Схемотехника блоков питания персональных компьютеров. Часть 1

Схемотехника блоков питания персональных компьютеров. Часть 1.

Блок питания компьютера

Один из самых важных блоков персонального компьютера — это, конечно, импульсный блок питания. Для более удобного изучения работы блока есть смысл рассматривать каждый его узел по отдельности, особенно, если учесть, что все узлы импульсных блоков питания различных фирм практически одинаковые и выполняют одни и те же функции. Все блоки питания рассчитаны на подключение к однофазной сети переменного тока 110/230 вольт и частотой 50 – 60 герц. Импортные блоки на частоту 60 герц прекрасно работают и в отечественных сетях.

Основной принцип работы импульсных блоков питания заключается в выпрямлении сетевого напряжения с последующим преобразованием его в переменное высокочастотное напряжение прямоугольной формы, которое понижается трансформатором до нужных значений, выпрямляется и фильтруется.

Таким образом, основную часть схемы любого компьютерного блока питания, можно разделить на несколько узлов, которые производят определённые электрические преобразования. Перечислим эти узлы:

Сетевой выпрямитель. Выпрямляет переменное напряжение электросети (110/230 вольт).

Высокочастотный преобразователь (Инвертор). Преобразует постоянное напряжение, полученное от выпрямителя в высокочастотное напряжение прямоугольной формы. К высокочастотному преобразователю отнесём и силовой понижающий импульсный трансформатор. Он понижает высокочастотное переменное напряжение от преобразователя до напряжений, требуемых для питания электронных узлов компьютера.

Узел управления. Является «мозгом» блока питания. Отвечает за генерацию импульсов управления мощным инвертором, а также контролирует правильную работу блока питания (стабилизация выходных напряжений, защита от короткого замыкания на выходе и пр.).

Промежуточный каскад усиления. Служит для усиления сигналов от микросхемы ШИМ-контроллера и подачи их на мощные ключевые транзисторы инвертора (высокочастотного преобразователя).

Выходные выпрямители. С помощью выпрямителя происходит выпрямление — преобразование переменного низковольного напряжения в постоянное. Здесь же происходит стабилизация и фильтрация выпрямленного напряжения.

Это основные части блока питания компьютера. Их можно найти в любом импульсном блоке питания, начиная от простейшего зарядника для сотового телефона и заканчивая мощными сварочными инверторами. Отличия заключаются лишь в элементной базе и схемотехнической реализации устройства.

Довольно упрощённо структуру и взаимосвязь электронных узлов компьютерного блока питания (формат AT) можно изобразить следующим образом.

Упрощённая структура импульсного блока питания персонального компьютера

О всех этих частях схемы будет рассказано в дальнейшем.

Рассмотрим принципиальную схему импульсного блока питания по отдельным узлам. Начнём с сетевого выпрямителя и фильтра.

Блок питания.

Это один из самых главных элементов системного блока, так как без питания вся электронная начинка становится просто кучей железа, поэтому к его выбору отнеситесь серьезно. На рисунке показан стандартный блок питания, который устанавливается во всех системных блоках.

Размещается он в верхней части системного блока, и предназначен для преобразования напряжения сети 220В переменного тока в напряжение постоянного тока, которое необходимо для работы компьютера. С внешней стороны в разъем (2) подключается шнур питания 220 вольт, а с внутренней от него отходит пучок проводов (5) уже с нужным напряжением 3.3, 5 и 12 вольт, на конце которых имеются разъемы (5), предназначенные для подключения внутренних элементов компьютера.

Выключателем (1) можно включать или отключать блок питания, вентилятор (4) осуществляет забор воздуха в системный блок через его штатные отверстия в корпусе, и, выбрасывая его из системного блока, способствует дополнительному перемешиванию воздушного потока внутри компьютера, попутно охлаждая свои радиокомпоненты. Переключатель (3) предназначен для переключения входящего напряжения 110 или 220 вольт. Я настоятельно не рекомендую пытаться переключать его, поломкой одного блока питания не отделаетесь, по умолчанию все стоит как надо.

А теперь, собственно разъемы блока питания:
1— подается основное напряжение для материнской платы;
2— является вспомогательным разъёмом для питания процессора и устанавливается на материнскую плату;
3— запитываются периферийные устройства типа старых оптических приводов или жестких дисков IDE, а так же через насадки (6) подается дополнительное питание на видеокарту в зависимости от конфигурации компьютера;
4— предназначен для подключения дисководов FDD, так называемые «флоппики»;
5— питает устройства с интерфейсом SATA (жесткие диски, оптические приводы).

Надеюсь, Вы уже разобрались, для чего нужен блок питания со всеми его проводами и разъемами. А теперь поговорим о таком важном параметре источников питания – мощности.

На сегодняшний день минимум мощности для компьютерных блоков питания составляет 450-500 Ватт. Эти цифры берутся при суммировании энергопотребления каждым элементом, входящим в комплект компьютера, и конечно 30% запас мощности, а куда же без него. Запас прочности должен быть всегда. Вдруг, Вы со временем захотите более мощную видеокарту, или процессор по шустрей, а это не исключено, значит, нагрузка на блок питания возрастет, а запаса нет. Что? Правильно. Бежим в магазин.

Для среднего домашнего игрового компьютера мощность должна составлять около 600Ватт, брать меньше просто нет смысла, но и увлекаться в сторону увеличения тоже не стоит. Зачем переплачивать за то, что возможно не будет востребовано. Добротный блок сегодня стоит не менее 80 — 130 долларов, брать за меньшую сумму не вижу смысла,так как можете нарваться на подделку.

Скажем, есть два абсолютно одинаковых по всем параметрам блоков питания, только цена у них разная, естественно возникает вопрос, в чем разница? Из личного опыта скажу, когда занимаешься ремонтом радиоаппаратуры, и стоит взглянуть внутрь, сразу видно какого качества сборка того или иного аппарата. Китайские инженеры очень хорошо умеют удешевлять конструкцию аппаратуры, но во вред надежности и времени эксплуатации.

Если на плате вместо половины радиодеталей стоят перемычки, или вообще ничего нет, где должно быть, а использование деталей с заниженными параметрами приводит их к быстрому износу, а следовательно, и выходу из строя. Такой блок питания будет работать, но на пределе своих возможностей, из-за недостаточной нагрузочной способности, а ведь его первостепенная задача надежно обеспечить питанием все компоненты компьютера. Как правило, дешевые модели при выходе из строя тянут за собой более половины компьютера. Так что, при выборе источника питания выбирайте только солидные брэнды, например InWin, FSP, CoolerMaster, Hiper. В интернете всегда можно найти обзоры и тесты этих блоков питания и ориентироваться по ним.

И еще один совет. Выбирая корпус, а они, как правило, идут со встроенными источниками питания, обязательно спросите продавца, или посмотрите сами, какая мощность установленного блока. Если она ниже расчетной, попросите заменить на более мощную модель. Основные параметры указываются на боковой стороне компьютерных блоков питания, на рисунке я выделил прямоугольниками. В верхнем прямоугольнике указаны модель и мощность 430Ватт, а в нижнем, как Вы сами догадались, входные- выходные напряжения, ток нагрузки по каждому напряжению и мощность.

И главное — качественный источник питания, это, прежде всего залог здоровья и стабильности работы Вашего домашнего компьютера: не экономьте на питании.

Устройство блока питания компьютера. Фильтр ЭМП.

Устройство блока питания компьютера включает в себя фильтр ЭМП — это входной фильтр блока питания подавляет два типа электромагнитных помех: синфазных (common-mode) и дифференциальных (differential-mode). Для первого типа характерно течение тока в одном направлении, а во втором случае ток течет в разных направлениях.

Дифференциальные помехи подавляются с помощью включенного параллельно нагрузке конденсатора СХ, представляющий собой пленочный конденсатор. Иногда на провода вешают дроссель, выполняющий ту же функцию.

Устройство блока питания также в себя включает конденсаторы CY, которые образуют фильтр синфазных помех. Они соединяют линии питания в общей точке с землей и так называемым синфазным дросселем (LF1 на схеме), в обмотках которого ток течет в одном направлении, тем самым создавая сопротивление для таких помех.

Схема фильтра электромагнитных помех

Дешевые модели блоков питания оснащают минимальным набором деталей фильтра, а дорогие имеют повторяющиеся звенья. В прошлом фильтр ЭМП и вовсе не входил в устройство блока питания. Даже сейчас можно встретить дешевый блок питания без фильтра, но такие курьезные случаи за годы значительно уменьшились. Являясь мощным источником помех, такой блок питания будет негативно влиять на включенную в бытовую сеть технику.

Устройство блока питания хорошего качества включает в себя детали, защищающие владельца или сам блок питания от повреждений. Как правило, используется плавкий предохранитель, защищающий от короткого замыкания (F1). При срабатывании предохранителя, блок питания перестанет быть защищаемым объектом. В случае короткого замыкания пробивает ключевые транзисторы, поэтому необходимо предотвратить возгорание электропроводки. Сгоревший предохранитель будет уже бессмысленно менять заменять.

Фильтр электромагнитных помех (Antec VP700P)

Для защиты от кратковременных скачков напряжения используется варистор (MOV – Metal Oxide Varistor). К сожалению, устройство блока питания не включает в себя защиту от длительного повышения напряжения, поэтому используют внешние стабилизаторы, оснащенные трансформатором внутри.

Конденсатор в цепи PFC после выпрямителя способен сохранять существенный заряд в случае отключения от питания. Для безопасности устанавливается разряжающий резистор большого номинала. Иногда в устройство блока питания интегрируется управляющая схема, не дающая заряду утекать в процессе работы устройства.

Присутствие фильтра в блоке питания для компьютера и другой компьютерной техники означает то, что покупка варисторного фильтра вместо удлинителя не имеет смысла. Они имеют одинаковую начинку. Главное условие для комфортного использования — это нормальная трехконтактная проводка с заземлением, иначе соединенные с землей конденсаторы CY просто не смогут нормально функционировать.

Ремонт блока питания пошагово — проверка и замена конденсаторов

Проблема завышенного напряжения дежурки заключается в банальном увеличении ESR электролитических конденсаторов в цепях питания. Ищем эти конденсаторы на схеме и проверяем их. Нам понадобится ESR метр.

ESR метр для работы

Проверяю первый конденсатор в цепи дежурного питания.

Расположение первого конденсатора в цепи дежурного питания на схеме

Как выглядит первый конденсатор в цепи дежурного питания

ESR в пределах нормы. Проверяем второй.

Расположение второго конденсатора на схеме

Второй конденсатор дежурного питания в БП

Ждем, когда на экране мультиметра появится какое-либо значение, но ничего не меняется.

Значение на экране мультиметра

По крайней мере, один из виновников проблемы найден. Перепаиваем конденсатор на точно такой же по номиналу и рабочему напряжению, взятый с донорской платы блока питания. Здесь остановимся подробнее.

Если вы решили поставить в блок питания ATX электролитический конденсатор не с донора, а новый, обязательно покупайте LOW ESR конденсаторы, а не обычные. Обычные конденсаторы плохо работают в высокочастотных цепях, а в блоке питания именно такие цепи.

Итак, включаем блок питания и снова замеряем напряжение на дежурке. Наученные горьким опытом уже не торопимся ставить новый защитный стабилитрон и замеряем напряжение на дежурке, относительно земли. Напряжение 12 вольт и раздается высокочастотный свист.

Далее мы попробовали поменять конденсатор емкостью 10 мкФ. Это одна из типичных неисправностей данного блока питания

Замеряем ESR на конденсаторе.

Конденсатор для замера ESR

Расположение конденсатора, у которого измеряется ESR

Результат, как и в первом случае: прибор зашкаливает.

Некоторые говорят, мол зачем собирать какие-то приборы, типа вздувшиеся нерабочие конденсаторы итак видно — они припухшие или вскрывшиеся розочкой.

Пример нерабочего конденсатора

С одной стороны, мы согласны с этим. Но это касается только конденсаторов большого номинала. Конденсаторы относительно небольших номиналов не вздуваются. В их верхней части нет насечек, по которым они могли бы раскрыться. Поэтому их просто невозможно определить на работоспособность визуально. Остается только менять их на заведомо рабочие.

Итак, мы нашли второй нужный конденсатор и на всякий случай измерили его ESR. Оно оказалось в норме. После впаивания второго конденсатора в плату, включаем блок питания клавишным выключателем и измеряем дежурное напряжение. То, что и требовалось — 5,02 вольта.

Измеряем все остальные напряжения на разъеме блока питания. Все соответствуют норме. Отклонения рабочих напряжений менее 5 %. Осталось впаять стабилитрон на 6,3 Вольта.

К слову, мы долго думали, почему стабилитрон именно на 6,3 Вольта, когда напряжение дежурки равно +5 Вольт? Логичнее было бы поставить на 5,5 вольт или аналогичный, если бы он стоял для стабилизации напряжения на дежурке. Скорее всего этот стабилитрон стоит здесь как защитный, чтобы в случае повышения напряжения на дежурке выше 6,3 Вольт, он сгорел и замкнул накоротко цепь дежурки, отключив тем самым блок питания и сохранив материнскую плату от сгорания.

Вторая функция этого стабилитрона, скорее всего, защита ШИМ-контроллера от поступления на него завышенного напряжения. Так как дежурка соединена с питанием микросхемы через достаточно низкоомный резистор, на 20 ножку питания микросхемы ШИМ поступает почти то же самое напряжение, что и на дежурке.

Как устроен компьютерный блок питания и как его запустить без компьютера

Во всех современных компьютерах используются блоки питания стандарта ATX. Ранее использовались блоки питания стандарта AT, в них не было возможности удаленного запуска компьютера и некоторых схемотехнических решений. Введение нового стандарта было связано и с выпуском новых материнских плат. Компьютерная техника стремительно развивалась и развивается, поэтому возникла необходимость улучшения и расширения материнских плат. С 2001 года и был введен этот стандарт.

Содержание статьи

Как устроен компьютерный блок питания и как его запустить без компьютера

Давайте рассмотрим, как устроен компьютерный блок питания ATX.

Устройство компьютерного блока питания

Расположение элементов на плате

Для начала взгляните на картинку, на ней подписаны все узлы блока питания, далее мы кратко рассмотрим их предназначение.

Все узлы бока питания

Чтобы вы поняли, о чем пойдет речь дальше, ознакомьтесь со структурной схемой боока питания.

Упрощенная структурная схема ИБП

А вот схема электрическая принципиальная, разбитая на блоки.

Принципиальная схема компьютерного блока питания

На входе блока питания стоит фильтр электромагнитных помех из дросселя и ёмкости (1 блок). В дешевых блоках питания его может не быть. Фильтр нужен для подавления помех в электропитающей сети возникших в результате работы импульсного источника питания.

Все импульсные блоки питания могут ухудшать параметры электропитающей сети, в ней появляются нежелательные помехи и гармоники, которые мешают работе радиопередающих устройств и прочего. Поэтому наличие входного фильтра крайне желательно, но товарищи из Китая так не считают, поэтому экономят на всём. Ниже вы видите блок питания без входного дросселя.

Блок питания без входного дросселя

Дальше сетевое напряжение поступает на выпрямительный диодный мост, через предохранитель и терморезистор (NTC), последний нужен для зарядки фильтрующих конденсаторов. После диодного моста установлен еще один фильтр, обычно это пара больших электролитических конденсаторов, будьте внимательны, на их выводах присутствует большое напряжение. Даже если блок питания выключен из сети следует предварительно их разрядить резистором или лампой накаливания, прежде чем трогать руками плату.

После сглаживающего фильтра напряжение поступает на схему импульсного блока питания она сложная на первый взгляд, но в ней нет ничего лишнего. В первую очередь запитывается источник дежурного напряжения (2 блок), он может быть выполнен по автогенераторной схеме, а может быть и на ШИМ-контроллере. Обычно – схема импульсного преобразователя на одном транзисторе (однотактный преобразователь), на выходе, после трансформатора, устанавливают линейный преобразователь напряжения (КРЕНку).

Однотактный и двухтактный преобразователь

Типовая схема с ШИМ-контроллером выглядит примерно так:

Схема с ШИМ-контроллером

Вот увеличенная версия схемы каскада из приведенного примера. Транзистор стоит в автогенераторной схеме, частота работы которой зависит от трансформатора и конденсаторов в его обвязке, выходное напряжение от номинала стабилитрона (в нашем случае 9В) который играет роль обратной связи или порогового элемента который шунтирует базу транзистора при достижении определенного напряжения. Оно дополнительно стабилизируется до уровня 5В, линейным интегральным стабилизатором последовательного типа L7805.

Часть принципиальной схемы БП

Дежурное напряжение нужно не только для формирования сигнала включения (PS_ON), но и для питания ШИМ-контроллера (блок 3). Компьютерные блоки пиатния ATX чаще всего построены на TL494 микросхеме или её аналогах. Этот блок отвечает за управление силовыми транзисторами (4 блок), стабилизацию напряжения (с помощью обратной связи), защиту от КЗ. Вообще 494 – это культовая микросхема используется в импульсной технике очень часто, её можно встретить и в мощных блоках питания для светодиодных лент. Вот её распиновка.

На приведенном примере силовые транзисторы (2SC4242) из 4 блока включаются через «раскачку» выполненную на двух ключах (2SC945) и трансформаторе. Ключи могут быть любыми, как и остальные элементы обвязки – это зависит от конкретной схемы и производителя. Обе пары ключей нагружены на первичные обмотки соответствующих трансформаторов. Раскачка нужна, поскольку для управления биполярными транзисторами нужен приличный ток.

Часть принципиальной схемы БП

Последний каскад – выходные выпрямители и фильтры, там расположены отводы от обмоток трансформаторов, диодные сборки Шоттки, дроссель групповой фильтрации и сглаживающие конденсаторы. Компьютерный блок питания выдаёт целый ряд напряжений для функционирования узлов материнской платы, питания устройств ввода-вывода, питания HDD и оптических приводов: +3.3В, +5В, +12В, -12В, -5В. От выходной цепи запитан и охлаждающий кулер.

Часть принципиальной схемы БП

Диодные сборки представляют собой пару диодов соединенных в общей точки (общий катод или общий анод). Это быстродействующие диоды с малым падением напряжения.

Быстродействующие диоды с малым падением напряжения

Дополнительные функции

Продвинутые модели компьютерных блоков питания могут дополнительно оснащаться платой контроля оборотов кулера, которая подстраивает их под соответствующую температуру, когда вы нагружаете блок питания, кулер крутится быстрее. Такие модели более комфортны в использовании, поскольку создают меньше шума при малых нагрузках.

В дешевых источниках питания кулер подключен напрямую к линии 12В и работает на полную мощность постоянно, это усиливает его износ, в результате чего шум станет еще больше.

Если ваш блок питания имеет хороший запас по мощности, а материнская плата и комплектующие довольно скромные по потреблению – можно перепаять кулер на линию 5В или 7В припаяв его между проводами +12В и +5В. Плюс кулера к желтому проводу, а минус к красному. Это снизит уровень шума, но не стоит так делать, если блок питания нагружен полностью.

Дополнительные функции БП

Еще более дорогие модели оснащены активным корректором коэффициента мощности, как уже было сказано, он нужен для уменьшения влияния источника питания на питающую сеть. Он формирует нужные напряжения на входных каскадах ИП, при этом сохраняя изначальную форму питающего напряжения. Достаточно сложное устройство и в пределах этой статьи подробнее рассказывать о нем не имеет смысла. Ряд эпюр отображает примерный смысл использования корректора.

Активный корректор коэффициента мощности

Схема корректора

Проверка работоспособности

К компьютеру ИП подключается через стандартизированный разъём, он универсален в большинстве блоков, за исключением специализированных источников питания, которые могут использовать ту же клеммную колодку, но с иной распиновкой, давайте рассмотрим стандартный разъём и назначение его выводов. У него 20 выводов, на современных материнских платах подключается дополнительных 4 вывода.

Кроме основного 20-24 контактного разъёма питания из блока выходят провода с колодками для подключения напряжения к жесткому диску, оптическому приводу SATA и MOLEX, дополнительное питание процессора, видеокарты, питание для флоппи-дисковода. Все их распиновки вы видите на картинке ниже.

Распиновки разьемов БП

Разьемы блоков питания

Конструкция всех разъёмов таков, чтобы вы случайно не вставили его «вверх ногами», это приведет к выходу из строя оборудования. Главное, что стоит запомнить: красный провод – это 5В, Жёлтый – 12В, Оранжевый – 3.3В, Зеленый – PS_ON – 3. 5В, Фиолетовый – 5В, это основные которые приходится проверять до и после ремонта.

Помимо общей мощности блока питания большую роль играет мощность, а вернее ток каждой из линий, обычно они указываются на наклейке на корпусе блока. Эта информация станет очень кстати, если вы собрались запускать свой блок питания ATX без компьютера для питания других устройств.

Характеристики блока питания

При проверке блока желательно его отключить от материнской платы, это предотвратит превышение напряжений выше номинальных (если блок всё же не исправен). Но на холостом ходу запускать его не рекомендуют, это может привести к проблемам и поломке. Да и напряжения на холостом ходу могут быть в норме, но под нагрузкой значительно проседать.

В качественных блоках питания установлена защита, которая отключает схему при отклонении от нормальных напряжений, такие экземпляры вообще не включатся без нагрузки. Далее мы подробно рассмотрим, как включать блок питания без компьютера и какую можно повесить нагрузку.

Использование блока питания без компьютера

Если вы вставите вилку в розетку и включите тумблер на задней панели блока, напряжений на выводах не будет, но должно появиться напряжение на зеленом проводе (от 3 до 5В), и фиолетовом (5В). Это значит, что источник дежурного питания в норме, и можно пробовать запускать блок питания.

На самом деле всё достаточно просто, нужно замкнуть зеленый провод на землю (любой из черных проводов). Здесь всё зависит от того как вы будете использовать блок питания, если для проверки, то можно это сделать пинцетом или скрепкой. Если он будет включен постоянно или вы будете выключать его пол линии 220В, то скрепка, вставленная между зеленым и черным проводом рабочее решение.

Использование блока питания без компьютера

Другой вариант – это установить кнопку с фиксацией или тумблер между этими же проводами.

Установка кнопки или тумблера

Кнопка управления

Чтобы напряжения блока питания были в норме при его проверке нужно установить нагрузочный блок, можно его сделать из набора резисторов по такой схеме. Но обратите внимание на величину резисторов, по каждому из них будет протекать большой ток, по линии 3.3 вольта порядка 5 Ампер, по линии 5 вольт – 3 Ампера, по линии 12В – 0.8 Ампер, а это от 10 до 15Вт общей мощности по каждой линии.

Резисторы нужно подбирать соответствующие, но не всегда их можно найти в продаже, особенно в небольших городах, где малый выбор радиодеталей. В других вариантах схемы нагрузки, токи еще больше.

Один из вариантов исполнения подобной схемы:

Схема блока питания

Другой вариант использовать лампы накаливания или галогеновые лампы, на 12В подойдут от автомобиля их можно использовать и на линиях с 3.3 и 5В, стоит только подобрать нужные мощности. Еще лучше найти автомобильные или мотоциклетные 6В лампы накаливания и подключить несколько штук параллельно. Сейчас продаются 12В светодиодные лампы большой мощности. Для 12В линии можно использовать светодиодные ленты.

Если вы планируете использовать компьютерный блок питания, например, для питания светодиодной ленты, будет лучше, если вы немного нагрузите линии 5В и 3.3В.

Заключение

Блоки питания ATX отлично подходят для питания радиолюбительских конструкций и как источник для домашней лаборатории. Они достаточно мощные (от 250, а современные от 350Вт), при этом можно найти на вторичном рынке за копейки, также подойдут и старые модели AT, для их запуска нужно лишь замкнуть два провода, которые раньше шли на кнопку системного блока, сигнала PS_On на них нет.

Если вы собрались ремонтировать или восстанавливать подобную технику, не забывайте о правилах безопасной работы с электричеством, о том, что на плате есть сетевое напряжение и конденсаторы могут оставаться заряженными долгое время.

Включайте неизвестные блоки питания через лампочку, чтобы не повредить проводку и дорожки печатной платы. При наличии базовых знаний электроники их можно переделать в мощное зарядное для автомобильных аккумуляторов или в лабораторный блок питания. Для этого изменяют цепи обратной связи, дорабатывают источник дежурного напряжения и цепи запуска блока.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector