Выбираем способ хранения данных и важной информации: руководство Overclockers.ru
Выбор устройства для хранения информации в 2017 году – это очень спорная тема. Прошли уж те времена, когда можно было выбирать только из HDD небольшого объема или компакт-дисков: сегодня спектр таких решений велик, как никогда. Мы определимся и с тем, зачем хранить, и с тем, на чем хранить. Ведь найти идеальные для себя способы хранения и бэкапирования информации можно достаточно легко.
Страницы материала
Основные понятия
Внешняя память — это память, реализованная в виде внешних, относительно материнской платы, устройств с различными принципами хранения информации и типами носителей, предназначенных для длительного хранения информации. В частности, во внешней памяти хранится все программное обеспечение компьютера. Внешние запоминающие устройства могут находиться в системном блоке компьютера или в отдельных корпусах. Физически внешняя память реализована в виде дисковых накопителей.
Диски — это запоминающие устройства, предназначенные для хранения больших объемов данных в течение длительного периода времени (который не зависит от питания). Емкость носителя превышает емкость оперативной памяти в сотни раз или неограничена в случае съемных носителей.
Носитель информации — это физический носитель для хранения информации, который может быть в виде жесткого диска или ленты. По принципу хранения различают магнитные, оптические и магнитооптические носители. Ленточные носители могут быть только магнитными, дисковые носители используют магнитные, магнитооптические и оптические методы записи и чтения информации.
Локальное хранилище
Это традиционный метод. При этом компании будут сами управлять серверами и владеть ими. У предприятий достаточно денег, чтобы построить собственный центр обработки данных. Однако у большинства из них есть выделенная комната, где они могут хранить свои серверы.
Если данные хранятся на своем внутреннем сервере, необходимо создать и поддерживать свою IT-инфраструктуру. Однако также придется вложить много денег в создание этой инфраструктуры. Нужно иметь дело с расходами на содержание центра обработки данных. Если оборудование старое, то необходимо его заменить. При этом следует регулярно обновлять программное обеспечение, регулировать протоколы доступа.
Некоторые компании хотят иметь полный контроль над своими ресурсами и файлами. Таким образом, стоит подумать о создании собственного дата-центра.
ВВЕДЕНИЕ
Устройства хранения информации (внешняя память) — компоненты компьютера, позволяющие практически неограниченное время сохранять большие объемы информации без потребления электроэнергии (энергонезависимые).
Первыми такими устройствами для ПК были Floppy-дисководы (FDD) и сменные дискеты — вначале пятидюймовые (5,25”) емкостью 360 Кб и 1,2 Мб, затем трехдюймовые (3,5”) емкостью 1, 44 Мб. В настоящее время применяются редко в связи с широким распространением устройств флэш-памяти емкостью в несколько гигабайт.
Характерной особенностью внешней памяти является то, что ее устройства оперируют блоками информации, но никак не байтами или словами, как это позволяет оперативная память. Эти блоки обычно имеют фиксированный размер, кратный степени числа 2. Блок может быть переписан из внутренней памяти во внешнюю или обратно только целиком, и для выполнения любой операции обмена с внешней памятью требуется специальная процедура (подпрограмма). Процедуры обмена с устройствами внешней памяти привязаны к типу устройства, его контроллеру и способу подключения устройства к системе (интерфейсу).
Внешняя память используется для долговременного хранения больших объемов информации. В современных компьютерных системах в качестве устройств внешней памяти наиболее часто применяются:
* накопители на жестких магнитных дисках (НЖМД)
* накопители на гибких магнитных дисках (НГМД)
* накопители на оптических дисках
Описание:
Учеными предложен принципиально новый способ хранения, записи и считывания информации. Вместо пластикового CD-диска используется кварцевый диск.
Принципиально новый метод записи информации обеспечивает ее сохранность на миллионы и даже миллиарды лет.
Способ записи на кварце отличается от записи на CD-диске тем, что информация наносится лазером не на поверхность, а в обьем диска слоями, а также записывается так называемыми нанорешетками, благодаря чему в одной точке записывается не один, а несколько (до пяти) бит данных.
Данный тип памяти называется многоуровневой объёмной памятью. В результате объем записанных данных получается в несколько раз больше. На таком диске возможно хранить информацию порядка терабайта информации (1 Тбайт = 1024 Гбайта). Для примера, на подобном диске можно будет записать около 500 фильмов или более 200 000 архивных документов. Так, архив Госфильмофонда России насчитывает 70 тысяч наименований кинолент, а значит они все поместятся на 140 компакт-дисках вместо огромных архивных хранилищ с пленкой .
Кроме того кварцевый диск отличается высокой степенью устойчивости к высоким давлениям (до 4000 Н) и температурам (до 900 0 С) — способен пережить пожар без потери информации. Не страшно ему также и электромагнитное излучение.
Современные носители информации живут максимум 10-20 лет, после чего информацию необходимо переписывать на другой носитель. Информацию с кварцевых дисков уже не понадобится переписывать.
Импортные аналоги ограничены по срокам (до 1000 лет), стоимости и неустойчивы к пожарам и высоким давлениям .
Оперативная память компьютера
Оперативная память (англ. RAM — Random Access Memory) — память с произвольным доступом — это быстрое запоминающее устройство, непосредственно связанное с процессором и предназначенное для записи, считывания и хранения выполняемых программ и данных.
Оперативная и кэш-память является энергозависимыми — данные хранятся в них временно — до выключения электропитания компьютера, причем для динамической памяти (в отличие от статической) требуется постоянное обновление (регенерация) данных.
Наиболее распространенным типом схем памяти являются DRAM (динамическая память). В этих воспоминаниях значение каждого бита хранится в крошечном конденсаторе. Эти конденсаторы разряжаются — и очень быстро, примерно через 1 мс — поэтому их содержимое может быть потеряно. Для предотвращения этого специальные цепи периодически перезаряжают конденсаторы. Название памяти, «динамическая», происходит от этого непрерывного процесса перезарядки.
Оперативная память современного компьютера разделена на несколько типов. Хотя в основе всех типов памяти лежит обычная ячейка памяти, представляющий собой комбинацию из транзистора и конденсатора, благодаря различным внешним интерфейсам и устройствам взаимодействия с компьютером модули памяти они все же отличаются друг от друга.
Это наиболее дешевый способ производства ячеек памяти. Состояние конденсатора определяет, содержит ячейка «0» или «1», но само наличие конденсатора является причиной некоторых ограничений динамической памяти.
Заряженный конденсатор эквивалентен логической «1», разряженный — логическому «0». Однако впоследствии конденсатор разряжается, и поэтому необходимо время от времени обновлять его заряд. Необходимый для этого ток очень мал, так что нужно немного времени, чтобы конденсатор небольшой емкости был заряжен снова. Но во время этого процесса к ячейке памяти обращаться нельзя. Производители динамической памяти говорят, что подобное восстановление должно проводиться каждые 64мс. Но самая большая проблема с оперативной памятью в том, что при операции считывания из ячейки конденсатор теряет свой заряд, то есть считывание деструктивное, и ячейка после считывания информации должна быть восстановлена.
Таким образом, каждый раз при считывании информации должна проводиться и его запись. В результате увеличивается время циклического доступа, и повышается латентность.
Латентность — это простой в работе или это время, затрачиваемое на считывание из памяти одного слова данных (восьми байт) (измеряется в циклах). Чем ниже латентность оперативной памяти, тем меньше центральный процессор будет находиться в состоянии простоя. Полная латентность состоит из программной и аппаратной составляющих.
В модулях статической памяти такая проблема отсутствует. Одна ячейка статической памяти состоит из 4 транзисторов и двух резисторов, и в ячейке SRAM сохраняют данные не путем емкостной зарядки (как в DRAM), а путем переключения транзисторов в нужное состояние, подобно транзисторам в CPU. В отличие от динамической памяти — статическая память не является деструктивной. Ячейка статической памяти (кэш памяти) состоит из 4-х транзисторов и 2-х резисторов.
Массовое распространение получили следующие виды оперативной памяти DDR (уже не пользуется большим спросом), DDR2, DDR3, DDR4.
Внешний вид модулей памяти DDR, DDR2, DDR3
В каждом модуле оперативной памяти содержится также специальная микросхема SPD. В этой микросхеме хранятся данные о модуле памяти: дата изготовления модуля, основные характеристики модуля и тому подобное.
Кэш память
Персональные компьютеры также имеют скрытую память. Фактически, из-за разницы в скорости процессоров и схем основной памяти, большинство персональных компьютеров имеют два разных типа кэша, известных как «Уровень 1» (уровень 1 или L1) и «Уровень 2». Уровень 2 или L2 кэш).
L1 кэш-память
Кэш-память уровня 1 — это не что иное, как память в самом процессоре. Первым процессором, который содержал кэш-память, был Intel 80486, 8 Кб. Тогда все процессоры персональных компьютеров содержали латентную память размером до 32 Кб. Внутри кэш L1 делится на 16 или 32 байта.
Кэш L1 содержит адреса памяти, которые соответствуют данным и машинным командам. Он часто делится на два раздела для этих двух типов адресов. Машинные команды, выполняемые внутри процессора, особенно полезно кэшировать, когда процессор имеет конвейерную архитектуру, которая обрабатывает несколько команд одновременно.
Кэш-память второго уровня
Кэш уровня 2 больше по размеру, чем L1, но не так быстр, и находится на материнской плате компьютера. Как мы уже говорили, его схемы в основном состоят из статической памяти. Кэш-память уровня 2 обычно имеет размер до 1 Мб, но его максимальный размер также зависит от материнской платы.
Память DDR
Память DDR отличается от предыдущих видов памяти одним важным нововведением: теперь данные (но не адреса) можно получать и передавать два раза за такт — по убыванию и нарастающем фронтах сигнала. Для памяти DDR общепринятыми являются несколько обозначений: например DDR-266 или РС-2100.
Обозначения имеют разные смыслы: первое указывает частоту, с которой передаются данные (в нашем случае 266 МГц, при этом модуль работает на частоте 133MГц), второе — теоретическую пропускную способность модуля памяти (2100MBps). Второе обозначение используется чаще из маркетинговых соображений.
Схема передачи данных в микросхеме памяти DDR-400 (а), DDR2-800 (б), DDR3-1600 (в): Memory Cell Array — массив ячеек памяти; I / OBuffers — буфер ввода вывода данных; Data Bus — шина данных
Память DDR2
Память этого стандарта использовалась в платформе Socket 775. По сути DDR2 память не имеет кардинальных отличий от DDR. Однако в то время как DDR осуществляет две передачи данных по шине за такт, DDR2 выполняет четыре таких передачи. При этом, построена DDR2 из таких же ячеек памяти, как и DDR, а для удвоения пропускной способности используется техника мультиплексирования.
Само по себе ядро чипов памяти продолжает работать на той же самой частоте, на которой оно работало в DDR. Увеличивается только частота работы буферов ввода-вывода данных, а также расширяется шина, связывающая ядро памяти с буферами ввода/вывода данных ( I/O Buffers). На буфера ввода / вывода возлагается задача мультиплексирования. Данные, поступающие из ячеек памяти по широкой шине, уходят из них по шине обычной ширины, но с частотой, вдвое превышает частоту шины DDR. Таким способом достигается возможность очередного увеличения пропускной способности памяти без увеличения частоты работы самих ячеек памяти. То есть, фактически, ячейки памяти DDR2-400 работают с той же частотой, что ячейки памяти DDR200 или PC100 SDRAM. Однако столь простой метод увеличения пропускной способности памяти имеет и свои отрицательные стороны. В первую очередь — это рост латентности. Очевидно, что латентность не определяется ни частотой работы буферов ввода / вывода, ни шириной шины, по которой данные поступают из ячеек памяти.
Память DDR3
Передача данных по-прежнему осуществляется по обоим полупериодах синхросигнала на удвоенной «эффективной» частоте относительно собственной частоты шины памяти. Только рейтинги производительности выросли в 2 раза, по сравнению с DDR2. Типичными скоростными категориями памяти нового стандарта DDR3 являются разновидности от DDR3-800 до DDR3-1600 и выше. Очередное увеличение теоретической пропускной способности компонентов памяти в 2 раза вновь связано со снижением их внутренней частоты функционирования во столько же раз. Поэтому отныне, для достижения темпа передачи данных со скоростью 1 бит / такт по каждой линии внешней шины данных с «эффективной» частотой в 1600 МГц используемые 200-МГц микросхемы должны передавать по 8 бит данных за каждый свой такт. То есть,
Однако у данного типа памяти есть свои недостатки:
- наряду с ростом пропускной способности выросла также и латентность памяти;
- высокая цена модулей памяти.
Память DDR 4
На сегодня это основной тип памяти, который приобрел массовое применение. Первые тестовые образцы DDR4 были представлены в середине 2012 года фирмами Hynix, Micron и Samsung.
Micron выпустила первые опытные модули памяти, работающие на частоте 2400 МГц. Микросхемы от Hynix были созданы с использованием 38-нм техпроцесса. Модели работают на тактовой частоте 2400 МГц при напряжении питания 1,2 В. Подобная память может обрабатывать до 19,5 Гб данных в секунду.
Благодаря 30 нм техпроцессу память DDR4 от Samsung имела объем 8 и 16ГБ и тактовую частоту 2133 МГц. 16 ГБ планки имеют два ряда чипов памяти, в отличие от привычного одного ряда. К тому же, они располагаются на печатной плате ближе друг к другу, что позволяет вместить ее два дополнительных чипа памяти с каждой стороны. Samsung обещает, что с переходом на передовой 20 нм техпроцесс, появится возможность создания модулей памяти объемом 32 ГБ. Модули памяти DDR4 от Samsung, работают с напряжением 1,2 В, в отличие от DDR3 планок, которые работают на 1,35 В. Это небольшая разница, позволяет экономить энергию на 40%.
Рекомендации по выбору модулей памяти:
При производстве модулей памяти, как правило, одна фирма выпускает микросхемы (чипы), а другая делает сами модули (монтаж и пайка). Производителей чипов в мире насчитывается не более 10. Крупные производители чипов: Samsung, Mиcron, LG, Hynиx, Toshиba, Nec, Texas Instruments проводят тщательное тестирование готовой продукции, но полный цикл тестирования проходят далеко не все чипы. Исходя из этого, продукцию этих компаний можно условно разделить на три категории: класса А, В и С.
Первая — готовы микросхемы, прошедшие полный цикл тестирования (т.н. чипы класса A, примерно 10% от всей продукции) — считаются чипами высшего качества и самые надежные. Они также и самые дорогие, поскольку обеспечивают надежную работу в любых условиях. Эта категория чипов используется известными производителями модулей памяти.
Вторая (чипы класса B) — модули памяти с небольшими дефектами, на этапе тестирования которых были обнаружены ошибки. Эти чипы в большом количестве поставляются производителям дешевых модулей памяти, попадая затем на свободный рынок. Вполне может случиться, что модули, изготовленные на основе микросхем класса B, будут быстро и надежно работать, однако в системах, где нужна, прежде всего, надежность, подобные модули не применяются.
Третья (чипы класса C), которые вообще не тестировались производителем на скорость и надежность. Понятно, что на рынке такая продукция имеет наименьшую стоимость, поскольку вся ответственность за тестирование ложится на производителей модулей. Именно такие микросхемы используют производители дешевой памяти класса noname, а стабильность работы этих изделий вызывает большие сомнения. Надежность готового модуля памяти определяется совокупностью многих факторов. В частности, это количество слоев печатной платы (PCB), качество электронных компонентов, грамотное разведение цепей, а также технология производственного процесса. Мелкие производители модулей для снижения цены готовых изделий экономят на мелких компонентах, зачастую просто не впаянных на модуль.
Основная память на ПК организована в цепи типа SIMM или DIMM. Существуют различные виды таких схем, которые отличаются скоростью доступа к данным в памяти.
На персональном компьютере имеется кэш память на двух уровнях: первый уровень быстрее и меньше по размеру и расположен внутри процессора, а второй — на материнской плате.
Жесткие магнитные приводы
Жесткие магнитные диски, также называемые «жестким диском» или «жестким диском», представляют собой тип энергонезависимого, перезаписываемого компьютерного устройства хранения данных. Данные, хранящиеся на жестком диске, не теряются при выключении компьютера. Поэтому жесткий диск идеально подходит для долговременного хранения программ и файлов данных, а также основных программ операционной системы. Благодаря этой возможности жесткий диск можно извлечь из одного компьютера и вставить в другой.
Внутри герметичного жесткого диска находится один или несколько негибких дисков, покрытых металлическими частицами. Каждый диск имеет головку (электромагнит), встроенную в шарнирный манипулятор, который перемещается по диску во время его вращения. Головка намагничивает металлические частицы, заставляя их выстраиваться в линию и представлять нули и единицы в двоичных числах (рис. 1). Двигатели, которые перемещают диск и рычаг, обычно подвержены износу. Только головка не изнашивается, так как она никогда не соприкасается с поверхностью диска.
Диск получил свое название «жесткий диск» от компании IBM, которая в 1973 году выпустила на рынок жесткий диск Модель 3340, первый, в котором в одном несъемном корпусе размещены как тарелки для дисководов, так и считывающие головки. При разработке инженеры использовали внутреннюю стенографию «30-30», которая означала два модуля (в максимальной компоновке) по 30 Мб каждый. Менеджер проекта Кеннет Хотон предложил назвать диск «Винчестер 30-30», ссылаясь на название популярной охотничьей винтовки «Винчестер».
Новые жесткие диски должны быть отформатированы перед их использованием. Этот процесс состоит из прокладки магнитных концентрических дорожек и их деления на небольшие сектора, как кусочки в пироге. Однако если данные были записаны на жесткий диск, их форматирование приведет к его полному стиранию.
Благодаря большому количеству дорожек на каждой стороне дисков и большому количеству дисков информационная емкость жесткого диска может достигать 150-200 Гб. Скорость записи и чтения информации с жесткого диска достаточно высока (до 133 Мбайт/с) благодаря быстрому вращению диска (до 7500 об/мин).
Среди прочих параметров, рассмотрим:
- Емкость кэша — все современные жесткие диски имеют буфер кэша, который ускоряет обмен данными; чем больше его емкость, тем выше вероятность того, что кэш будет содержать необходимую информацию, которую не нужно читать с жесткого диска (этот процесс в тысячи раз медленнее); емкость кэш-буфера в различных устройствах может варьироваться в диапазоне от 64 Кбайт до 2 Мбайт;
- Среднее время доступа — время (в миллисекундах), в течение которого головка в сборе перемещается от одного цилиндра к другому. Зависит от конструкции привода головки и составляет примерно 10-13 мс;
- Время задержки — это время с момента позиционирования блока головки на требуемом цилиндре до позиционирования конкретной головки на определенном секторе, т.е. это время поиска правильного сектора;
- Скорость обмена — определяет объем данных, который может быть передан с диска на микропроцессор и наоборот через определенные промежутки времени; максимальное значение этого параметра соответствует пропускной способности дискового интерфейса и зависит от того, какой режим используется. [7]
В жестких дисках используются довольно хрупкие и крошечные элементы (медиа-пластины, магнитные головки и т.д.). Поэтому для сохранения информации и производительности жесткие диски должны быть защищены от ударов и резких изменений пространственной ориентации во время работы.
Читайте также: Древо Жизни составление истории семьи ( AgelongTree ) & portable v5.5 сборка 2022.04.08
Лидеры в классе жестких дисков 7200/3,5″ — компании Seagate, Maxtor и WD — также производят внешние жесткие диски в автономном корпусе с блоком питания, интерфейсом USB.
Жесткие диски, независимо от того, имеют они дискету или нет, всегда называются дисководами «C».