Поколения компьютеров — история развития вычислительной техники

Четвертое поколение ЭВМ. ( с 1972 г — по настоящее время)

Новым этапом для развития ЭВМ послужили большие интегральные схемы (БИС). Элементная база компьютеров четвертого поколения это БИС. Стремительное развитие электроники, позволило разместить на одном кристалле тысячи полупроводников. Такая миниатюризация привела к появлению недорогих компьютеров. Небольшие ЭВМ могли разместиться на одном письменном столе. Именно в эти годы зародился термин «Персональный компьютер». Исчезают огромные дорогостоящие монстры. За одним таким компьютером, через терминалы, работало сразу несколько десятков пользователей. Теперь. Один человек – один компьютер. Машина стала, действительно персональной.

Характеристики ЭВМ четвертого поколения:

  • Мультипроцессорность
  • Языки высокого уровня
  • Компьютерные сети
  • Параллельная и последовательная обработка данных

Первым мини-компьютером считают PDP-8 корпорации DEC. Эта машина создавалась для управления ядерным реактором. Но она стала популярна на частных производственных предприятий и в высших учебных заведениях. Ее массовый выпуск начался 1965 году и к началу 70-х количество этих ЭВМ превысило 100 000 штук. Важный переход от мини-компьютеров к микро-компьютерам, это создание микропроцессора. Благодаря БИС стало возможным разместить все основные элементы центрального процессора на одном кристалле. Первым микропроцессором стал Intel-4004 созданный 1971 г. Он содержал в себе более двух тысяч полупроводников, которые разместились на одной подложке. В одной интегральной схеме разместились арифметическое — логическое устройство и управляющее устройство.

Одним из первых персональных компьютеров четвертого поколения считается Altair-8800. Созданный на базе микропроцессора Intel-8080. Его появление стимулировало рост периферийных устройств, компиляторов высокого уровня.

Интегральные схемы можно классифицировать по количеству элементов размещенных на одном кристалле:

  • ПИС – (Простые интегральные схемы) до 10 элементов
  • МИС – (Малые интегральные схемы) до 100 элементов
  • СИС – (Средние интегральные схемы) до 1 000 элементов
  • БИС – (Большие интегральные схемы) до 10 000 элементов
  • СБИС – (Сверхбольшие интегральные схемы) до 1 000 000 элементов
  • УБИС – (Ультрабольшие интегральные схемы) до 1 000 000 000 элементов
  • ГБИС – (Гигабольшие интегральные схемы) свыше 1 000 000 000 элементов

Большая интегральная схема – усовершенствованный потомок простой интегральной схемы. Которая являлась одним из основных элементов предыдущего поколения. Большой, ее называют, не потому что интегральная схема большая, а потому что в ней высокая степень интеграции.

Процесс изготовления БИС выглядит следующим образом. Над кристаллом наносится светочувствительный слой фоторезист. Который в дальнейшем засвечивается над шаблоном. После этого негатив проявляют. Удаляют те области которые засвечены. В образовавшиеся пробелы фоторезиста вводят примеси. После отжига кристалла проводят аналогичные операции используя при этом разные фотошаблоны. Каждый шаблон отвечает за образование определенной группы элементов интегральной схемы. В заключительной стадии изготовления БИС применяются фотошаблоны, которые формируют алюминиевые дорожки для соединения цепей сложной конфигурации. БИС стали одними из первых продуктов электроники которые выпускаются только серийно.

В дальнейшем стали выпускаться программно-управляемые БИС. Функции такой схемы меняются в зависимости от программы, которая тоже напыляется на отдельном кристалле. Данная БИС состоит из операционной части и программы. Ввод программы в БИС, настраивает ее на определенный класс задач. Одна и та же интегральная схема может работать и как арифметическое устройство и как управляющее устройство.

Применение БИС дало резкое улучшение основных показателей скорости работы и надежности. Такая высокая степень интеграции, привела к уменьшению числа монтажных операций, уменьшила количество внешних соединений, которые изначально не надежные. Это очень способствовало уменьшению размеров, стоимости и повышению надежности.

Однако появление БИС привело и к появлению проблем. Одна из главных это проблема теплоотвода. Чем выше степень интеграции схемы тем выше тепловыделение. Требуется постоянное охлаждение, без которого интегральная схема перегреться и сгорит. Существует также проблемы: межсоединений элементов, контроля параметров. Большие интегральные схемы уже начали применять в третьем поколении. Пример System-360.

Проводя исследования удалось создать модели интегральных схем. Которые работают со скоростью в несколько миллиардов операций в секунду. При создании опытных образцов выяснилось, что невозможно пустить их в серийное производство. Оказывается при современном развитии техники достижение таких скоростей невозможно вообще. И проблема не в инженерных решениях. А в необходимости достижения абсолютно чистых химических материалах, однородности кристалла, стабильных температурных режимах. Взаимодействие электрических полей внутри кристалла.

Кроме изменения технической базы четвертого поколения ЭВМ, изменилось и направление создания этих машин. Они проектировались с расчетом на применение языков программирования высокого уровня, многие на аппаратном уровне были спроектированы под определенные операционные системы.

Один из самых популярных компьютеров четвертого поколения это IBM System-370. Который в отличи от своего предшественника третьего поколения System-360, имел более мощную систему микрокоманд и большие возможности низкоуровневого программирования. В машинах серии System-370 программно была реализована виртуальная память. Когда часть дискового пространства отводилась для использования хранения временных данных. Тем самым эмулировалась оперативная память. У конечного пользователя создавалась впечатление, что ресурсов у машины больше чем есть на самом деле.

Технические характеристики ЭВМ четвертого поколения:

  • Применение модульности для создания программного обеспечения
  • Средняя задержка сигнала 0.7 нс/вентиль
  • Впервые модули операционной системы начали реализовывать на аппаратном уровне
  • Базовым элементом оперативной памяти стал полупроводник. Чтение запись 100-150 нс.

К четвертому поколению советских ЭВМ можно отнести: ЕС-1015, ЕС-1025, ЕС-1035, ЕС-1045, ЕС-1055, ЕС-1065. Персональные компьютеры, которые стали популярны в быту: Электроника-85, Искра-226, ЕС-1840, ЕС-1841, ЕС-1842. К этому поколению относиться и многопроцессорный компьютер «Эльбрус». Применяемый на производстве и машиносчетных станциях. Позже его сменил «Эльбрус-2». Вычислительная мощность этой машины, для четвертого поколения, была очень велика. Он имел порядка 64 мегабайт оперативной памяти, мог выполнять до 5 миллионов операций, с плавающей точкой, в секунду. Пропускная способность шины до 120 Мб/с.

ЭВМ четвертого поколения являются машинами массового применения. Они способны заменить ЭВМ предыдущего поколения во всех сферах человеческой деятельности. В управлении технологическими процессами предприятий, торговле, инженерных расчетах, справочных центров, регулировании транспортного движения, билинговых системах.

C точки зрения структуры машины этого поколения представляют собой многопроцессорные и многомашинные комплексы, работающие на общую память и общее поле внешних устройств. Ёмкость оперативной памяти порядка 1 — 64 Мбайт.

Распространение персональных компьютеров к концу 70-х годов привело к некоторому снижению спроса на большие ЭВМ и мини-ЭВМ. Это стало предметом серьезного беспокойства фирмы IBM (International Business Machines Corporation) — ведущей компании по производству больших ЭВМ, и в 1979 г. фирма IBM решила попробовать свои силы на рынке персональных компьютеров, создав первые ПК.

В 1981 году она выпустила свой первый микрокомпьютер IBM PC с открытой архитектурой, основанный на 16-разрядном микропроцессоре 8088 фирмы Intel. Этот компьютер был оборудован монохромным текстовым дисплеем, двумя дисководами для 5-дюймовых дискет на 160 Кбайт, оперативной памятью 64 Кбайта. По поручению IBM фирма Microsoft разработала для IBM PC собственную операционную систему.

Персональный компьютер — компьютер, специально созданный для работы в однопользовательском режиме. Появление персонального компьютера прямо связано с рождением микрокомпьютера. Очень часто термины «персональный компьютер» и «микрокомпьютер» используются как синонимы.

ПК использует микропроцессор (интегральная схема) в качестве единственного центрального процессора, выполняющего все логические и арифметические операции. Эти компьютеры относят к вычислительным машинам четвертого и пятого поколения. Помимо ноутбуков, к переносным микрокомпьютерам относят и карманные компьютеры — палмтопы. Основными признаками ПК являются шинная организация системы, высокая стандартизация аппаратных и программных средств, ориентация на широкий круг потребителей.

Нулевое поколение. Механические вычислители

Предпосылки к появлению компьютера формировались, наверное, с древних времен, однако нередко обзор начинают со счетной машины Блеза Паскаля, которую он сконструировал в 1642 г. Эта машина могла выполнять лишь операции сложения и вычитания. В 70-х годах того же века Готфрид Вильгельм Лейбниц построил машину, умеющую выполнять операции не только сложения и вычитания, но и умножения и деления.

В XIX веке большой вклад в будущее развитие вычислительной техники сделал Чарльз Бэббидж. Его разностная машина, хотя и умела только складывать и вычитать, зато результаты вычислений выдавливались на медной пластине (аналог средств ввода-вывода информации). В дальнейшем описанная Бэббиджем аналитическая машина должна была выполнять все четыре основные математические операции. Аналитическая машина состояла из памяти, вычислительного механизма и устройств ввода-вывода (прямо таки компьютер … только механический), а главное могла выполнять различные алгоритмы (в зависимости от того, какая перфокарта находилась в устройстве ввода). Программы для аналитической машины писала Ада Ловлейс (первый известный программист). На самом деле машина не была реализована в то время из-за технических и финансовых сложностей. Мир отставал от хода мыслей Бэббиджа.

В XX веке автоматические счетные машины конструировали Конрад Зус, Джорж Стибитс, Джон Атанасов. Машина последнего включала, можно сказать, прототип ОЗУ, а также использовала бинарную арифметику. Релейные компьютеры Говарда Айкена: «Марк I» и «Марк II» были схожи по архитектуре с аналитической машиной Бэббиджа.

Поколения компьютеров: краткое описание

В соответствии с общепринятой методикой оценки развития вычислительной техники первым поколением считались ламповые компьютеры, вторым —транзисторные, третьим — компьютеры на интегральных схемах, а четвёртым — с использованием микропроцессоров.

Первое поколение ЭВМ (1948–1958) создавалось на основе вакуумных электроламп, машина управлялась с пульта и перфокарт с использованием машинных кодов. Эти ЭВМ размещались в нескольких больших металлических шкафах, занимавших целые залы.

Элементной базой машин этого поколения были электронные лампы – диоды и триоды. Машины предназначались для решения сравнительно несложных научно-технических задач. К этому поколению ЭВМ можно отнести: МЭСМ, БЭСМ-1, М-1, М-2, М-З, «Стрела», Минск-1, Урал-1, Урал-2, Урал-3, М-20, «Сетунь», БЭСМ-2, «Раздан» (рис. 2.1).

ЭВМ первого поколения были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение. Быстродействие их не превышало 2–3 тысячи операций в секунду, емкость оперативной памяти – 2 кб или 2048 машинных слов (1 кб = 1024) длиной 48 двоичных знаков.

Второе поколение ЭВМ (1959–1967) появилось в 60-е гг. ХХ века. Элементы ЭВМ выполнялись на основе полупроводниковых транзисторов (рис. 2.2, 2.3). Эти машины обрабатывали информацию под управлением программ на языке Ассемблер. Ввод данных и программ осуществлялся с перфокарт и перфолент.

Элементной базой машин этого поколения были полупроводниковые приборы. Машины предназначались для решения различных трудоемких научно-технических задач, а также для управления технологическими процессами в производстве. Появление полупроводниковых элементов в электронных схемах существенно увеличило емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. С появлением машин второго поколения значительно расширилась сфера использования электронной вычислительной техники, главным образом за счет развития ПО.

Третье поколение ЭВМ (1968–1973). Элементная база ЭВМ – малые интегральные схемы (МИС), содержавшие на одной пластинке сотни или тысячи транзисторов. Управление работой этих машин происходило с алфавитно-цифровых терминалов. Для управления использовались языки высокого уровня и Ассемблер. Данные и программы вводились как с терминала, так и с перфокарт и перфолент. Машины предназначались для широкого использования в различных областях науки и техники (проведение расчетов, управление производством, подвижными объектами и др.). Благодаря интегральным схемам удалось существенно улучшить технико-эксплуатационные характеристики ЭВМ и резко снизить цены на аппаратное обеспечение. Например, машины третьего поколения по сравнению с машинами второго поколения имеют больший объем оперативной памяти, увеличенное быстродействие, повышенную надежность, а потребляемая мощность, занимаемая площадь и масса уменьшились.

Четвертое поколение ЭВМ (1974–1982). Элементная база ЭВМ – большие интегральные схемы (БИС). Наиболее яркие представители четвертого поколения ЭВМ – персональные компьютеры (ПК). Связь с пользователем осуществлялась посредством цветного графического дисплея с применением языков высокого уровня.

Машины предназначались для резкого повышения производительности труда в науке, производстве, управлении, здравоохранении, обслуживании и быту. Высокая степень интеграции способствовала увеличению плотности компоновки электронной аппаратуры, повышению ее надежности, что привело к увеличению быстродействия ЭВМ и снижению ее стоимости. Все это оказывает существенное воздействие на логическую структуру (архитектуру) ЭВМ и на ее ПО. Более тесной становится связь структуры машины и ее программного обеспечения, особенно операционной системы (ОС) (или монитора) – набора программ, которые организуют непрерывную работу машины без вмешательства человека

Пятое поколение ЭВМ (1990 – настоящее время) создано на основе сверхбольших интегральных схем (СБИС), которые отличаются колоссальной плотностью размещения логических элементов на кристалле.

6. Организация компьютерных систем

Процессоры

На рис. 2.1 показана структура обычного компьютера с шинной организацией. Центральный процессор — это мозг компьютера. Его задача — выполнять программы, находящиеся в основной памяти. Он вызывает команды из памяти, определяет их тип, а затем выполняет одну за другой. Компоненты соединены шиной, представляющей собой набор параллельно связанных проводов, по которым передаются адреса, данные и сигналы управления. Шины могут быть внешними (связывающими процессор с памятью и устройствами ввода-вывода) и внутренними.

Рис. 2.1. Схема компьютера с одним центральным процессором и двумя устройствами ввода-вывода

Процессор состоит из нескольких частей. Блок управления отвечает за вызов команд из памяти и определение их типа. Арифметико-логическое устройство выполняет арифметические операции (например, сложение) и логические операции (например, логическое И).

Внутри центрального процессора находится память для хранения промежуточных результатов и некоторых команд управления. Эта память состоит из нескольких регистров, каждый из которых выполняет определенную функцию. Обычно размер всех регистров одинаков. Каждый регистр содержит одно число, которое ограничивается размером регистра. Регистры считываются и записываются очень быстро, поскольку они находятся внутри центрального процессора.

Самый важный регистр — счетчик команд, который указывает, какую команду нужно выполнять следующей. Название «счетчик команд» не соответствует действительности, поскольку он ничего не считает, но этот термин употребляется повсеместно1. Еще есть регистр команд, в котором находится выполняемая в данный момент команда. У большинства компьютеров имеются и другие регистры, одни из них многофункциональны, другие выполняют лишь какие-либо специфические функции.

7. Программное обеспечение. Основная память.

Вся совокупность программ, хранящихся на всех устройствах долговременной памяти компьютера, составляет его программное обеспечение (ПО).


Поколения ЭВМ

Можно выделить (5) основных поколений ЭВМ . Но деление компьютерной техники на поколения — весьма условная.

1. Элементная база: электронно-вакуумные лампы.
2. Соединение элементов: навесной монтаж проводами.
3. Габариты: ЭВМ выполнена в виде громадных шкафов.

Эти компьютеры были огромными, неудобными и слишком дорогими машинами, которые могли приобрести крупные корпорации и правительства.

Лампы потребляли большое количество электроэнергии и выделяли много тепла.
4. Быстродействие: (10-20) тыс. операций в секунду.
5. Эксплуатация: сложная из-за частого выхода из строя электронно-вакуумных ламп.
6. Программирование: машинные коды. При этом надо знать все команды машины, двоичное представление, архитектуру ЭВМ. В основном были заняты математики-программисты. Обслуживание ЭВМ требовало от персонала высокого профессионализма.
7. Оперативная память: до (2) Кбайт.
8. Данные вводились и выводились с помощью перфокарт, перфолент.

В (1948) году Джон Бардин, Уильям Шокли, Уолтер Браттейн изобрели транзистор, за изобретение транзистора они получили Нобелевскую премию в (1956) г.

В (1958) году создана машина М-20 , выполнявшая (20) тыс. операций в секунду — самая мощная ЭВМ (50-х) годов в Европе.

1. Элементная база: полупроводниковые элементы (транзисторы, диоды).
2. Соединение элементов: печатные платы и навесной монтаж.

3. Габариты: ЭВМ выполнена в виде однотипных стоек, чуть выше человеческого роста, но для размещения требовался специальный машинный зал.
4. Быстродействие: (100-500) тыс. операций в секунду.
5. Эксплуатация: вычислительные центры со специальным штатом обслуживающего персонала, появилась новая специальность — оператор ЭВМ .
6. Программирование: на алгоритмических языках, появление первых операционных систем .
7. Оперативная память: (2-32) Кбайт.
8. Введён принцип разделения времени — совмещение во времени работы разных устройств.

Уже начиная со второго поколения, машины стали делиться на большие, средние и малые по признакам размеров, стоимости, вычислительных возможностей.

Так, небольшие отечественные машины второго поколения (« Наири », « Раздан », « Мир » и др.) были в конце (60)-х годов вполне доступны каждому вузу, в то время как упомянутая выше БЭСМ-6 имела профессиональные показатели (и стоимость) на (2-3) порядка выше.

В (1958) году Джек Килби и Роберт Нойс , независимо друг от друга, изобретают интегральную схему (ИС).

В (1965) году начат выпуск семейства машин третьего поколения IBM-360 (США). Модели имели единую систему команд и отличались друг от друга объёмом оперативной памяти и производительностью.

640px-DM_IBM_S360.jpg

В (1967) году начат выпуск БЭСМ — 6 ((1) млн. операций в (1) с) и « Эльбрус » ((10) млн. операций в (1) с).

В (1968) году сотрудник Стэндфордского исследовательского центра Дуглас Энгельбарт продемонстрировал работу первой мыши.

Firstmouseunderside.jpg

В (1969) году фирма IBM разделила понятия аппаратных средств (hardware) и программные средства (software). Фирма начала продавать программное обеспечение отдельно от железа, положив начало индустрии программного обеспечения.

(29) октября (1969) года проходит проверка работы самой первой глобальной военной компьютерной сети ARPANet , связывающей исследовательские лаборатории на территории США.

В (1971) году создан первый микропроцессор фирмой Intel . На (1) кристалле сформировали (2250) транзисторов.

1. Элементная база: интегральные схемы.
2. Соединение элементов: печатные платы.
3. Габариты: ЭВМ выполнена в виде однотипных стоек.
4. Быстродействие: (1-10) млн. операций в секунду.
5. Эксплуатация: вычислительные центры, дисплейные классы, новая специальность — системный программист .
6. Программирование: алгоритмические языки, операционные системы.
7. Оперативная память: (64) Кбайт.

При продвижении от первого к третьему поколению радикально изменились возможности программирования. Написание программ в машинном коде для машин первого поколения (и чуть более простое на Ассемблере) для большей части машин второго поколения является занятием, с которым подавляющее большинство современных программистов знакомятся при обучении в вузе.

Появление процедурных языков высокого уровня и трансляторов с них было первым шагом на пути радикального расширения круга программистов. Научные работники и инженеры сами стали писать программы для решения своих задач.

Уже в третьем поколении появились крупные унифицированные серии ЭВМ. Для больших и средних машин в США это прежде всего семейство IBM 360/370 . В СССР (70)-е и (80)-е годы были временем создания унифицированных серии: ЕС (единая система) ЭВМ (крупные и средние машины), СМ (система малых) ЭВМ и « Электроника » ( серия микро-ЭВМ).

В их основу были положены американские прототипы фирм IBM и DEC (Digital Equipment Corporation). Были созданы и выпущены десятки моделей ЭВМ, различающиеся назначением и производительностью. Их выпуск был практически прекращен в начале (90)-х годов.

Стив Джобс и Стив Возняк организовали предприятие по изготовлению персональных компьютеров « Apple », предназначенных для большого круга непрофессиональных пользователей. Продавался (Apple 1) по весьма интересной цене — (666,66) доллара. За десять месяцев удалось реализовать около двухсот комплектов.

Apple_I.jpg

В (1982) году фирма IBM приступила к выпуску компьютеров IBM РС с процессором Intel 8088 , в котором были заложены принципы открытой архитектуры, благодаря которому каждый компьютер может собираться как из кубиков, с учётом имеющихся средств и с возможностью последующих замен блоков и добавления новых.

1. Элементная база: большие интегральные схемы (БИС).
2. Соединение элементов: печатные платы.
3. Габариты: компактные ЭВМ, ноутбуки.
4. Быстродействие: (10-100) млн. операций в секунду.
5. Эксплуатация: многопроцессорные и многомашинные комплексы, любые пользователи ЭВМ.
6. Программирование: базы и банки данных.
7. Оперативная память: (2-5) Мбайт.
8. Телекоммуникационная обработка данных, объединение в компьютерные сети.

Элементной базой являются сверхбольшие интегральные схемы (СБИС) с использованием оптоэлектронных принципов (лазеры, голография).

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector