная на материнской плате, хотя и самая главная, безусловно.

10-08-2014-001

Как видно из рисунка, Front-side bus (самая жирная линия) по-сути соединяет только процессор и чипсет, а уже от чипсета идет несколько разных шин в других направлениях: PCI, видеоадаптера, ОЗУ, USB. И совсем не факт, что рабочие частоты этих подшин должны быть равны или кратны частоте FSB, нет, они могут быть абсолютно разные. Однако, в современных процессорах часто контроллер ОЗУ перемещается из северного моста в сам процессор, в таком случае получается, что отдельной магистрали ОЗУ как бы не существует, все данные между процессором и оперативной памятью передаются по FSB напрямую с частотой, равной частоте FSB.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector