Поколение ЭВМ: от ламповых “монстров” к интегральным микросхемам

Поколение ЭВМ: от ламповых “монстров” к интегральным микросхемам

Немногим более 50 лет прошло с тех пор, как появилась первая электронная вычислительная машина. За этот короткий для развития общества период сменилось несколько поколений вычислительных машин, а первые ЭВМ сегодня являются музейной редкостью. Сама история развития вычислительной техники представляет немалый интерес, показывая тесную взаимосвязь математики с физикой (прежде всего с физикой твердого тела, полупроводников, электроникой) и современной технологией, уровнем развития которой во многом определяется прогресс в производстве средств вычислительной техники.

Электронно-вычислительные машины у нас в стране принято делить на поколения. Для компьютерной техники характерна прежде всего быстрота смены поколений — за ее короткую историю развития уже успели смениться четыре поколения и сейчас мы работаем на компьютерах пятого поколения. Что же является определяющим признаком при отнесении ЭВМ к тому или иному поколению? Это прежде всего их элементная база (из каких в основном элементов они построены), и такие важные характеристики, как быстродействие, емкость памяти, способы управления и переработки информации. Конечно же, деление ЭВМ на поколения в определенной мере условно. Существует немало моделей, которые по одним признакам относятся к одному, а по другим — к другому поколению. И все же, несмотря на эту условность поколения ЭВМ можно считать качественными скачками в развитии электронно-вычислительной техники.

Первое поколение ЭВМ (1948 — 1958 гг.)

Элементной базой машин этого поколения были электронные лампы – диоды и триоды. Машины предназначались для решения сравнительно несложных научно-технических задач. К этому поколению ЭВМ можно отнести: МЭСМ, БЭСМ-1, М-1, М-2, М-З, “Стрела”, “Минск-1”, “Урал-1”, “Урал-2”, “Урал-3”, M-20, «Сетунь», БЭСМ-2, «Раздан». Они были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение. Быстродействие их не превышало 2—3 тысяч операций в секунду, емкость оперативной памяти—2К или 2048 машинных слов (1K=1024) длиной 48 двоичных знаков. В 1958 г. появилась машина M-20 с памятью 4К и быстродействием около 20 тысяч операций в секунду. В машинах первого поколения были реализованы основные логические принципы построения электронно-вычислительных машин и концепции Джона фон Неймана, касающиеся работы ЭВМ по вводимой в память программе и исходным данным (числам). Этот период явился началом коммерческого применения электронных вычислительных машин для обработки данных. В вычислительных машинах этого времени использовались электровакуумные лампы и внешняя память на магнитном барабане. Они были опутаны проводами и имели время доступа 1х10-3 с. Производственные системы и компиляторы пока не появились. В конце этого периода стали выпускаться устройства памяти на магнитных сердечниках. Надежность ЭВМ этого поколения была крайне низкой.

Элементной базой машин этого поколения были полупроводниковые приборы. Машины предназначались для решения различных трудоемких научно-технических задач, а также для управления технологическими процессами в производстве. Появление полупроводниковых элементов в электронных схемах существенно увеличело емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. С появлением машин второго поколения значительно расширилась сфера использования электронной вычислительной техники, главным образом за счет развития программного обеспечения. Появились также специализированные машины, например ЭВМ для решения экономических задач, для управления производственными процессами, системами передачи информации и т.д. К ЭВМ второго поколения относятся:

и ряд других ЭВМ.

ЭВМ БЭСМ-4, М-220, М-222 имели быстродействие порядка 20—30 тысяч операций в секунду и оперативную память—соответственно 8К, 16К и 32К. Среди машин второго поколения особо выделяется БЭСМ-6, обладающая быстродействием около миллиона операций в секунду и оперативной памятью от 32К до 128К (в большинстве машин используется два сегмента памяти по 32К каждый).

Данный период характеризуется широким применением транзисторов и усовершенствованных схем памяти на сердечниках. Большое внимание начали уделять созданию системного программного обеспечения, компиляторов и средств ввода-вывода. В конце указанного периода появились универсальные и достаточно эффективные компиляторы для Кобола, Фортрана и других языков.

Была достигнута уже величина времени доступа 1х10-6 с, хотя большая часть элементов вычислительной машины еще была связана проводами.

Вычислительные машины этого периода успешно применялись в областях, связанных с обработкой множеств данных и решением задач, обычно требующих выполнения рутинных операций на заводах, в учреждениях и банках. Эти вычислительные машины работали по принципу пакетной обработки данных. По существу, при этом копировались ручные методы обработки данных. Новые возможности, предоставляемые вычислительными машинами, практически не использовались.

Именно в этот период возникла профессия специалиста по информатике, и многие университеты стали предоставлять возможность получения образования в этой области.

Второе поколение

В 1948 году был создан первый транзистор. Разработкой занимались физики Джон Бардин и Уильям Шокли, а также экспериментатор Уолтер Браттейн. Первые представители данного поколения ЭВМ, которые были созданы на основе транзисторов в конце 50-х годов, а к середине 60-х стали появляться компьютеры, имеющие значительно меньшие габариты.

Главной отличительной чертой транзистора является то, что он способен работать как сорок ламп, но при этом скорость у него выше. Кроме того, эти устройства требовали гораздо меньше энергии и практически не грелись. Параллельно с этим увеличивался и объем памяти для хранения информации. Благодаря стараниям ученых компьютеры получили быстродействие, равное миллиону операций в секунду.

Американским представителем является устройство ЭВМ «Атлас». Советский Союз может быть представлен машиной БЭСМ-6.

поколения эвм

Все улучшения, произошедшие с появлением транзисторов, позволили значительно расширить сферы применения ЭВМ. Активно стали создаваться языки программирования для различных целей. Примером могут выступать фортран и кобол.

Однако по-прежнему машины страдали от нехватки памяти. Для экономии пространства стали разрабатывать операционные системы, которые позволяли более рационально распределять ресурсы.

В каком поколении ЭВМ появился монитор

Появление первого компьютерного монитора пришлось на второе поколение ЭВМ. Честь изобретения принадлежит американской компании IBMВ, которая в 1964 году выпустила коммерческую дисплейную станцию IBM-2250 — она использовалась в машинах серии System/360. Модель имела векторный монохромный дисплей размерами 12х12 дюймов, с разрешением 1024 на 1024 точки и частотой обновления 40 Гц.

Качество изображения на первом мониторе разительно отличалось от современных компьютеров: чтобы увеличить производительность, символы, цифры и буквы на экране были разделены на отдельные отрезки и максимально упрощены.

За форматирование символов на экране отвечали специальные подпрограммы, заложенные в память дисплейной станции IBM-2250. Центральному процессору ЭВМ достаточно было указать, какие символы, в каком порядке и где вывести на экране, а расчет отображаемой картинки и управление катодным лучом производились в самой дисплейной станции, что существенно разгружало компьютер.

Сколько существует поколений компьютеров?

Хотя разработка компьютерных технологий началась примерно в 1940 году, развитие этой технологии началось примерно в 1946 году с первого поколения компьютеров и с тех пор постоянно развивается. На данный момент существует пять поколений компьютеров .

Пять поколений компьютеров перечислены ниже:

Каждое из этих поколений компьютеров также обсуждается ниже с необходимыми деталями и соответствующими изображениями. Разберем подробно каждое поколение:

Первое поколение (1946 — 1959)

Это самое раннее поколение компьютеров, известное как первое поколение компьютеров. Период первого поколения считается с 1946 по 1959 год. В первом поколении компьютеры разрабатывались с использованием электронных ламп в качестве базовой технологии. В компьютерах первого поколения использовался машинный язык, язык программирования самого низкого уровня, поэтому он мог легко обрабатываться и пониматься компьютерами.

ENIAC, сокращение от Electronic Numeric Integrated and Calculator, является наиболее популярным примером компьютера первого поколения. Другие примеры включают UNIVAC, EDVAC, EDSAC, IBM-650, IBM-701, Manchester Mark 1, Mark 2, Mark 3 и т. д.

Преимущества компьютеров первого поколения


Ниже перечислены основные преимущества компьютеров первого поколения:

  • Электронные лампы использовались в компьютерах первого поколения, и это поколение помогло внедрить компьютерные устройства.
  • Благодаря использованию машинных языков компьютеры этого поколения были быстрее на раннем этапе развития.
  • Компьютеры могли выполнять вычисления за миллисекунды.


Ниже перечислены основные недостатки компьютеров первого поколения:

  • Компьютеры первого поколения были очень большими и могли покрыть целую комнату.
  • Компьютеры этого поколения выделяли слишком много тепла и требовали большой системы охлаждения.
  • Емкость запоминающих устройств в компьютерах в этом поколении была очень низкой.

Второе поколение (1959-1965)

Второе поколение компьютеров началось с широкого использования транзисторов. В этом поколении электронные лампы больше не были основной технологией. Их заменили транзисторы. Период второго поколения считается с 1959 по 1965 год. Магнитные сердечники (как первичные запоминающие устройства) и магнитные ленты (как вторичные запоминающие устройства) также использовались для требований к памяти в компьютерах.

Во втором поколении компьютеры использовали языки ассемблера вместо двоичных машинных языков. Кроме того, в этом поколении были представлены ранние версии языков высокого уровня, такие как COBOL и FORTRAN

CDC-3600 и IBM-7094 — самые популярные компьютеры второго поколения. К другим примерам относятся компьютеры серий UNIVAC-1108, IBM-7070, CDC-1604, IBM-1400, серии IBM-1600, серии IBM-7000, Honeywell-400 и т. д.

Преимущества компьютеров второго поколения

Ниже перечислены основные преимущества компьютеров второго поколения:

  • Транзистор помог сделать компьютер второго поколения немного меньше, чем компьютер первого поколения.
  • Благодаря технологии магнитного сердечника компьютеры этого поколения могут хранить инструкции в памяти.
  • Компьютеры стали быстрее, надежнее и могли выполнять вычисления за микросекунды.

Ниже перечислены основные недостатки компьютеров второго поколения:

  • Во втором поколении по-прежнему требовалась система охлаждения.
  • Компьютеры второго поколения требовали регулярного обслуживания.
  • Стоимость компьютера все еще оставалась высокой; однако меньше, чем компьютер первого поколения.

Третье поколение (1965 — 1971)

Третье поколение компьютеров характеризовалось использованием в компьютерах интегральных схем (ICs), а не транзисторов. Период третьего поколения считается с 1965 по 1971 год. В этом поколении интегральные схемы использовались как основная часть технологии. Интегральные схемы были очень маленькими по размеру и помогли сделать компьютер меньше, чем его предшественник.

Кроме того, в этом поколении были представлены усовершенствованные устройства ввода-вывода, такие как мышь, клавиатура и монитор. До появления этих устройств в компьютерах использовались перфокарты и распечатки. Что касается языков, компьютеры третьего поколения использовали языки более высокого уровня, такие как COBOL, BASIC, ALGOL-68, PASCAL PL/1, FORTRAN-II-IV и т. д.

Компьютеры, разработанные в рамках семейства IBM-360, являются лучшими образцами компьютеров третьего поколения. Другие примеры включают PDP-8, PDP-11, TDC-316, Honeywell-6000 series, ICL 2900 и т. д. Кроме того, в сегодняшнем поколении компьютеров до сих пор используются интегральные схемы.

Преимущества компьютеров третьего поколения

Ниже перечислены основные преимущества компьютеров третьего поколения:

  • Компьютеры третьего поколения были меньше компьютеров предыдущего поколения, что делало компьютеры второго поколения портативными и доступными для коммерческого использования по относительно низким ценам.
  • Компьютеры были быстрыми, надежными и могли выполнять вычисления за наносекунды. У них также было больше места для хранения.
  • Компьютеры третьего поколения производили меньше тепла и стали более энергоэффективными, чем компьютеры предыдущего поколения.

Ниже перечислены основные недостатки компьютеров третьего поколения:

  • Для компьютеров третьего поколения также требовалась система охлаждения.
  • В то время производство и обслуживание интегральных схем было трудным.
  • Цена на компьютеры третьего поколения для личных нужд оставалась высокой.

Четвертое поколение (1971-1980)

Период четвертого поколения рассматривается с 1971 по 1980 год. В течение этого поколения разрабатывались компьютеры, в которых микропроцессор был основным компонентом технологии. Микропроцессоры также были основаны на технологиях LSI (крупномасштабная интеграция) и VLSI (очень крупномасштабная интеграция). Они были разработаны путем сборки нескольких интегральных схем на одном кремниевом кристалле.

Микропроцессоры не только помогли уменьшить размеры компьютеров, но также сделали их такими мощными и надежными. Благодаря своим компактным размерам компьютеры стали доступны для личного использования в четвертом поколении. Кроме того, в компьютерах этого поколения использовались языки программирования высокого уровня, такие как C, C ++, DBASE и др. В компьютерах этого поколения также использовались сетевые распределенные операционные системы с разделением времени.

IBM-5100, Altair-8800 и Micral — самые популярные компьютеры четвертого поколения. Другие примеры включают PDP-11, DEC-10, IBM-4341, STAR-1000, CRAY-1, CRAY-X-MP и т. Д. Кроме того, микропроцессоры все еще используются в сегодняшнем поколении (пятое поколение компьютеров). Однако в нынешнем поколении они не считаются базовой технологией.

Преимущества компьютеров четвертого поколения

Ниже перечислены основные преимущества компьютеров четвертого поколения:

  • Благодаря компактным размерам компьютер стал широко доступен для коммерческого и личного использования. Это также привело к революционному использованию персональных компьютеров (ПК).
  • Компьютеры четвертого поколения были быстрее, меньше, надежнее и энергоэффективнее своих предшественников. Кроме того, у компьютеров четвертого поколения была большая доступность хранилища.
  • Значительно снижено количество тепла в компьютерах четвертого поколения. Выделяемое тепло было почти незначительным, и, следовательно, в системе кондиционирования больше не было необходимости.

Ниже перечислены основные недостатки компьютеров четвертого поколения:

  • Создание схем СБИС и микропроцессоров было сложным и требовало сложных технологий и передовых технических навыков.
  • Вентилятор охлаждения был включен в компьютеры вместо системы кондиционирования воздуха. Эти охлаждающие вентиляторы создавали шум при интенсивном использовании компьютеров.
  • В компьютерах четвертого поколения по-прежнему использовались интегральные схемы, поэтому для создания и сборки этих ИС требовались высокие технические навыки.

Пятое поколение (с 1980 г. по настоящее время)

Компьютеры пятого поколения основаны на технологии ULSI (Ultra Large Scale Integration), программном обеспечении AI (искусственный интеллект) и аппаратном обеспечении параллельной обработки. ULSI произвел революцию в разработке микропроцессоров. Теперь около десяти миллионов электронных устройств можно собрать на одной микросхеме микропроцессора. С другой стороны, AI помогает компьютерам эффективно реагировать на естественные языки.

Считается, что период пятого поколения начался в 1980 году и продолжается. Это означает, что нынешнее поколение — это пятое поколение компьютеров. В компьютерах пятого поколения интегральные схемы все еще используются для удовлетворения различных потребностей. Однако основная технология — это AI, где еще есть возможности для улучшения.

В пятом поколении компьютеры особенно основаны на логическом программировании и массовых параллельных вычислениях. В этом поколении поддерживаются все языки высокого уровня. Некоторые из таких языков включают C, C ++, Java, .NET и др. Кроме того, используются многопоточные и распределенные операционные системы. Распространенными примерами компьютеров пятого поколения являются настольные ПК, ноутбуки, ноутбуки, Chromebook, Ultrabook, планшеты и т. д.

ЭВМ пятого поколения

Они будут основаны на принципиально новой элементной базе. Основным их качеством должен быть высокий интеллектуальный уровень, в частности, распознавание речи, образов. Это требует перехода от традиционной фон-неймановской архитектуры компьютера к архитектурам, учитывающим требования задач создания искусственного интеллекта.

Таким образом, для компьютерной грамотности необходимо понимать, что на данный момент создано четыре поколения ЭВМ:

  • 1-ое поколение: 1946 г. создание машины ЭНИАК на электронных лампах.
  • 2-ое поколение: 60-е годы. ЭВМ построены на транзисторах.
  • 3-ье поколение: 70-е годы. ЭВМ построены на интегральных микросхемах (ИС).
  • 4-ое поколение: Начало создаваться с 1971 г. с изобретением микропроцессора (МП). Построены на основе больших интегральных схем (БИС) и сверх БИС (СБИС).

Пятое поколение ЭВМ строится по принципу человеческого мозга, управляется голосом. Соответственно, предполагается применение принципиально новых технологий. Огромные усилия были предприняты Японией в разработке компьютера 5-го поколения с искусственным интеллектом, но успеха они пока не добились.

Фирма IBM тоже не намерена сдавать свои позиции мирового лидера, например, Японии. Мировая гонка за создание компьютера пятого поколения началась еще в 1981 году. С тех пор еще никто не достиг финиша. Поживем – увидим.

Третье поколение компьютеров (1970-1980гг)

В $1959$ году Джек Килби предложил технологию изготовления гибридных интегральных схем. Чуть позже Робертом Нойсом была запатентована технология изготовления монолитной интегральной схемы, которая позволяла разместить на площади $10 мм^2$ десятки тысяч транзисторов. Теперь один кристалл мог выполнять такую же работу, как и тридцатитонный ЭНИАК. С конца $60$-х эти технологии стали применяться при производстве компьютеров.

Модели «IBM 360» компании IBM стали первыми компьютерами этого поколения. В СССР примерно в это же время начался серийный выпуск компьютеров модели ЕС (единой системы). Новое поколение компьютеров хорошо зарекомендовало себя для решения проектных задач.

Сравнение характеристик

Мы изучили поколения ЭВМ. Таблица ниже позволит нам ориентироваться в соотнесении компьютеров, принадлежащих к той или иной категории, и технологической базы, на которой основано их функционирование. Зависимости следующие:

Введение

Человеческое общество по мере своего развития овладевало не только веществом и энергией, но и информацией. С появлением и массовым распространение компьютеров человек получил мощное средство для эффективного использования информационных ресурсов, для усиления своей интеллектуальной деятельности. С этого момента (середина XX века) начался переход от индустриального общества к обществу информационному, в котором главным ресурсом становится информация.

Возможность использования членами общества полной, своевременной и достоверной информации в значительной мере зависит от степени развития и освоения новых информационных технологий, основой которых являются компьютеры. Рассмотрим основные вехи в истории их развития.

Начало эпохи

Первая ЭВМ[1] ENIAC была создана в конце 1945 г. В США.

Основные идеи, по которым долгие годы развивалась вычислительная техника, были сформулированы в 1946 г. Американским математиком Джоном фон Нейманом. Они получили название архитектуры фон Неймана.

В 1949 году была построена первая ЭВМ с архитектурой фон Неймана – английская машина EDSAC. Годом позже появилась американская ЭВМ EDVAC.

В нашей стране первая ЭВМ была создана в 1951 году. Называлась она МЭСМ — малая электронная счетная машина. Конструктором МЭСМ был Сергей Алексеевич Лебедев. Основоположник вычислительной техники в СССР, директор ИТМиВТ, академик АН СССР (1953) и АН УССР (12.02.1945). Герой Социалистического Труда. Лауреат Сталинской премии третьей степени, Ленинской премии и Государственной премии СССР. В 1996 году посмертно награждён медалью «Пионер компьютерной техники» за разработку МЭСМ (Малой Электронной Счётной Машины), первой ЭВМ в СССР и континентальной Европе, а также за основание советской компьютерной промышленности.

Серийное производство ЭВМ началось в 50-х годах XX века.

Электронно-вычислительную технику принято делить на поколения, связанные со сменой элементной базы. Кроме того, машины разных поколений различаются логической архитектурой и программным обеспечением, быстродействием, оперативной памятью, способом ввода и вывода информации и т.д.

Первое поколение

Первое поколение ЭВМ — ламповые машины 50-х годов. Скорость счета самых быстрых машин первого поколения доходила до 20 тысяч операций в секунду. Для ввода программ и данных использовались перфоленты и перфокарты. Поскольку внутренняя память этих машин была невелика (могла вместить в себя несколько тысяч чисел и команд программы), то они, главным образом, использовались для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. Это были довольно громоздкие сооружения, содержавшие в себе тысячи ламп, занимавшие иногда сотни квадратных метров, потреблявшие электроэнергию в сотни киловатт. Программы для таких машин составлялись на языках машинных команд, поэтому программирование в те времена было доступно немногим.

Второе поколение

В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор. В 60-х годах транзисторы стали элементной базой дляЭВМ второго поколения. Переход на полупроводниковые элементы улучшил качество ЭВМ по всем параметрам: они стали компактнее, надежнее, менее энергоемкими. Быстродействие большинства машин достигло десятков и сотен тысяч операций в секунду. Объем внутренней памяти возрос в сотни раз по сравнению с ЭВМ первого поколения. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах. Благодаря этому появилась возможность создавать на ЭВМ информационно-справочные, поисковые системы (это связано с необходимостью длительно хранить на магнитных носителях большие объемы информации). Во времена второго поколения активно стали развиваться языки программирования высокого уровня. Первыми из них были ФОРТРАН, АЛГОЛ, КОБОЛ. Программирование как элемент грамотности стало широко распространяться, главным образом среди людей с высшим образованием.

Третье поколение

Третье поколение ЭВМ создавалось на новой элементной базе — интегральных схемах: на маленькой пластине из полупроводникового материала, площадью менее 1 см 2 монтировались сложные электронные схемы. Их назвали интегральными схемами (ИС). Первые ИС содержали в себе десятки, затем — сотни элементов (транзисторов, сопротивлений и др.). Когда степень интеграции (количество элементов) приблизилась к тысяче, их стали называть большими интегральными схемами — БИС; затем появились сверхбольшие интегральные схемы — СБИС. ЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM-360. В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая Система ЭВМ). Переход к третьему поколению связан с существенными изменениями архитектуры ЭВМ. Появилась возможность выполнять одновременно несколько программ на одной машине. Такой режим работы называется мультипрограммным (многопрограммным) режимом. Скорость работы наиболее мощных моделей ЭВМ достигла нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств — магнитные диски. Широко используются новые типы устройств ввода-вывода: дисплеи, графопостроители. В этот период существенно расширились области применения ЭВМ. Стали создаваться базы данных, первые системы искусственного интеллекта, системы автоматизированного проектирования (САПР) и управления (АСУ). В 70-е годы получила мощное развитие линия малых (мини) ЭВМ.

Четвертое поколение

Очередное революционное событие в электронике произошло в 1971 году, когда американская фирма Intel объявила о создании микропроцессора. Микропроцессор — это сверхбольшая интегральная схема, способная выполнять функции основного блока компьютера — процессора. Первоначально микропроцессоры стали встраивать в различные технические устройства: станки, автомобили, самолеты. Соединив микропроцессор с устройствами ввода-вывода, внешней памяти, получили новый тип компьютера: микроЭВМ. МикроЭВМ относятся к машинам четвертого поколения. Существенным отличием микроЭВМ от своих предшественников являются их малые габариты (размеры бытового телевизора) и сравнительная дешевизна. Это первый тип компьютеров, который появился в розничной продаже.

Самой популярной разновидностью ЭВМ сегодня являются персональные компьютеры (ПК). Первый ПК появился на свет в 1976 году в США. С 1980 года «законодателем мод» на рынке ПК становится американская фирма IBM. Ее конструкторам удалось создать такую архитектуру, которая стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC (Personal Computer). Появление и распространение ПК по своему значению для общественного развития сопоставимо с появлением книгопечатания. Именно ПК сделали компьютерную грамотность массовым явлением. С развитием этого типа машин появилось понятие «информационные технологии», без которых уже становится невозможным обойтись в большинстве областей человеческой деятельности.

Другая линия в развитии ЭВМ четвертого поколения, это — суперкомпьютер. Машины этого класса имеют быстродействие сотни миллионов и миллиарды операций в секунду. Суперкомпьютер – это многопроцессорный вычислительный комплекс.

Заключение

Разработки в области вычислительной техники продолжаются. ЭВМ пятого поколения — это машины недалекого будущего. Основным их качеством должен быть высокий интеллектуальный уровень. В них будет возможным ввод с голоса, голосовое общение, машинное «зрение», машинное «осязание».

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector