Ученый, имя которого связано с созданием лаборатории по разработке ЭВМ, названной МЭСМ (Малая электронная счетная машина) ; создатель первого компьютера в континентальной Европе?
1. Ученый, имя которого связано с созданием лаборатории по разработке ЭВМ, названной МЭСМ (Малая электронная счетная машина) ; создатель первого компьютера в континентальной Европе.
2. Под его руководством были разработаны : «Стрела», «Урал — 1» 3.
Он является одним из зачинателей теоретического и системного программирования, создателем Сибирской школы информатики.
Его существенный вклад в становление информатики как новой отрасли науки и нового феномена общественной жизни широко признан в нашей стране и за рубежом.
4. Изобретатель гипертекста.
5. Изобретатель «мыши», но не только.
6. Автор проекта первой электронно — счетной машины 7.
Изобретатель, впервые продемонстрировавший работу устройства под управлением перфокарт.
8. Изобретатель счетного устройства.
В честь его назван язык программирования.
Компьютеры из Манчестера
В период с 1946-го по 1948 год в Манчес-терский университет пришли несколько выдающихся персонажей, в итоге здесь собралась ударная команда, включавшая основного разработчика Colossus Макса Ньюмана, его коллегу-математика Джека Гуда, а также Фредди Уильямса и Тома Килбурна – двух инженеров, ранее разрабатывавших радары, они-то и стали основными создателями SSEM. На последней фазе к ним присоединился Алан Тьюринг. Радарное прошлое Уильямса и Килбурна привело к выбору к качестве главного компонента SSEM иконоскопа?– электронно-лучевой трубки, изобретенной в 1923 году русским инженером Владимиром Зворыкиным (1888-1982). Не исключено, что раньше них идею использования трубки в качестве запоминающего устройства выдвинул Преспер Эккерт, есть мнение, что Уильямс встречался с ним в 1946 году на лекциях в США. Как бы то ни было, но в конце того же года Уильямс подал патентную заявку, где изложил принцип запоминающего устройства на ЭЛТ, поэтому иногда такие устройства называют «трубками Уильямса».
Принцип действия трубки в качестве памяти достаточно прост. Электронный луч, сканируя поверхность экрана, не только вызывает вспышки тех точек, куда подается заряд, но и оставляет их заряженными на 0,2 секунды. Это явление можно использовать как для формирования изображения, так и для хранения данных, если непрерывно регенерировать изображение, считывать состояние точек и производить в них запись. Реальная процедура сложнее, запись ведется в форме точек и тире, учитывая, что считывающий луч нарушает запись, ее необходимо восстанавливать и т.д. Все это преодолимые препятствия, но общей слабостью любых запоминающих устройств на ЭЛТ остается органически присущие им ошибки, из-за особенностей фосфорного покрытия иногда биты теряются, но реальной альтернативы им не было, и трубки применялась в качестве запоминающих устройств для ЭВМ вплоть до конца 50-х годов, когда индустрия перешла на ферритовую память. Трубки в качестве запоминающих устройств использовал и Джон фон Нейман в своем компьютере IAS (1952), они применялись в серийных машинах, например в «оборонном калькуляторе» IBM 701 и его гражданских аналогах IBM 702 и IBM 650, в первом серийном отечественном мэйнфрейме «Стрела» (1953).
На принципах, проверенных в SSEM, было построено несколько выдающихся компьютеров первого поколения. Выше представлена блок-схема этой машины, и несложно заметить, что она заметно отличается от архитектуры фон Неймана – простота объясняется решаемой целью, ведь это не прибор для расчетов, а стенд для проверки гипотезы.
Память «Бэби» состояла из 32 слов по 32 бит (матрица на экране), то есть ее емкость была равна 1 Кбайт, и предназначалась она для хранения команд, данных и результатов. Кроме ЭЛТ в логике машины использовались 300 диодов и 280 пентодов. Весогабаритные параметры этого «Бэби», как у небольшого грузовика: длина более 5 м, высота более 2 м, вес около тонны. Количество команд – 7: безусловный переход, несколько команд управления регистрами, вычитание и остановка, а формат команды близок к одноадресному.
Первая программа насчитывала 17 команд, и ее написал Килбурн весной 1948 года, а выполнена она была впервые 21 июня того же года. Этот день можно считать днем рождения программирования. Программа находила наибольший делитель для числа 2 18 (262 144) перебором, вычитая по 1 от 2 18 ?1 и далее. Деление выполнялось повторением вычитания. За 52 минуты SSEM выполнила 3,5 млн операций и получила очевидный ответ – 13 1072. Программа использовала 8 слов в качестве рабочей памяти, то есть всего потребовалось 25 слов. Усовершенствования в первую программу вносили Джем Тутилл и Алан Тьюринг. Никаких листингов в отсутствие печатающих устройств быть не могло, единственный оставшийся документ – листок из записной книжки Тутилла. Экран трубки был открыт, и можно было наблюдать за изменением состояния видимой на экране матрицы. Фредди Уильямс записал позже: «Когда мы увидели, как прекратилось бешеное мигание и на экране остался ожидаемый результат, пришло осознание значения сделанного, впереди просматривалось большое будущее». Оно действительно не заставило себя ждать – уже в августе начались работы по созданию второй экспериментальной машины Manchester Mark 1, которая была сделана в рекордно короткий срок – с августа 1948-го по апрель 1949 года. В 1998 году торжественно отмечалось пятидесятилетие SSEM, к этой дате была построена ее работающая копия, которая сейчас находится в манчестерском Музее науки и промышленности.
Машина Manchester Mark 1, или Manchester Automatic Digital Machine (MADM), в июне 1949 года без сбоев проработала 9 часов, выполняя программу поиска наибольшего обнаруживаемого числа в последовательности простых чисел Мерсенна. Несмотря на очевидные ограничения, этот компьютер стал поводом для многочисленных спекуляций о возможностях электронного мозга и всякого рода аналогичных заблуждений. С практической же точки зрения существенно то, что MADM стала прототипом для Ferranti Mark 1 (1951). Этот компьютер иногда называют первым коммерческим универсальным, что спорно, поскольку Мочли и Эккерт, перейдя в Remington Rand, в том же году выпустили UNIVAC 1, который стал по-настоящему серийным изделием и был выпущен в количестве 40 экземпляров. Влияние Manchester Mark 1 обнаруживается и в компьютерах IBM 701 и 702, эта корпорация в массовом количестве производила электромеханические табуляторы на перфокартах и с небольшим опозданием включилась в гонку за создание мэйнфреймов первого поколения.
Уильямс и Килбурн совместно разработали еще один компьютер – Meg, в составе которого появился процессор для выполнения операций над числами в формате с плавающей запятой. После него Уильямс потерял интерес к компьютерам и занялся разработкой автоматических трансмиссий для автомобилей, одна из их версий была установлена в его собственной машине. Килбурн продолжил начатое дело, и под его руководством были построены еще две экспериментальные модели – Muse и MU5, ставшие прототипами для серийных Ferranti Atlas и ICL 2900.
Кто придумал первый компьютер
Если говорить об архитектуре, то именно Чарльза Бэббиджа называют тем человеком, кто первый придумал концепцию компьютера, устройства, способного автоматизировать сложные вычисления гораздо быстрее и намного надёжнее человека. В его время это было весьма актуально при расчёте тригонометрических и логарифмических таблиц, в которых присутствовало много ошибок, связанных с человеческим фактором. Разностный вычислитель Бэббиджа стал работающим прототипом, позволившим производить расчёты с точностью до десятого знака после запятой.
В числе разработчиков первого компьютера многие называют немца Конрада Цузе, создавшего механический вычислитель Z1 с электронным приводом, в котором впервые в истории была использована двоичная система счисления – именно она применяется во всех современных компьютерах.
Джон Атанасов считается первым в мире, кто изобрёл первый электронный компьютер, полностью лишённый механических деталей именно в вычислительном устройстве.
Нельзя не упомянуть имена Алана Тьюринга и Джона фон Неймана, внёсших весомый вклад в разработку архитектуры компьютеров в части программного кода, хранимого в памяти. До сих пор в специальной литературе используют термины «архитектура фон Неймана» и «тест Тьюринга» (последний относится к проблеме искусственного интеллекта, которая и сегодня далека от полноценного воплощения).
Что касается появления первых персональных компьютеров, то здесь заслуга отдельных личностей оказалась не так велика. Миниатюризация элементной базы, проявление интегральных схем и микропроцессоров позволило многим компаниям разрабатывать свои версии ПК. Поначалу это вообще были наборы компонентов, которые так и продавались в виде конструкторов, собирать которые приходилось самостоятельно, и самим же пользователям писать программы.
Позже за дело взялись IBM и Apple, конкурентная борьба между которыми велась с переменным успехом на протяжении десятилетий.
В настоящее время ПК собирают из отдельных компонентов, как и на заре становления отрасли, а с учётом стандартизации такая сборка может осуществляться и в домашних условиях, не требуя от сборщика наличия внушительного багажа знаний и значительного опыта в этом деле.
Война
В 1939 году Шрейер и Цузе попытались заинтересовать своей разработкой власти, однако у них ничего не получилось. Шрейер говорил о возможности создания лампового устройства, пригодного в том числе для расчетов, связанных с противовоздушной защитой. На вопрос, сколько времени уйдет на разработку такой машины, он осторожно ответил: «Около двух лет». Чиновников это рассмешило: «Какие еще два года? К тому времени мы уже войну выиграем!»
Война не закончилась ни через год, ни через два. После вторжения в СССР войска вермахта забуксовали на Восточном фронте, и вскоре в ходе боевых действий наступил перелом. В 1943 году, со вступлением в войну американцев, Берлин стали регулярно бомбить. Снаряды падали как на крупные предприятия, так и на жилые кварталы. Цузе вспоминал:
«В то время об авианалетах предупреждали по радио. Зачастую это происходило в тот момент, когда я стоял перед машиной, пытаясь заставить ее работать. И я не всегда уходил в подвал вовремя. Я до сих пор помню, как испытывал одну сложную новую программу на Z3, которая наконец заработала именно во время бомбежки».
Увы — и этого стоило ожидать — однажды бомба попала в здание, где Цузе и его товарищи устроили мастерскую. Z1, Z2 и Z3 были безвозвратно уничтожены.
Чуть раньше, в 1942 году, команда Цузе начала создавать тот самый «прототип-4» — будущий Z4. Он был прямым продолжением Z3 и использовал по большей части ту же технологию, что и предыдущие модели, однако у него было несколько важных отличий. Например, память его состояла из 32-битных, а не 22-битных машинных слов с плавающей запятой. Специальный программный блок сильно облегчал процесс программирования и внесения правок в программу. Множество математических операций, таких как квадратный корень или тригонометрические функции, были реализованы на уровне системы команд.
Z4 не только сохранился, но и был востребован после войны. В 1950 году его привезли в Высшую техническую школу Цюриха для обработки сложных вычислений. В 1950-1951 годах он был единственным работающим цифровым компьютером в Европе — его конкурент Ferranity Mark 1 опоздал на полгода.
Помимо этого Цузе стал автором первого высокоуровневого языка программирования Plankalkül, который он разработал в годы создания Z4. Если не вдаваться в технические подробности, основным его достижением было то, что программист мог пользоваться высокоуровневым набором инструкций, не вдаваясь в то, каким образом работает «железо» машины, и это позволяло сосредоточиться на решении поставленной логической задачи.
Компания Цузе Zuse KG после войны выпустила множество компьютеров. Через некоторое время она стала производить транзисторные и ламповые ЭВМ, а в 1961 году создала плоттер Graphomat, позволявший делать чертежи, — незаменимую вещь для архитекторов и геологов. Он работал в связке с компьютерами серии Z.
Экономика компьютера
Экономика компьютера В России до сих пор живо народное поверье, что самые высокооплачиваемые специалисты – это экономисты и юристы. Ничего подобного! Самые высокооплачиваемые специалисты в нашем мире – это программисты. Они – обладатели очень высокой квалификации, их
Эпоха компьютера А тут еще изобретение компьютера в 1947, появление персонального компьютера в середине 1970-х. И началась новая информационная эпоха, под тихое гудение неоновых ламп…Очень быстро, даже стремительно, «компьютеризованные» вытесняли «некомпьютеризованных»
Второе поколение — ЭВМ на транзисторах.
Транзисторы пришли на смену электронным лампам в начале 60-х годов. Транзисторы (которые действуют как электрические переключатели), потребляя меньше электроэнергии и выделяя меньше тепла, занимают и меньше места. Объединение нескольких транзисторных схем на одной плате дает интегральную схему (chip — «щепка», «стружка» буквально, пластинка ). Транзисторы это счетчики двоичных чисел. Эти детали фиксируют два состояния — наличие тока и отсутствие тока, и тем самым обрабатывают информацию, представленную им именно в таком двоичном виде.
В 1953 г.. Уильям Шокли изобрел транзистор с p — n переходом ( junction transistor ). Транзистор заменяет электронную лампу и при этом работает с большей скоростью, выделяет очень мало тепла и почти не потребляет электроэнергию. Одновременно с процессом замены электронных ламп транзисторами совершенствовались методы хранения информации: как устройства памяти стали применяться магнитные сердечники и магнитные барабаны, а уже в 60-е годы получило распространение хранение информации на дисках.
Один из первых компьютеров на транзисторах — Atlas Guidance Computer — был запущен в 1957 г. и использовался при управлении запуском ракеты Atlas.
Созданный в 1957 г.. RAMAC был недорогим компьютером с модульной внешней памятью на дисках, комбинированным оперативным запоминающим устройством на магнитных сердечниках и барабанах. И хотя этот компьютер еще не был полностью транзисторным, он отличался высокой работоспособностью и простотой обслуживания и пользовался большим спросом на рынке средств автоматизации делопроизводства в офисах. Поэтому для корпоративных заказчиков срочно выпустили уже «большой» RAMAC (IBM-305), для размещения 5 Мбайт данных системе RAMAC нужно было 50 дисков диаметром 24 дюйма. Созданная на основе этой модели информационная система безотказно обрабатывала массивы запросов на 10 языках.
В 1959 году IBM создала свой первый полностью транзисторный большой универсальный компьютер модели 7090, способный выполнять 229 тыс. операций в секунду — настоящий транзисторный мэйнфрейм. В 1964 году на основе двух 7090-х мейнфреймов американская авиакомпания SABRE впервые применила автоматизированную систему продажи и бронирования авиабилетов в 65 городах мира.
В 1960 году DEC представила первый в мире миникомпьютер — модель PDP-1 (Programmed Data Processor, программируемый процессор данных), компьютер с монитором и клавиатурой, который стал одним из самых заметных явлений на рынке. Этот компьютер был способен выполнять 100 000 операций в секунду. Сама машина занимала на полу всего 1,5 м 2 . PDP-1 стал, по сути, первой в мире игровой платформой благодаря студенту MIT Стиву Расселу, который написал для него компьютерную игрушку Star War!
Представители II-го поколения ЭВМ: 1) RAMAC ; 2) PDP -1
В 1968 году Digital впервые наладила серийное производство мини-компьютеров — это был PDP-8: цена их была около $ 10000, а размером модель была холодильник. Именно эту модель PDP-8 смогли покупать лаборатории, университеты и небольшие предприятия.
Отечественные компьютеры того времени можно охарактеризовать так: по архитектурным, схемным и функциональных решений они соответствовали своему времени, но их возможности были ограничены из-за несовершенства производственной и элементной базы. Наибольшей популярностью пользовались машины серии БЭСМ. Серийное производство, достаточно незначительное, началось выпуском ЭВМ «Урал-2» (1958), БЭСМ-2, « Минск-1» и « Урал-3» (все — 1959 г.). В 1960 г. пошли в серию « М-20» и «Урал-4». Максимальной производительностью в конце 1960 располагал «М-20» (4500 ламп, 35 тыс. полупроводниковых диодов, память на 4096 ячеек) — 20 тыс. операций в секунду. Первые компьютеры на полупроводниковых элементах ( «Раздан-2», «Минск — 2», «М-220» и «Днепр» ) находились еще в стадии разработки.
Серия 5Э26
ЭВМ 5Э26 была последней прижизненной разработкой Лебедева, которую он успел запустить в серийное производство.
В 1968 г. Лебедев принял предложение Генерального конструктора зенитных ракетных комплексов для ПВО Бориса Васильевича Бункина. Он согласился разработать специализированный управляющий малогабаритный мобильный высокопроизводительный цифровой вычислительный комплекс (ЦВК) 5Э26. О реализации такой возможности Сергей Алексеевич мечтал еще при создании МЭСМ. Благодаря этой работе, была проведена крупнейшая реорганизация института. Объединение ресурсов множества различных лабораторий привело к фактическому созданию отделений:
— по ЭВМ общего назначения
— по ЭВМ специального назначения (включая архитектуру)
— по электронному конструированию
— по запоминающим устройствам
— по САПР и технологии.
Всеволодом Сергеевичем Бурцевым (заместитель Лебедева) была предложена многопроцессорная архитектура ЦВК 5Э26, обеспечивающая работу до трех модулей центральных процессоров и двух специальных процессоров ввода-вывода информации с общей памятью.
Конструктивно ЦВК серии 5Э26 представлял собой шкаф высотой 1885 мм, шириной 2870 мм, глубиной 655 мм, который ставился у стенки транспортного средства.
У 5Э26 имелась высокоэффективная система автоматического резервирования, базирующаяся на аппаратном контроле. Система давала возможность восстанавливать процесс управления при сбоях и отказах аппаратуры, работающей в широком диапазоне климатических и механических воздействий, с развитым математическим обеспечением автоматизации программирования.
ЦКВ 5Э26 легко адаптировался к различным требованиям по производительности и памяти в системах управления специального назначения. Устройство также работало в реальном времени, снабжалось развитым математическим обеспечением, эффективной системой автоматизации программирования и возможностью работы с языками высокого уровня. В 5Э26 была реализована энергонезависимая память команд на микробиаксах с возможностью электрической перезаписи информации внешней аппаратурой записи и введена эффективная система эксплуатации с двухуровневой локализацией неисправной ячейки, обеспечивающая эффективность восстановления аппаратуры среднетехническим персоналом.
В качестве интегральных схем использовались в основном полупроводниковые микросхемы одних из первых отечественных серий-133 и 130 (ТТЛ-типа).
Лебедев во время поездки в Англию (Кембридж, 1964 г.)
Элементная база: стандартная серия ТТЛ-микросхем
Быстродействие: 1,5 млн операций в секунду
Потребляемая мощность: 5,5 кВт
Разрядность: 32
Объем оперативной памяти: 32-34 Кб
Объем командной памяти: 64-256 Кб
Независимый процессор ввода-вывода информации по 12 каналам связи: максимальный темп обмена свыше 1 Мб/с.
Опыт создания ЭВМ 5Э26 стал базой для конструирования семейства супер-ЭВМ «Эльбрус». Название было предложено Лебедевым. Появление «Эльбруса» завершило создание ПРО СССР, однако сам он уже не успел принять участие в их разработке.
1949 год
Морис Уилкс
В мае 1949 года в Англии заработал EDSAC (Electronic Delay Storage Automatic Calculator, электронный автоматический вычислитель с памятью на линиях задержки) — первый действующий компьютер с хранимой программой — конструктор Морис Винсент Уилкс (Maurice Vincent Wilkes, 26.06.1913-29.11.2010) и сотрудники математической лаборатории Кембриджского университета (Великобритания). ЭВМ EDSAC содержала 3000 электронных ламп и в шесть раз производительнее своих предшественниц.
EDSAC I, W.Renwick, M.Wilkes
CSIRAC (Council for Scientific and Industrial Research Automatic Computer, Автоматический компьютер Совета по научным и промышленным исследованиям) — первая австралийская цифровая ЭВМ и четвертая в мире ЭВМ с хранимой в памяти программой. Первоначально был известен как CSIR Mk 1. Первый компьютер, на котором исполнялась цифровая музыка, и единственный уцелевший компьютер первого поколения.
CSIRAC является характерным представителем первого лампового поколения компьютеров. Вычислительная машина включала в себя приблизительно 2000 электронных ламп. В качестве основного хранилища данных использовались ртутные линии задержки.
Ввод данных осуществлялся с помощью перфоленты. Машина управлялась через консоль (пульт), которая позволяла пошагово исполнять программы на специальном ЭЛТ-мониторе, на котором отображалось состояние регистров.
Вывод данных осуществлялся на стандартный телетайп или перфоленту.
CSIRAC в Мельбурнском музее