Принцип открытой архитектуры компьютера и современные тенденции развития

2. Магистрально-модульный принцип построения ПК

Компьютер – это многофункциональное электронное автоматическое устройство для накопления, обработки и передачи информации.

В 1946–1948 годах в Принстонском университете (США) коллектив исследователей под руководством Джона фон Неймана разработал проект ЭВМ, который никогда не был реализован, но идеи данного используются и по сей день. Этот проект получил название машины фон Неймана, или Принстонской машины. В его состав входили схема (рассматривается ниже) и принципы функционирования вычислительной машины:

1) Принцип программного управления: работа ЭВМ регламентируется программой, что позволяет, вводя разные программы, решать разные задачи. Команды, из которых состоит программа, интерпретируются специально введенным в схему устройством – устройством управления. Структура отдельной команды имеет вид:

, где определяет, какая операция должна выполняться,

– список (возможно, одноэлементный) тех констант, адресов или имен переменных, над которыми выполняется данная операция.

В зависимости от числа операндов различают одно-, двух– и трехадресные машинные команды. Каждая команда имеет определенный объем, измеряемый байтами.

Этот принцип был самым прогрессивным среди включенных в проект, поскольку обеспечивал универсальность ЭВМ. В соответствии с принципом программного управления любая ЭВМ – это совокупность аппаратной (технической) и программной частей;

2) Принцип условного перехода: команды из программы не всегда выполняются одна за другой. Возможно присутствие в программе команд условного перехода, которые меняют последовательное выполнение команд в зависимости от значений данных;

3) Принцип размещения программы в памяти: программа, требуемая для работы ЭВМ, предварительно размещается в памяти компьютера, а не вводится команда за командой;

4) Принцип иерархии памяти: память ЭВМ неоднородна. Для часто используемых данных выделяется память меньшего объема, но большего быстродействия; для редко используемых данных выделяется память большего объема, но меньшего быстродействия;

5) принцип двоичной системы счисления: для внутреннего представления данных и программ в памяти ЭВМ применяется двоичная система счисления, которую можно проще реализовать технически.

Рисунок 3.1. Схема Принстонской машины

Рассмотрим назначение отдельных элементов этой схемы и их взаимосвязь в процессе функционирования ЭВМ.

Через устройство ввода (УВв) в память (П) вводится программа – набор команд, предписывающих ЭВМ выполнять требуемые действия (на схеме связь 1). При вводе программы (а позже и данных) выполняется отображение вводимой информации во внутреннее представление, принятое в ЭВМ.

После размещения программы в памяти устройство управления (УУ) выбирает последовательно команду за командой из памяти (связь 2) и интерпретирует ее по следующим правилам:

• если выбранная команда является командой ввода данных, УУ посылает управляющий сигнал (связь 3) в УВв для начала ввода данных. Данные также вводятся по связи 1 и размещаются в памяти П;

• если выбранная команда связана с выполнением арифметических или логических операций, то в память П из УУ посылается сигнал (связь 4) на выборку указанных в команде данных с последующей их пересылкой в арифметико-логическое устройство (АЛУ) (связь 5), а в само АЛУ передается сигнал с кодом нужной операции (связь 7). АЛУ выполняет арифметические и логические действия над переданными операндами. После выполнения требуемых действий, АЛУ возвращает результат в память П (связь 6);

• если выбранная команда является командой вывода, УУ генерирует управляющий сигнал устройству вывода (УВыв) (связь 8) на начало операции по выводу данных. Сами данные выбираются из памяти П по связи 9.

УВыв выводит информацию из ЭВМ и преобразует ее из внутреннего представления во внешнее.

В соответствии с принципом иерархии памяти блок Память на рис. 3.1 делится на два блока – внешняя и внутренняя память. Внешняя память традиционно отводится для долговременного хранения данных и программ, а сама оперативная обработка данных в соответствии с программой, как это было рассмотрено выше, выполняется во внутренней памяти.

В современных компьютерах блоки УУ и АЛУ объединены в блок, называемый процессором. В состав процессора, кроме указанных блоков, входят также несколько регистров – специальных небольших областей памяти, куда процессор помещает промежуточные результаты и некоторую другую информацию, необходимую ему в ближайшие такты работы.

Под архитектурой компьютера понимаются его логическая организация, структура, ресурсы, то есть средства вычислительной системы, которые могут быть выделены процессу обработки данных на определенный интервал времени. В основу архитектуры современных персональных компьютеров положен магистрально-модульный принцип (рис. 3.2).

Рисунок 3.2. Магистрально-модульный принцип строения ЭВМ

Магистраль (системная шина) – это набор электронных линий, связывающих центральный процессор, основную память и периферийные устройства воедино относительно передачи данных, служебных сигналов и адресации памяти. Благодаря модульному принципу построения потребитель сам может комплектовать компьютер нужной ему конфигурации и производить при необходимости ее модернизацию.

Модульная организация системы опирается на магистральный (шинный) принцип обмена информацией. Процессор выполняет арифметические и логические операции, взаимодействует с памятью, управляет и согласует работу периферийных устройств.

Обмен информацией между отдельными устройствами компьютера производится по образующим магистраль трем многоразрядным шинам (многопроводным линиям связи), соединяющим все модули, – шине данных, шине адресов, шине управления. Разрядность шины определяется количеством бит информации, передаваемых по шине параллельно.

Магистраль включает в себя три многоразрядные шины: шину данных, шину адреса и шину управления.

Шина данных. По этой шине данные передаются между различными устройствами. Разрядность шины данных определяется разрядностью процессора, т. е. количеством двоичных разрядов, которые процессор обрабатывает за один такт. За 25 лет, прошедших со времени создания первого персонального компьютера (1975 г.), разрядность шины данных увеличилась с 8 до 64 бит. К основным режимам работы процессора с использованием шины передачи данных можно отнести:

• запись/чтение данных из оперативной памяти (оперативное запоминающее устройство – ОЗУ);

• запись/чтение данных из внешних запоминающих устройств (ВЗУ);

• чтение данных с устройств ввода;

• пересылка данных на устройства вывода.

Шина адреса. Каждая ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине. Разрядность шины адреса определяет адресное пространство процессора, т. е. количество ячеек оперативной памяти, которые могут иметь уникальные адреса. Количество адресуемых ячеек памяти можно рассчитать по формуле:

N = 2m, где N – разрядность шины адреса.

В первых персональных компьютерах разрядность шины адреса составляла 16 бит, а количество адресуемых ячеек памяти – N = 216= 65 536.

В современных персональных компьютерах разрядность шины адреса составляет 32 бита, а максимально возможное количество адресуемых ячеек памяти равно: N = 232 = 4 294 967 296. Выбор абонента по обмену данными производит процессор, формируя код адреса данного устройства, а для ОЗУ – код адреса ячейки памяти. Код адреса передается по адресной шине, причем сигналы по ней передаются в одном направлении – от процессора к устройствам (однонаправленная шина).

Шина управления. По шине управления передаются сигналы, определяющие характер обмена информацией по магистрали. Сигналы управления определяют, какую операцию – считывание или запись информации из памяти – нужно производить, синхронизируют обмен информацией между устройствами и т. д.

Классификации электронно-вычислительных машин

По назначению выделяют следующие виды компьютеров:

а) универсальные – предназначены для решения различных задач, типы которых не оговариваются. Эти ЭВМ характеризуются:

• разнообразием форм обрабатываемых данных (числовых, символьных и т. д.) при большом диапазоне их изменения и высокой точности представления;

• большой емкостью внутренней памяти;

• развитой системой организации ввода-вывода информации, обеспечивающей подключение разнообразных устройств ввода-вывода.

б) проблемно-ориентированные – служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими объектами, регистрацией, накоплением и обработкой небольших объемов данных, выполнением расчетов по несложным правилам. Они обладают ограниченным набором аппаратных и программных средств.

в) специализированные – применяются для решения очень узкого круга задач. Это позволяет специализировать их структуру, снизить стоимость и сложность при сохранении высокой производительности и надежности. К этому классу ЭВМ относятся компьютеры, управляющие работой устройств ввода-вывода и внешней памятью в современных компьютерах. Такие устройства называются адаптерами, или контроллерами.

По размерам и функциональным возможностям различают четыре вида компьютеров: суперЭВМ, большие, малые и микроЭВМ.

СуперЭВМ являются мощными многопроцессорными компьютерами с огромным быстродействием. Многопроцессорность позволяет распараллеливать решение задач и увеличивает объемы памяти, что значительно убыстряет процесс решения. Они часто используются для решения экспериментальных задач, например, для проведения шахматных турниров с человеком.

Большие ЭВМ (их называют мэйнфреймами от англ. mainframe) характеризуются многопользовательским режимом (до 1000 пользователей одновременно могут решать свои задачи). Основное направление – решение научно-технических задач, работа с большими объемами данных, управление компьютерными сетями и их ресурсами.

Малые ЭВМ используются как управляющие компьютеры для контроля над технологическими процессами. Применяются также для вычислений в многопользовательских системах, в системах автоматизации проектирования, в системах моделирования несложных объектов, в системах искусственного интеллекта.

По назначению микроЭВМ могут быть универсальными и специализированными. По числу пользователей, одновременно работающих за компьютером – много– и однопользовательские. Специализированные многопользовательские микроЭВМ (серверы – от англ. server) являются мощными компьютерами, используемыми в компьютерных сетях для обработки запросов всех компьютеров сети. Специализированные однопользовательские (рабочие станции – workstation, англ.) эксплуатируются в компьютерных сетях для выполнения прикладных задач. Универсальные многопользовательские микроЭВМ являются мощными компьютерами, оборудованными несколькими терминалами. Универсальные однопользовательские микроЭВМ общедоступны. К их числу относятся персональные компьютеры – ПК. Наиболее популярным представителем ПК в нашей стране является компьютер класса IBM PC (International Business Machines – Personal Computer).

По конструктивным особенностям ПК делятся на стационарные (настольные – тип DeskTop) и переносные.

Рисунок 3.3. Классификация персональных компьютеров по конструктивным особенностям

Переносные компьютеры обычно нужны руководителям предприятий, менеджерам, ученым, журналистам, которым приходится работать вне офиса – дома, на презентациях или во время командировок.

Notebook (блокнот, записная книжка) по размерам ближе к книге крупного формата. Имеет вес около 3 кг. Помещается в портфель-дипломат. Для связи с офисом его обычно комплектуют модемом. Ноутбуки зачастую снабжают приводами CD-ROM.

Многие современные ноутбуки включают в себя взаимозаменяемые блоки со стандартными разъемами. Такие модули предназначены для очень разных функций. В одно и то же гнездо можно по мере надобности вставлять привод компакт-дисков, накопитель на магнитных дисках, запасную батарею или съемный винчестер. Ноутбук устойчив к сбоям в энергопитании. Даже если он получает энергию от обычной электросети, в случае какого-либо сбоя он мгновенно переходит на питание от аккумуляторов.

Palmtop (наладонник) – самые маленькие современные персональные компьютеры. Умещаются на ладони. Магнитные диски в них заменяет энергонезависимая электронная память. Нет и накопителей на дисках – обмен информацией с обычными компьютерами идет по линиям связи. Если Palmtop дополнить набором деловых программ, записанных в его постоянную память, получится персональный цифровой помощник (Personal Digital Assistant).

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Основные узлы компьютера

Основные узлы

Комплекс нескольких логических схем и элементов памяти, создающих выходные сигналы, является узлом ПК. Абсолютно все компьютерные программы или игры имеют требования к основным характеристикам для корректной работы. Все узлы компьютера должны быть максимально совместимы друг с другом. В противном случае работать в программах будет некомфортно.

К перечню подобных узлов системного блока обычно относят:

  1. Процессор – основополагающий элемент всего функционала компьютера;
  2. Системная плата, ее еще называют «материнской»;
  3. Блок питания – необходим для энергоснабжения ПК;
  4. Жесткий диск – хранилище информации на ПК или ноутбуке;
  5. Оптический привод – устройство для чтения с внешних носителей, который редко встречается на новейших системах;
  6. Разъемы для подключаемых устройств.

Системный блок и системная плата

Внутри системного блока располагаются следующие устройства:

♦ микропроцессор;
♦ внутренняя память компьютера;
♦ дисководы — устройства внешней памяти;
♦ системная шина;
♦ электронные схемы, обеспечивающие связь различных компонентов компьютера;
♦ электромеханическая часть компьютера, включающая блок питания, системы вентиляции, индикации и защиты.

Компоновка компьютера IBM 286

image

Компоновка современного ПК

image

image

image

Все перечисленные устройства, входящие в состав системного блока, помещены в корпус, причем существуют различные типы корпусов. Тип корпуса системного блока зависит от вида персонального компьютера и определяет размер, размещение и количество устанавливаемых компонентов системного блока. Для стационарных персональных компьютеров наиболее распространенными корпусами являются горизонтальные или настольные (desktop) либо в виде башни (tower). В портативных компьютерах системный блок объединен с монитором и выполнен в стандарте booksize, то есть размером с книгу.

Технической (аппаратной) основой персонального компьютера является системная, или материнская, плата.

image

Системная плата является главной платой в системном блоке компьютера. На ней расположены важнейшие микросхемы — процессор и память. Системная плата связывает в единое целое различные устройства, обеспечивает условия работы и связь основных компонентов персонального компьютера. Процессор обеспечивает не только преобразование информации, но и управление работой всех остальных устройств компьютера.

В основе работы компьютера лежит так называемый принцип программного управления. В соответствии с ним команды программы и данные хранятся в закодированном виде в оперативной памяти. При работе компьютера команды, которые необходимо выполнить, и данные, которые им требуются, вчитываются по очереди из памяти и поступают в процессор, где они расшифровываются, а затем выполняются. Результаты выполнения различных команд, в свою очередь, могут быть записаны в память или переданы на различные устройства вывода. Скорость выполнения процессором операций по обработке информации является решающим фактором, определяющим его производительность. Дело в том, что любая информация (числа, текст, рисунки, музыка и т. д.) хранится и обрабатывается на компьютере только в цифровой форме. Поэтому ее обработка сводится к выполнению процессором различных арифметических и логических операций, предусмотренных его системой команд.

Архитектура IBM

Компанией IBM была разработана архитектура ПК, ставшая фактически одним из мировых стандартов. Ее отличительная особенность — в открытости. То есть компьютер в рамках нее перестает быть готовым продуктом от бренда. Компания IBM — не монополист рынка, хотя один из его первопроходцев в аспекте разработки соответствующей архитектуры.

Пользователь или компания, собирающие ПК на платформе IBM, могут самостоятельно определять то, какие компоненты будут включены в структуру компьютера. Также возможна замена того или иного электронного компонента на более совершенный. Стремительное развитие компьютерных технологий позволило реализовать принцип открытой архитектуры ПК.

К У Р С О В А Я Р А Б О Т А

ОГЛАВЛЕНИЕ

2.2. Основные понятия устройства ПК 6

2.3 Классификация принципов построения современных компьютеров 7

2.4.Характеристика принципов построения современных компьютеров 8

2.4.1. Принцип открытой архитектуры 8

2.4.2. Принципы Джона фон Неймана 11

2.5. Заключение 13

3. Практическая часть 15

3.1. Общая характеристика 15

3.2. Описание алгоритма решения задачи 16

3.3. Выбор пакета прикладных программ 18

3.4. Проектирование систем выходных документов и графическое

представление данных по выбранной задаче 19

3.5. Результаты выполнения контрольного примера в расчетном и

формульном виде 20

3.6. Инструкции пользователя 23

У персонального компьютера есть два важных преимущества по сравнению со всеми другими видами компьютеров: он имеет относительно простое управление и может решать достаточно широкий класс задач. Для квалифицированной работы на ПК необходимо знать характеристики компьютерных устройств, и поэтому выбрана именно эта тема для курсовой работы.

В теоретической части данной курсовой работы рассмотрены основные принципы построения современных компьютеров: принципы Джона фон Неймана и принцип открытой архитектуры. Приведены достоинства построения ПК на принципах открытой архитектуры и основные составляющие оборудования компьютеров. Раскрыты принципы функционирования универсальных вычислительных устройств, сформулированные Джоном фон Нейманом в 1945 г.

В практической части дана таблица с данными, на основе которых проведен расчет чистой прибыли с использованием программы Microsoft Excel, построена инфологическая модель решения задачи и диаграмма. Путем расчетов получены результаты выполнения контрольного примера и сделан вывод о трудоспособности разработанного программного решения.

Работа выполнена на ПК Microsoft Windows XP Professional Service Pack 1 (Build 2600) Intel(R) Celeron(TM) CPU 1100MHz.

Для выполнения работы использовались программы:

1. Текстовый редактор «Microsoft Word 2003»

2. Табличный редактор «Microsoft Excel 2003»

2. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
Название работы: «Общие принципы построения современных компьютеров».

2.1. Введение
2.2. Основные понятия устройства ПК

2.3. Классификация принципов построения современных компьютеров

2.4. Характеристика принципов построения современных компьютеров

2.4.1. Принцип открытой архитектуры

2.4.2. Принципы Джона фон Неймана

Потребность в автоматизации вычислений привела к созданию вначале простейших механических устройств, выполняющих арифметические действия, которые с развитием техники и появлением новых знаний совершенствовались и усложнялись.

В XVII веке был изобретен арифмометр, выполняющий 4 арифметических действия; в XIX веке была изобретена (но не доведена до конца из-за несовершенства технологии) Аналитическая Машина, которая могла выполнять последовательность команд без участия человека. Программы вводились на перфокартах.

В 1941-1943 гг. были сконструированы машины вначале на основе электромеханических реле, а затем на основе электронных ламп. Это были машины огромных размеров с очень сложными соединениями, которые постоянно приходилось пересоединять.

С изобретением транзисторов размеры компьютеров значительно уменьшились. В 1958 г. были изобретены интегральные схемы, у которых на одной пластине размещались все транзисторы и соединения между ними. В 1968 г. был выпущен первый компьютер на интегральных схемах, а в 1970 году фирма Intel начала продавать интегральные схемы памяти. Следом была сконструирована интегральная схема, аналогичная по своим функциям центральному процессору большой ЭВМ. В начале 1975 года появился первый компьютер, построенный на основе микропроцессора фирмы Intel.

2.2 ОСНОВНЫЕ ПОНЯТИЯ УСТРОЙСТВА ПК

— системный блок — объединение большого количества различных компьютерных устройств.

— клавиатура — устройство для ввода текстовой информации

— дисплей — устройство вывода текстовой и графической информации

— принтер — предназначен для вывода текстовой и графической информации на бумагу.

— мышь — манипулятор для ввода информации в компьютер

— сканер — для ввода графических изображений в компьютер

— графопостроитель — устройство для ускорения обработки и вывода трехмерной графики

— CD-ROM — для работы с компакт дисками

— факс-модем — устройство для связи между компьютерами через телефонную линию.

2.3. КЛАССИФИКАЦИЯ ПРИНЦИПОВ ПОСТРОЕНИЯ СОВРЕМЕННЫХ КОМПЬЮТЕРОВ

Любая ЭВМ имеет два главных устройства — основную память и процессор (арифметико-логическое устройство для обработки данных). К ним добавляются устройства ввода-вывода для общения с машиной (Рис.1).

Рис. 1. Устройство компьютера
Принципы Джона фон Неймана представлены на рис. 2.

Рис. 2. Принципы Джона фон Неймана
2.4. ХАРАКТЕРИСТИКА ПРИНЦИПОВ ПОСТРОЕНИЯ СОВРЕМЕННЫХ КОМПЬЮТЕРОВ

2.4.1. ПРИНЦИП ОТКРЫТОЙ АРХИТЕКТУРЫ

Принцип открытой архитектуры гласит, что компьютеры собираются из комплектующих, созданных в соответствии с определенными стандартами. Данные стандарты опубликованы и информационно доступны. При этом пользователь имеет возможность самостоятельно вставлять в ПК платы самых разных фирм — производителей и адаптировать свой персональный компьютер к требуемой деятельности.

До появления персональных компьютеров IBM PC все другие модели были основаны на принципе «закрытой архитектуры», т.е. все аппаратные средства были для конечного пользователя «вещью в себе». После того, как заканчивалась сборка аппарата, он «был обречен на необратимое старение». Если с производства снималась хоть одна деталь, систему можно было выбрасывать.

То, что IBM PC стали стандартом персональных машин связано с его очень удачной конструкцией. Компьютеры IBM могут быть созданы из независимо изготовленных частей аналогично детскому конструктору. Если работа любой детали вас не устраивает, ее вынимают и заменяют другой. Ранее, если какая- нибудь деталь снималась с производства, надо было выбрасывать весь прибор. Для IBM PC есть десятки предложений по замене. Компьютеры IBM PC созданы в соответствие с принципом открытой архитектуры.

Достоинства принципа открытой архитектуры можно рассмотреть на следующем примере: пусть у нас есть простой монофонический плеер. Мы покупаем и вставляем в него устройство для записи звука. В результате получаем монофонический магнитофон. Добавляем вторую колонку и слушаем стерео. Подключаем FM тюнер и получаем магнитолу. Далее осталось сделать еще один шаг, и в результате вместо старого плеера мы имеем — двух кассетную стерео магнитолу. Просто в дополнение к прежним деталям мы докупили несколько новых и соединили их вместе. К сожалению, на практике с магнитофонами данный подход не работает, но с компьютерами все обстоит намного лучше. [2]

На основной электронной плате компьютера (системной, или материнской) размещены только те блоки, которые осуществляют обработку информации. Схемы, управляющие всеми другими устройствами компьютера — монитором, дисками и т.д., реализованы на отдельных платах, которые вставляются в стандартные разъемы на системной плате.

При таком подходе фирмы IBM к разработке компьютеров другие фирмы получили возможность разрабатывать различные дополнительные устройства, а пользователи — самостоятельно модернизировать и расширять возможности компьютеров по своему усмотрению.

Сейчас многие фирмы производят IBM- совместимые компьютеры и комплектующие к ним (желтая сборка, белая сборка, красная сборка).

Обычно персональный компьютер состоит из трех частей:

В системном блоке располагаются

— электронные схемы (микропроцессор, ОП, контроллеры устройств);

— блок питания (преобразует напряжение сети в постоянный ток низкого напряжения, подаваемый на эл. схемы);

К системному блоку можно подключать дополнительные устройства ввода-вывода информации чрез специальные гнезда (разъемы) на задней стенке компьютера.

— аудиоплата и т.д.

— Микропроцессор (мозг компьютера. Производит все вычисления и обработку информацию)

— контроллеры и шина (обмен информацией между ОП и внешними устройствами (ВУ). Такой обмен называется вводом-выводом);

Для каждого ВУ в компьютере имеется электронная схема, которая им управляет. Эта схема называется контроллером, или адаптером.

Все контроллеры взаимодействуют с МП и ОП через системную магистраль по передаче данных, называемую шиной.

— электронные платы (на материнской плате — МП, сопроцессор, ОП, шина);

— контроллеры портов ввода-вывода

— параллельные LPT1-LPT4 (принтеры) — быстрее, больше проводов в кабеле.

— асинхронные последовательные COM1-COM3 (мышь, модем)

— игровой порт (джойстик). [3]

2.4.2. ПРИНЦИПЫ ДЖОНА ФОН НЕЙМАНА [1]

В 1945 году знаменитый математик Джон фон Нейман подготовил доклад о машине, которая могла бы хранить программу в своей памяти. Доклад был разослан многим ученым и получил широкую известность, поскольку в нем фон Нейман ясно и просто сформулировал общие принципы функционирования универсальных вычислительных устройств, т.е. компьютеров. Первый компьютер, в котором были воплощены эти принципы, был построен в 1949 году английским исследователем Морисом Уилксом. С той поры компьютеры стали гораздо более мощными, но подавляющее большинство из них сделано в соответствии с принципами фон Неймана. [4]

1. Принцип программного управления. Из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.
Выборка программы из памяти осуществляется с помощью счетчика команд. Этот регистр процессора последовательно увеличивает хранимый в нем адрес очередной команды на длину команды. А так как команды программы расположены в памяти друг за другом, то тем самым организуется выборка цепочки команд из последовательно расположенных ячеек памяти. Если же нужно после выполнения команды перейти не к следующей, а к какой-то другой, используются команды условного или безусловного переходов, которые заносят в счетчик команд номер ячейки памяти, содержащей следующую команду. Выборка команд из памяти прекращается после достижения и выполнения команды “стоп”. Таким образом, процессор исполняет программу автоматически, без вмешательства человека.

2. Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Поэтому компьютер не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами можно выполнять такие же действия, как и над данными.

Это открывает целый ряд возможностей. Например, программа в процессе своего выполнения также может подвергаться переработке, что позволяет задавать в самой программе правила получения некоторых ее частей (так в программе организуется выполнение циклов и подпрограмм).

Более того, команды одной программы могут быть получены как результаты исполнения другой программы. На этом принципе основаны методы трансляции — перевода текста программы с языка программирования высокого уровня на язык конкретной машины.

3. Принцип адресности. Структурно основная память состоит из перенумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было впоследствии обращаться или менять их в процессе выполнения программ с использованием присвоенных имен.

Компьютеры, построенные на этих принципах, относятся к типу фон-неймановских. Но существуют компьютеры, принципиально отличающиеся от фон-неймановских. Для них, например, может не выполняться принцип программного управления, т.е. они могут работать без “счетчика команд”, указывающего текущую выполняемую команду программы. Для обращения к какой-либо переменной, хранящейся в памяти, этим компьютерам не обязательно давать ей имя. Такие компьютеры называются не-фон-неймановскими. [1]

В наше время трудно представить себе, что без компьютеров можно обойтись, но ещё десять лет назад было редкостью увидеть какой-нибудь персональный компьютер — они были, но были очень дорогие, и даже не каждая фирма могла иметь у себя в офисе компьютер. А теперь в каждом третьем доме есть компьютер, который уже глубоко вошёл в жизнь самих обитателей дома. Области применения ЭВМ непрерывно расширяются. Этому в значительной степени способствует распространение персональных ЭВМ, и особенно микроЭВМ. За время, прошедшее с 50-х годов, цифровая ЭВМ превратилась из “волшебного”, но при этом дорогого, уникального и перегретого нагромождения электронных ламп, проводов и магнитных сердечников в небольшую по размерам машину — персональный компьютер, состоящий из миллионов крошечных полупроводниковых приборов, которые упакованы в небольшие пластмассовые коробочки.

На сегодняшний день компьютерные технологии применяются повсюду, они управляют работой кассовых аппаратов, следят за работой автомобильных систем зажигания, ведут учёт семейного бюджета, или просто используются в качестве развлекательного комплекса, но это только малая часть возможностей современных компьютеров. Более того, бурный прогресс полупроводниковой микроэлектроники, представляющей собой базу вычислительной техники, свидетельствует о том, что сегодняшний уровень как самих компьютеров, так и областей их применения является лишь слабым подобием того, что наступит в будущем.

В данной курсовой работе рассмотрены основные принципы построения современного компьютера.

Принципы фон Неймана, описанные им еще в 1945 году используются и до сих пор. Архитектура компьютеров с ростом технологий постепенно меняется, но принципы адресности, однородности памяти и программного управления остаются неизменны.

Так как принцип открытой архитектуры позволяет самому конструировать компьютер, то он очень удобен для пользователя. К тому же открытая архитектура двигает прогресс вперед. С появлением ПК – совместимых и принципа открытой архитектуры многие компании стали производить и усовершенствовать аппаратное и программное обеспечение. А жесткая конкуренция способствовала удешевлению компьютеров. Сегодня рынок PC — совместимых компьютеров продолжает развиваться. При разработке новых моделей используются все более совершенные технологии. Поскольку эти типы компьютерных систем используют самое разнообразное программное обеспечение, по-видимому, в течение ближайших 20 лет доминировать на рынке будут компьютеры с открытой архитектурой.

3. ПРАКТИЧЕСКАЯ ЧАСТЬ

Название экономической задачи: «Расчет чистой прибыли по объему выпуска товара, цене и суммарным издержкам».

3.1. Общая характеристика задачи.

    1. . Выбор ППП.

    3.5. Результаты выполнения контрольного примера в расчетном и формульном виде.

    3.6. Инструкции пользователя.
    3.1. ОБЩАЯ ХАРАКТЕРИСТИКА

    Название задачи: расчет чистой прибыли по объему выпуска товара, цене и суммарным издержкам.

    Условие задачи: Используя ППП на ПК, необходимо рассчитать оптимальное сочетание цены и количества произведенного товара при максимальном значении получаемой прибыли путем задания переменных издержек на единицу товара (соотношения показателей заданы в шапке таблицы на рис. 38). Наибольшую прибыль обеспечивают такой объем выпуска и цена, при которых предельные издержки максимально приближены к предельной выручке или равны ей.

    Введите текущее значение даты между таблицей и ее названием.

    По данным таблицы постройте гистограмму с заголовком, названием осей координат и легендой.

    Место решения задачи: задача решается экономистом на предприятии.

    Цель: рассчитать оптимальное сочетание цены и количества произведенного товара для получения наибольшей прибыли.
    3.2. ОПИСАНИЕ АЛГОРИТМА РЕШЕНИЯ ЗАДАЧ
    Инфологическая модель решения задачи.

    Условные обозначения

    Обозначения Наименование реквизита
    ЦЕН цена, тыс. руб.
    КОЛ количество
    ИЗД суммарные издержки, тыс. руб.
    ВЫР выручка от реализации
    ПРИБ прибыль
    ПВЫР предельная выручка
    ПИЗД предельные издержки
    ЧПРИБ чистая прибыль
    i номер варианта (порядковый номер)

    3.3. ВЫБОР ПАКЕТА ПРИКЛАДНЫХ ПРОГРАММ

    В решении практической части была использована программа «Microsoft Excel 2003» — оптимальная программа для решения задач, простая в применении, в которой есть формулы для расчетов и возможность строить таблицы и графики по полученным данным.

    Всеобъемлющий набор инструментальных средств «Microsoft Excel 2003» упрощает создание мощных электронных таблиц, а также их проверку и анализ совместно с другими пользователями. Пользователям с начальным и средним уровнем подготовки Excel помогает чувствовать себя более уверенно при работе с электронными таблицами (благодаря упрощенному доступу к существующим функциям) и предлагает информацию, позволяющую избежать многих ошибок. Для опытных пользователей в Excel предусмотрены простые и интуитивно понятные способы выполнения наиболее распространенных задач.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector