Тьюринг, помоги! Похож ли наш мозг на компьютер?
Бросьте в меня камень, если вы никогда не слышали этого сравнения: «Мозг человека — это компьютер». Эта простая метафора вызывает холивары во всем мире, сталкивает лбами интеллектуалов и, возможно, стала причиной нескольких инсультов. Одни утверждают, что человеческое мышление не может уложиться в бинарные рамки компьютерной программы. Другие — что, невзирая на свое богатство, наше мышление остается пусть превосходным, но процессором. Но и сторонники, и противники забывают о главном: спорят они не о метафоре, а о гипотезе.
Чтобы аргументированно рассуждать о мозге как компьютере, для начала нужно определиться с тем, что мы называем компьютером. Давайте пойдем от противного: от того, чем компьютер не является.
Компьютер — это точно не коробочка под вашим столом, не ноутбук на ваших коленях и не смартфон в ваших руках. Микрочипы, оперативная память и кэш — это лишь элементы компьютера. Если воспринимать его как пластиковую коробку с электронной начинкой, то, конечно, вы смело можете сказать, что мозг — точно не компьютер. Ну хотя бы потому, что серое вещество после вашего выключения не может служить жестким диском, и к вашей памяти ни у кого не будет доступа. Так вот, эту ошибку восприятия компьютера как коробочки с различными функциональными элементами совершают многие противники нашей метафоры.
Другие решительные противники сравнения мозга с компьютером часто вспоминают о том, что компьютерная метафора — лишь очередной пункт в целой серии исторических технологических сравнений. С чем только мозг не сравнивали после очередного технологического прорыва — и с гидросистемой, и с телеграфом, и с телефонным коммутатором… Теперь вот настал черед компьютера.
Так в чем же их ошибка? Дело в том, что сравнение мозга с компьютером — это не про технологии совсем. Сравнение берет начало из формального определения компьютера, которое впервые дал в 1936 году Алан Тьюринг . Для справки: в 1945 году Джон фон Нейман разработал архитектуру современного компьютера. А сами современные компьютеры появились только в 50-х годах прошлого века.
Историки до сих пор спорят о том, что же можно считать первым компьютером. Но сходятся они в одном: до 1936-го компьютеров не было. Размышления Тьюринга по большому счету касались не вычислительных систем, а человека: он изучал способности к решению задач, к вычислениям, к построению логической последовательности. Компьютеру было дано формальное определение еще до того, как он появился.
Даже не вспоминайте машины Бэббиджа. Его разностная машина была только феноменальным калькулятором, а аналитическую машину ему так и не удалось построить. Кроме того, обе они были механическими. Хотя да, разработки Бэббиджа помогли сформировать идею электронных вычислительных машин.
А что, если мы перевернем метафору и скажем, что компьютер работает как мозг? Вернемся к фон Нейману. Этот ученый, разрабатывая архитектуру компьютера, опирался на гипотетическую модель функционирования мозга Маккаллока и Питтса. Эти два ученых предполагали, что нейроны мозга могут либо посылать электрический «разряд», либо не посылать.
Иными словами, в их понимании нейрон зашифровывает информацию бинарным кодом: либо 1 («посылать»), либо 0 («не посылать»).
Это умозаключение позволяло предполагать, что группы нейронов действовали согласно формальной логике, что очень полезно для различного рода вычислений. Фон Нейман был прекрасно знаком с Маккаллоком, читал его работы и смог использовать его идею бинарной логики для создания компьютерной архитектуры.
Так что можно сказать, что компьютерные науки опираются на науку о мозге. Что, кстати, вовсе не означает, что мозг и компьютер работают схожим образом. Фон Нейману просто приглянулась простая аналогия работы нейронов, но по факту она не учитывает базовые принципы их функционирования.
К примеру, на самом деле нейроны посылают сигналы постоянно, а не с перерывами, а значит, о бинарной логике речи быть не может.
И фон Нейман честно говорит о том, что компьютер работает не так, как мозг).
Сравнение
Передача сигналов в компьютере основана на электрических импульсах. Для этого используется простой двоичный код, при котором сигналы имеют всего два значения: или «1», или «0». А вот в мозге ведется сложная работа, основанная на множестве химических сигналов, причем каждый из них имеет свою индивидуальную характеристику. Интересно, что скорость проводимости нервного импульса из нейрона в нейрон может меняться в зависимости от существующих обстоятельств. В мозге не предусмотрено функциональных блоков.
Компьютер не признает «полутонов». В нем всё четко – существует или значение «1», или значение «0»; либо то, либо другое. Сила сигнала идет дискретно – только с одним или же только с другим значением. В мозге, в отличие от компьютера, сигнал способен передаваться ускоренно или плавно, также как может изменяться и чувствительность нейрона, принимающего данный сигнал.
Основной объем памяти в ЭВМ сохраняется в специально для этого предназначенных запоминающих устройствах. В мозге же не существует участков, в которых отдельно хранятся наши воспоминания. В запоминании и распознавании субъектов или каких-либо событий участвуют одни и те же нейроны.
Мозг человека обладает очень большим запасом прочности, что позволяет ему функционировать даже при опасных травмах. Это неудивительно, учитывая, что одновременно в нем обычно задействованы не более 2-3% нервных клеток. Современные компьютеры лишены способности восстанавливаться и работать при серьезных повреждениях, тогда как мозг человека от природы наделен удивительной компенсаторной способностью: при поражении даже обширных его участков работу продолжают выполнять оставшиеся неповрежденными части. Если же в программе компьютера испортить даже несколько бит или всего лишь один транзистор в процессоре – устройство мгновенно потеряет возможность функционирования, иногда даже без возможности восстановления. Мозг же способен выживать и работать, даже если ему перед этим на пять-семь минут перекрыть кислород.
Мозг, в отличие от компьютера, способен сосредотачиваться на важной для него в данный момент времени информации и не принимать во внимание несущественную. Мозг отыскивает информацию не по адресу, как компьютер, а по содержанию. Для компьютера нет никакой связи между адресом, по которому находится информация, и самой сутью этой информации, а для мозга – есть. Мозг человека способен восстанавливать информацию лишь по ее отрывочной части или же извлекать данные вследствие ассоциативного ряда. Человек мыслит, компьютер же просто обрабатывает информацию на основе алгоритмов. Компьютер работает с абстрактными символами, а мозг человека – с образами конкретных объектов. Мозгу человека присущи интуиция и воображение, а еще – желание все время получать новые впечатления, творческая активность, которая тесно связана со сном (во сне упорядочивается полученная извне информация). Компьютеру всё это недоступно. Скрытые возможности мозга поистине безграничны, в отличие от изначально заданных определенным образом системных параметров компьютера.
Нейросети. Начало
Первая формальная модель нейрона была предложена в 1943 году Уорреном Маккаллоком и Уолтером Питтсом. Она была во многом похожа на логические вентили, из которых состоят компьютеры с И, ИЛИ и НЕ. Нейронные сети могут совершать все операции, которые умеет делать компьютер. Поначалу компьютер часто называли электронным мозгом, и это была не просто аналогия.
Однако нейрон Маккаллока–Питтса не умеет учиться. Это стало шагом к изобретению перцептронов. Харизматичный оратор и очень живой человек, психолог Фрэнк Розенблатт сделал для зарождения машинного обучения больше, чем кто бы то ни было. Своим названием перцептроны обязаны его интересу к применению своих моделей в проблемах восприятия (перцепции), например распознавания речи и символов.
А вот это штука уже посовременнее: тактильный интерфейс, меняющий форму, разработанный в Массачусетском технологическом институте, – источник.
Перцептрон похож на крохотный парламент, в котором побеждает большинство (хотя, наверное, не такой уж и крохотный, учитывая, что в нем могут быть тысячи членов). Но при этом парламент не совсем демократический, поскольку в целом не все имеют равное право голоса. Нейронная сеть в этом отношении больше похожа на Facebook, потому что несколько близких друзей стоят тысячи френдов, — именно им вы больше всего доверяете, и они больше всего на вас влияют. Если друг порекомендует вам фильм, вы посмотрите его и вам понравится, в следующий раз вы, вероятно, снова последуете его совету. С другой стороны, если подруга постоянно восторгается фильмами, которые не доставляют вам никакого удовольствия, вы начнете игнорировать ее мнение (и не исключено, что дружба поостынет).
Перцептрон вызвал восторг в научном сообществе. Он был простым, но при этом умел узнавать печатные буквы и звуки речи: для этого требовалось только обучение на примерах.
Но затем перцептрон уперся в стену. Инженеров знаний раздражали заявления Розенблатта: они завидовали вниманию и финансированию, которое привлекали нейронные сети в целом и перцептроны в частности. Одним из таких критиков был Марвин Минский, который опубликовал книгу с критикой перцептронов: он описал простые вещи, которым алгоритм не в состоянии научиться. (Хотя надо сказать, что спустя 20 лет это оказалось не так.)
Нейропластичность мозга
Современные исследования когнитивных функций приводят к тому, что изучать человеческое сознание как нечто сформированное и неизменное бессмысленно: человек постоянно развивается вместе с культурой, что приводит к появлению новых практик и знаковых систем. Изучать необходимо развивающегося человека в развивающейся культуре. Но каким способом? На этот вопрос отвечает археолог Ламброс Малафурис, который разрабатывает методологию нейроархеологии – восстановление специфики работы психики человека в контексте современной культуры на основе артефактов. Его исследования гласят, что невозможно разделить эволюцию мозга, эволюцию когнитивных способностей и культуру. Носитель психики создает вокруг себя культурную среду. А культурная среда зависит от носителя психики, который и творит специфику культуры.
Следовательно, наш мозг является биоартефактом и создан в большей степени эволюцией, а не культурной средой. Тем не менее культура развивает структурные особенности мозга, которые закрепляются в эволюции. Именно поэтому основная идея современных исследователей заключается в том, что когнитивные функции человека изменяются и развиваются, а не эволюционируют по отдельности. Биологическая эволюция предпочитает тех, чей мозг более пластичен. И развивать мозг необходимо на протяжении всей жизни. Для этого отлично подходят курсы и тренажеры для развития мозга Викиум.
Мозг — это компьютер?
Мы говорим, что мозг — это компьютер, в некоторой степени. Или компьютер — это мозг. Широко распространенная аналогия мозга и компьютера вносит мощный вклад в церебральную мистику, как бы отделяя мозг от остальной биологии. Разительная разница между машиноподобным мозгом и мягкой, хаотической массой («мясом»), которая имеется в остальной части нашего тела, проводит разделительную линию между мозгом и телом, которую отмечал еще Рене Декарт. Провозгласив свое вечное «мыслю, следовательно существую», Декарт поместил сознание в свою собственную вселенную, отдельную от материального мира.
Подписывайтесь на наш канал в Яндекс Дзен. Там можно найти много всего интересного, чего нет даже на нашем сайте.
И пока мозг напоминает нам машину, мы легко можем представить его отделение от головы, сохранение в вечности, клонирование или отправку в космос. Цифровой мозг кажется настолько натуральным явлением, как и отделенный картезианский дух. Возможно, неслучайно самые влиятельные неорганические аналогии мозга были представлены физиками, которые на старости лет ударились в проблемы сознания так же, как пожилые люди уходят в религию. Таким был Джон фон Нейман; он написал книгу «Компьютер и мозг» (1958) незадолго до своей смерти (1957), открыв миру эту прочную аналогию на заре цифровой эпохи.
Мозг определенно в чем-то похож на компьютер — в конце концов, компьютеры создавались для выполнения функций мозга — но мозг — это намного больше, чем переплетение нейронов и электрических импульсов, которые по ним распространяются. Функция каждого нейроэлектрического сигнала — выбросить небольшое количество химических веществ, которые помогают стимулировать или подавлять клетки мозга так же, как химические вещества активируют и подавляют функции вроде выработки глюкозы клетками печени или иммунных ответов белыми кровяными клетками. Даже сами электрические сигналы мозга — это продукты химических веществ, ионов, которые входят и выходят из клеток, вызывая крошечную рябь, которая распространяется по нейронам независимо.
Также от нейронов легко отличить относительно пассивные клетки мозга, которые называются глия. Их количество примерно равно количеству нейронов, но они не проводят электрические сигналы таким же образом. Последние эксперименты на мышах показали, что манипуляции с этими скучными клетками могут производить серьезный эффект на поведение. В одном из экспериментов группа ученых из Японии показала, что направленная стимуляция глии в области мозжечка может приводить к отклику, аналогичному изменениям, которые возникают в процессе стимуляции нейронов. Другое примечательное исследование показало, что трансплантация человеческих клеток глии в мозг мыши улучшила обучаемость животных, в свою очередь продемонстрировав важность глии в изменении функции мозга. Химические вещества и глия неотделимы от функции мозга, как провода и электричество. И когда мы осознаем наличие этих мягких элементов, мозг становится больше похожим на органическую часть тела, нежели на идеализированный центральный процессор, который хранится под стеклом в нашей черепной коробке.
Целый человеческий мозг выглядит так
Стереотипы о сложности мозга также вносят свою лепту в мистику мозга и его отделение от тела. Известное клише называет мозг «самой сложной вещью в известной Вселенной», а если бы «наш мозг был бы так прост, что мы могли бы его понять, мы бы не смогли его понять». Такое мнение обусловлено в первую очередь тем фактом, что в мозге человека содержится порядка 100 000 000 000 нейронов, каждый из которых образует порядка 10 000 связей (синапсов) с другими нейронами. Головокружительная природа таких чисел заставляет людей усомниться в том, что нейробиологи вообще смогут когда-либо разгадать загадку сознания, не говоря уж о природе свободной воли, которая прячется в одном из этих миллиардов нейронов.
Но огромное количество клеток в мозге человека вряд ли объяснит его экстраординарные способности. В печени человека примерно такое же количество клеток, как и в мозге, но результаты она выдает совсем другие. Сам мозг бывает самых разных размеров, и количество клеток в нем также меняется, где-то больше, где-то меньше. Удаление половины мозга иногда позволяет вылечить эпилепсию у детей. Комментируя когорту из 50 пациентов, которые прошли через эту процедуру, группа врачей из Джона Хопкинса в Балтиморе написала, что они «были в ужасе от очевидного сохранения памяти после удаления даже половины мозга, а также сохранения чувства личности и юмора у детей». Очевидно, не все клетки мозга священны.
Если взглянуть на мир животных, большой диапазон размеров мозга абсолютно никак не связан с познавательными способностями. Некоторые из самых хитроумных животных — ворон, сорок и галок — имеют мозг, который по своим размерам меньше 1% человеческого, но все равно демонстрируют куда более продвинутые когнитивные способности в некоторых задачах даже по сравнению с шимпанзе и гориллами. Исследования поведения показали, что эти птицы могут делать и использовать инструменты, узнавать людей на улице — такого не могут даже многие приматы. Да и животные с похожими характеристиками также различаются размерами мозга. Среди грызунов, например, можно найти 80-граммовый мозг капибары с 1,6 миллиарда нейронов и мозг пигмейской мыши весом 0,3 грамма с менее чем 60 миллионами нейронов. Несмотря на такие различия в размерах мозга, эти животные живут в похожих условиях, проявляют похожие социальные привычки и не демонстрируют очевидных различий в интеллекте. Хотя нейробиологи только начинают нащупывать функции мозга даже у небольших животных, это наглядно демонстрирует популярную мистификацию мозга из-за обилия его компонентов.
Разговоры о машинных качествах мозга или его невероятной сложности удаляют его от остального биологического мира в отношении его состава. Разделение мозга и тела преувеличивает удаленность мозга от тела с точки зрения автономии. Церебральная мистика подчеркивает репутацию мозга как центра управления, который связан с телом, но все же обособлен.
Конечно же, это не так. Наш мозг постоянно подвергается бомбардировке сенсорных вводов с органов чувств. Окружающая среда передает много мегабайтов чувственных данных в мозг ежесекундно. У мозга нет брандмауэра против этого натиска. Исследования визуализации мозга показывают, что даже тонкие сенсорные раздражители влияют на области мозга, от низкоуровневых сенсорных областей до отделов лобной доли, высокоуровневой области мозга, которая увеличена у людей по сравнению с другими приматами.
Чего мы боимся?
Звучит довольно страшно: открыть череп, вставить электроды, пригласить к себе в голову компьютер. Мы и без нейроинтерфейса технике рассказываем почти все: где находимся, с кем дружим, какую еду предпочитаем, какие темы нам интересны. Стоит вбить в Google запрос об отпуске, как в социальных сетях вас начинает преследовать реклама турагентств. Готовы ли мы поделиться еще и мыслями? Ведь окно из мозга в компьютер может быть использовано в любых целях… Вдруг кто-то залезет к нам в сознание? Вот, например, утрированно мрачная картинка ареста будущего: «все, что вы подумаете, может быть использовано против вас».
Есть и другие опасности. Мозг, как показывают эксперименты, принимает решение до того, как мы это решение осознаем, — а иногда мы и вовсе не замечаем, что решение было принято. Поэтому с компьютером он может договориться вообще без нашего ведома. А в нейроинтерфейсе решение мозга тут же перехватывается электронными средствами, передается исполнительным устройствам. И вякнуть не успеешь, как мозг на пару с электродами и проводочками уже что-то наделал!
Наконец, очевидно, что человек в экзоскелете быстрее и сильнее любого спортсмена, а голова с вживленным процессором думает лучше, чем голова без него. Да еще и нейроинтерфейсы по-разному подчиняются людям — кто-то быстрее находит общий язык с компьютером, кто-то медленнее. Так что мы можем столкнуться с новым уровнем неравенства: между киборгами и простыми смертными. Да и вообще не очень понятно, как все эти процессоры в голове, экзоскелеты, механические конечности и органы чувств изменят человека — вдруг мы превратимся в роботов?
Из-за всех этих опасений даже хочется отказаться от заманчивой идеи обзавестись научными аналогами телепатии и телекинеза. Но давайте разберемся.
— Исследования нейроинтерфейса, конечно, могут быть использованы для каких-то ужасных футуристических сценариев. Как и любая технология. Возьмите атомную энергетику или интернет. Они вообще были сделаны из милитаристских соображений, но сейчас это очень мирные создания науки, — начинает успокаивать Алексей Осадчий. — Если мозг не захочет, чтобы его прослушивали, он сделает так, чтобы его не слышали. Может, например, «запечатать» электроды в капсулу из соединительной ткани, так что они перестанут подавать сигнал.
— Бояться, что мы станем киборгами, вообще-то поздно, — переходит к разбору страшилок Михаил Лебедев. — Мы уже срослись с компьютерами, с телефонами. В будущем нас не ждет ничего ужаснее того общения с техникой, что уже есть. Просто сейчас мы используем другие каналы: зрение, слух, пальцы. Перехода на нейроинтерфейс не происходит только потому, что пока что эта технология работает хуже, чем в норме наши руки. Как только удастся их превзойти, мы перейдем к нейроинтерфейсам. Думаю, многие с радостью согласятся на имплантат в мозг. Ведь это так интересно! Станет модным управлять смартфоном через электрод где-то там в голове. Желающие обзавестись встроенными проводочками уже нашлись. Яркий пример — американский ученый Филипп Кеннеди, который добровольно вставил себе в мозг электрод. Некоторые считают его «отцом киборгов», потому что он первым вживил электроды в мозг парализованного человека и дал ему возможность двигать курсор по экрану компьютера. Потом Кеннеди начал работу над созданием голосового декодера, чтобы переводить сигналы мозга, возникающие при мысленном представлении звуков и слов, в речь. Но Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США (FDA) очень некстати посчитало опыты ученого опасными, лишило его финансирования и запретило эксперименты. Тем не менее Кеннеди в свои электроды уверовал и не мог так просто сдаться, поэтому махнул в Центральную Америку, в Белиз, где сделал себе операцию по вживлению электрода. Во время второй операции к торчащим проводам присоединили электрокатушки и радиопередатчик. После чего Кеннеди несколько недель снимал данные с собственного мозга в процессе произношения и мысленного повторения звуков, коротких слов и фраз. Еще через пару недель ему пришлось удалить запретные электроды, но все же месяц он добровольно прожил как киборг.
— Человек от электрода в голове изменится не меньше и не больше, чем когда пересаживают почку или сердце, — говорит Алексей Осадчий. — Важно понимать, что речь не только о рисках, но и о том, что мы получаем взамен. Например, эпилепсия, помимо всего прочего, оттягивает на себя очень много ресурсов: дети с эпилепсией просто не развиваются. И если на лекарства пациент не реагирует, нас не смущает, когда врачи накладывают электроды на очаг патологического возбуждения или вообще удаляют пятую или десятую часть всего мозга, в которой находится этот очаг! При этом как раз может поменяться личность: человек был мотивированным — стал немотивированным. Зато, как только делают такую операцию, ребенок начинает развиваться. Дорогая ли это цена за полноценную жизнь? И с нейроинтерфейсом то же самое: мы имплантируем чип, чтобы человек смог снова ходить, чтобы он в компании с компьютером лучше думал или чтобы смог управлять четырьмя искусственными руками и производить какие-то супермегасложные операции.
Карта областей коры мозга, анализирующих работу органов чувств, основанная на данных, полученных в рамках проекта «Коннектом человека». Красным обозначены слуховые области, синим — зрительные, зеленым — осязательные
— Еще часто говорят, что такие прогрессивные технологии смогут купить только очень богатые люди. Результат — жуткое неравенство и несправедливость, — продолжает Михаил Лебедев. — Но вспомните появление мобильных телефонов. Поначалу действительно только богатые могли наслаждаться этим новшеством — очень дорогими, громоздкими, неудобными и плохо работающими мобильниками. А когда сотовые уменьшились в размере и стали работать без перебоев, они подешевели и стали доступны всем. Все то же произойдет и с нейроинтерфейсом.
— Нейроинтерфейсы не увеличат неравенство еще и потому, что люди уже очень разные, несмотря на исходно единую конструкцию мозга, — говорит Алексей Осадчий. — Мозги у нас работают по-разному в зависимости от опыта, навыков, окружения. Возьмем, к примеру, ребенка, который играет на скрипке. Этот навык формируется в детстве — и мозг у скрипача не такой, как у меня. Потому что у него из-за этой скрипки образовались определенные участки в коре мозга, которые он как-то по-своему использует. И у искусного столяра, и у художника, и у баскетболиста опыт в буквальном смысле впечатывается в мозг и тем самым формирует уникальную личность. Так почему бы нам не относиться к нейроинтерфейсам как к еще одному типу инструментов — как к рубанку столяра, скрипке музыканта или кисти художника?