Первые персональные компьютеры и их оперативная память. Вся информация

10 предшественников персонального компьютера

Что общего у компьютера и ткацкого станка, какая компьютерная разработка обошлась дороже создания ядерного оружия и сколько комнат в “хрущевке” займет первая советская ЭВМ.

Информация о первой в мире вычислительной машине дошла до нашего времени случайно — ее обнародовал в 1957 году директор Кеплеровского научного центра Франц Гаммер. Работая в штутгардской библиотеке, Гаммер обнаружил копию эскиза некоего счетного устройства. Дальнейшие исследования показали, что эскиз принадлежит математику и астроному Вильгельму Шиккарду (1592 — 1635). Нашлось также письмо Шиккарда легендарному астроному Иоганну Кеплеру, в котором он подробно описывал строение устройства и ссылался на этот чертеж.

Машина Шиккарда, чье устройство основано на зубчатом механизме, могла автоматически выполнять четыре математических действия над шестиразрядными числами. При жизни ученого было изготовлено два экземпляра машины, один из которых предназначался Кеплеру. Однако в 1624 году обе машины сгорели во время пожара. Восстановить копию машины по эскизам Шиккарда удалось лишь в 60-х годы XX века.

Первый персональный компьютер: другие модели

  1. Apple-1. Прототип этого компьютера был продемонстрирован еще в 1976 году. Именно этот компьютер стал прародителем всех последующих персональных компьютеров. Именно его разработал сам Стив Возник. Всего было выпущено около 200 этих моделей, до наших дней дожило около 50, 6 из которых даже работают.
  2. IBM 5150. Не был персональным компьютером и предназначался для бизнеса, так как стоил около 20 000$.
  3. Apple 2. Выпущен в апреле 1984 года. Имел две модели: портативную и стационарную. Именно портативная модель сделала этот компьютер достаточно популярным.
  4. Commodore 64. Это полноценный персональный компьютер с «оперативкой» в 64 Кб, который выпустила компания Commodore International буквально через год после IBM 5051 — в августе 1982 года. Этот компьютер не стал «самым первым персональным», но стал «самым первым массовым». Он предлагался по цене в 595$, при этом характеристики у него были не хуже, чем у IBM 5051 за 3005$. Этот факт послужил тому, что объем проданных компьютеров этой модели достиг более 15 млн экземпляров.
  5. БК-0010. «Советский ответ» западным разработчикам. Это первый персональный компьютер советского производства. Кстати, БК — это «бытовой компьютер». Он продавался в 1985-1988 годах за 600 советских рублей.
  6. IBM 5160. Компьютер от компании IBM, выпущенный в 1983 году. Он обладал уже более «крутыми» характеристиками, чем их «первый персональный»: оперативная память составляла уже от 128 Кб и до 640 Кб.
  1. Первая компьютерная мышь. Первая мышь изобретена в 1963 году. Состояла она из деревянного корпуса и 2-х колес, которые фиксировали передвижение мыши по 2-м осям.
  2. Первый трекбол для мыши. Первый трекбол был разработан за 11 лет до появления первой компьютерной мыши в 1952 году. А на мышь он стал устанавливаться только в 1972 году.
  3. Первый портативный компьютер. Это был IBM 5100 Portable Computer 1975 года выпуска. Его вес составлял 25 кг. По сути это был большой «чемодан», который нужно было подключать в розетку, чтобы использовать. Он имел оперативную память от 16 Кб и до 64 Кб и стоил 8975$-19975$.
  4. Первый ноутбук. Это был «ноутбук» Grid Compass 1100, 1982 года выпуска. Разрешение экрана 320х200, «оперативки» 340 Кб, вес 5 кг, стоимость 8000$-10000$.
  5. Первая оперативная память. Была изобретена в 1951 году.
  6. Первый hard-диск. Это был IBM 350 Disk File 1956 года разработки. Он состоял из 50 24-дюймовых флоппи-дисков и выдавал памяти 4.4 Мб.
  7. Первый лазерный принтер. Изобретен в 1969 году компанией Xerox. Он был просто огромным, поэтому занимал целую небольшую комнату.
  8. Первый веб-сервер. Это был простой компьютер, на котором стала доступной первая онлайн-страница 6 августа 1991 года.

Основная причина изобретения компьютера

Основная причина изобретения компьютера которая проложила путь для персональных устройств был микропроцессор. До того, как были изобретены микропроцессоры компьютеру требовался отдельный чип интегрированной цепи для каждой из функций. Это было одной из причин, почему машины все еще были настолько велики. Микропроцессор мог интегрировать цепи микросхемы которые запускали программы на компьютере, запоминали информацию и управляли данными сами по себе.

изобретение компьютеров

В 1971 году первый микропроцессор был разработан инженером Тедом Хоффом корпорации Intel. Корпорация Intel была расположена в долине Санта-Клара в Калифорнии, это место прозвали «Силиконовая долина» из-за всех сгруппированых вокруг индустриальной Стэнфордской Hi-Tech компании. Первый микропроцессор Intel 1/16-1/8-дюймовый чип под названием 4004, имел вычислительную мощность, как массовые ENIAC.

Эти нововведения сделали дешевле и проще производство устройств, чем когда-либо прежде. В результате небольшой, относительно недорогой «микрокомпьютер» вскоре известный как «персональный компьютер» – родился.

В 1974 году, компания под названием «Микро приборы и телеметрические системы» (MITS) представила комплект компьютера под названием Altair. По сравнению с ранними микрокомпьютерами у Altair был огромный успех: тысячи людей купили комплект за $400. Он не имел клавиатуры и экрана, а пользователи вводили данные, щелкая тумблеры. Это был первый массовый персональный компьютер.

В 1975 году MITS наняли пару студентов Гарварда, по имени Паул Аллен и Билл Гейтс адаптировать основной язык программирования для Altair. Разработанное ими программное обеспечение сделало устройство проще в использовании, и это было изобретение компьютера. В апреле 1975 года эти два молодых программиста на деньги из «Altair BASIC» сформировали свои собственную компанию — Microsoft , которая вскоре стала империей.

Через год после Гейтс и Аллен взяли в Microsoft двух инженеров из доморощенного компьютерного клуба в Силиконовой долине по имени Стив Джобс и Стивен Возняк которые построили домашний компьютер, который изменил мир. Этот компьютер называется Apple, был более сложным, чем Альтаир: он имел больше памяти, имел более дешевый микропроцессор и монитор с экраном. В апреле 1977 года Джобс и Возняк представили Apple II, который был с клавиатурой и цветным экраном. Кроме того пользователи могли хранить свои данные на внешней кассете.

Основные характеристики персонального компьютера

Выбирать персональный компьютер или ПК программисты советуют по основным характеристикам:

  1. Количество ядер центрального процессора. Современные машины укомплектованы восьмиядерным процессором, но, очевидно, что в будущем их количество может заметно увеличиться.
  2. Тактовая частота процессора или CPU, то есть объем операций, который машина может выполнить за единицу времени (секунду). Современные устройства имеют CPU не менее 2 ГГц.
  3. Объем оперативной памяти (ОЗУ), измеряемый в гигабайтах. Чем этот показатель выше, тем лучше. В магазинах встречаются модели с параметрами объема ОЗУ от 2-х до 64-х Гб и более.
  4. Еще одна важная характеристика персонального компьютера – объем памяти видеокарты, который тоже измеряется в гигабайтах и варьируется от 1-го до 24-х Гб.
  5. Объем свободного пространства на жестком диске (SSD). Может варьироваться от 250 до 1000 Гб и более.
  6. Тип операционной системы и ее версию.

Классификация

Типизация по назначению

На станции метро в городе Шэньчжэнь установлена гигантская клавиатура. Во время ожидания поезда, вы можете посидеть на клавишах Enter, M,

  • Калькулятор
  • Консольный компьютер
  • Миникомпьютер
  • Мэйнфрейм
  • Персональный компьютер
    • Игровая приставка (Игровая консоль)
    • Карманный компьютер (КПК)
    • Одеваемый компьютер
    • Настольный компьютер
    • Ноутбук (Лэптоп)

    По системам счисления

    По элементной основе

    • релейные
    • ламповые
    • ферритдиодные
    • транзисторные дискретные
    • транзисторные интегральные

    Первая троичная ЭВМ «Сетунь» на ферритдиодных ячейках была построена Брусенцовым в МГУ.

    Поверхностный характер представленного подхода к классификации компьютеров очевиден. Он обычно используется лишь для обозначения общих черт наиболее часто встречающихся компьютерных устройств. Быстрые темпы развития вычислительной техники означают постоянное расширение областей её применения и быстрое устаревание используемых понятий. Для более строгого описания особенностей того или иного компьютера обычно требуется использовать другие схемы классификаций.

    Физическая реализация

    Более строгий подход к классификации основан на отслеживании используемых при создании компьютеров технологий. Не секрет, что самые ранние компьютеры были полностью механическими системами. Тем не менее уже в 30-х годах XX века телекоммуникационная промышленность предложила разработчикам новые, электромеханические компоненты (реле), а в 40-х были созданы первые полностью электронные компьютеры, имевшие в своей основе вакуумные электронные лампы. В 50-х — 60-х годах на смену лампам пришли транзисторы, а в конце 60-х — начале 70-х годов — используемые и сегодня полупроводниковые интегральные схемы (кремниевые чипы).

    Одним из первых полупроводников были точечные диоды на основе сульфида свинца (Pb) и окиси олова (Sn) в детекторных радиоприёмниках. Позже были разработаны полупроводники на основе германия (Ge). Ещё позже были разработаны полупроводники на основе кремния (Si). Если посмотреть на положение этих элементов в периодической таблице Д.И.Менделеева, то можно заметить, что все они находятся в одной колонке и движение происходит вверх по колонке в таблице Менделеева, поэтому можно предположить, что следующие полупроводники будут разработаны на основе углерода (C Язык программирования). На планете Земля белковые живые существа в своих «думателях» (мозгах) используют белковые образования (нейроны), построенные из белковых молекул, которые в основном являются длинными углеводородными молекулами, т.е. некоторые белки являются полупроводниками на основе углерода (C Язык программирования). Наиболее совершенным мозгом из белковых существ на планете Земля обладает человек.

    Приведённый перечень технологий не является исчерпывающим; он описывает только основную тенденцию развития вычислительной техники. В разные периоды истории исследовалась возможность создания вычислительных машин на основе множества других, ныне позабытых и порою весьма экзотических технологий. Например, существовали планы создания гидравлических и пневматических компьютеров, между 1903 и 1909 годами некто Перси И. Луджет даже разрабатывал проект программируемой аналитической машины, работающей на базе пошивочных механизмов (переменные этого вычислителя планировалось определять при помощи ниточных катушек).

    В настоящее время ведутся серьёзные работы по созданию оптических компьютеров, использующих вместо традиционного электричества световые сигналы. Другое перспективное направление подразумевает использование достижений молекулярной биологии и исследований ДНК. И, наконец, один из самых новых подходов, способный привести к грандиозным изменениям в области вычислительной техники, основан на разработке квантовых компьютеров.

    Впрочем, в большинстве случаев технология исполнения компьютера является гораздо менее важной, чем заложенные в его основу конструкторские решения.

    • Квантовый компьютер и квантовая связь
    • Механический компьютер
    • Оптический компьютер
    • Пневматический компьютер
    • Электронный компьютер
    • Биологический компьютер

    Файловые системы

    Исторически первой составляющей операционных систем, поддерживающей работу с дисками, стали файловые системы, поначалу их функционал был ограничен распределением дискового пространства и сохранением имен файлов, присвоенных пользователями.

    Компьютерный файл – это самый нижний уровень абстрагирования данных от физического хранения, существующих в виде байтов на носителе. Сегодня, говоря о файлах, чаще всего подразумевают файлы на дисках, к тому же данные в форме файлов хранятся и на флэшках, CD, DVD и на лентах резервного копирования. На компьютерах понятие «файлы» использовали с сороковых годов, так называли колоду перфокарт.

    На чем бы ни хранился файл, он состоит из массива данных и фолдера – контейнера, содержащего данные, с уникальным идентификатором. В приложении к компьютерным данным фолдер называют метаданными, то есть данными о данных. Термин «дисковый файл» (disk file) впервые был употреблен в документации к диску IBM 350 (1956), а «файловая система» (file system) в одной из первых операционных с разделением времени Compatible Time-Sharing System (CTSS), разработанной в Массачусетском технологическом институте в 1961 году. На ее основе была создана OC Multics, которая в свою очередь вдохновила создателей Unix.

    В 1973 году Гарри Килдал разработал файловую систему в составе своей ОС CP/M для 8-разрядного ПК, ее он затем переделал в DR-DOS 16- разрядного ПК, после чего в результате несложной комбинации против воли автора эта файловая система обрела новое воплощение в виде File Allocation Table (FAT) компании Micrоsoft.

    По мере увеличения размеров дисков возникали новые файловые системы, одним из важнейших шагов стала Unix File System (UFS), она дала толчок к развитию целой плеяды файловых систем. Вершиной стала 128-битовая файловая систем Zettabyte File System (ZFS), разработанная в Sun Micro Systems.

    В последние годы под влиянием необходимости работать с большими данными развитие файловых систем ускорилось. Их можно разделить на две категории: распределенные, обычно устанавливаемые на кластеры, и традиционные, но рассчитанные на работу с большим объемами данных. Из первых наибольшую известность получили Lustre, GPFS и две системы, созданные «по мотивам»

    Lustre, — GlusterFS и Ceph. Система GPFS является коммерческой, остальные доступны в открытых кодах. Менее популярны системы XtreemFS, MogileFS, pNFS, ParaScale, CAStor и Tahoe-LAFS. Во второй категории безусловный лидер – ZFS и близкая ей LZJB, дополненная алгоритмом сжатия данных без потерь. Кроме этого имеются еще NILFS, разработанная в Nippon Telephone and Telegraph CyberSpace Laboratories, и Veritas File System, разработанная компанией Veritas Software. Не исключено и паллиативное решение, где совмещаются файловые системы из обеих групп.

    Подробнее об эволюции СХД читайте здесь.

    Конструктивные особенности

    Современные компьютеры используют весь спектр конструкторских решений, разработанных за всё время развития вычислительной техники. Эти решения, как правило, не зависят от физической реализации компьютеров, а сами являются основой, на которую опираются разработчики. Ниже приведены наиболее важные вопросы, решаемые создателями компьютеров:

    Цифровой или аналоговый

    Фундаментальным решением при проектировании компьютера является выбор, будет ли он цифровой или аналоговой системой. Если цифровые компьютеры работают с дискретными численными или символьными переменными, то аналоговые предназначены для обработки непрерывных потоков поступающих данных. Сегодня цифровые компьютеры имеют значительно более широкий диапазон применения, хотя их аналоговые собратья все ещё используются для некоторых специальных целей. Следует также упомянуть, что здесь возможны и другие подходы, применяемые, к примеру, в импульсных и квантовых вычислениях, однако пока что они являются либо узкоспециализированными, либо экспериментальными решениями.

    Среди наиболее простых дискретных вычислителей известен абак, или обыкновенные счёты; наиболее сложной из такого рода систем является суперкомпьютер.

    Двоичный, десятичный или троичный

    Примером компьютера на основе десятичной системы счисления является первая американская вычислительная машина Марк I.

    Важнейшим шагом в развитии вычислительной техники стал переход к внутреннему представлению чисел в двоичной форме. Это значительно упростило конструкции вычислительных устройств и периферийного оборудования. Принятие за основу двоичной системы счисления позволило более просто реализовывать арифметические функции и логические операции.

    Тем не менее переход к двоичной логике был не мгновенным и безоговорочным процессом. Многие конструкторы пытались разработать компьютеры на основе более привычной для человека десятичной системы счисления. Применялись и другие конструктивные решения. Так, одна из ранних советских машин работала на основе троичной системы счисления, использование которой во многих отношениях более выгодно и удобно по сравнению с двоичной системой (проект троичного компьютера Сетунь был разработан и реализован талантливым советским инженером Н. П. Брусенцовым).

    Наибольшей плотностью записи данных обладает система счисления с основанием равным основанию натуральных логарифмов, то есть равным числу е=2,71… . Из целочисленных систем счисления наибольшей плотностью записи данных обладает троичная система счисления, двоичная и четверичная системы счисления делят второе место. Поэтому, при одинаковой технологии (число инверторов на 1 мм^2), троичные компьютеры имеют значительно большую ёмкость оперативной памяти и большую производительность процессора. Троичная логика целиком включает в себя двоичную логику, как центральное подмножество, поэтому троичные компьютеры могут всё, что могут двоичные, плюс возможности троичной логики. Например, операции умножения и деления на 3 и на 3^n в двоичных компьютерах выполняются микропрограммами, а в троичных компьютерах выполняются аппаратно одной командой сдвига на 1 или n разрядов вправо или влево. Троичные алгоритмы работают быстрее двоичных алгоритмов, но на двоичных компьютерах это преимущество теряется.

    Ещё больший объём памяти и производительность имеют компьютеры с нецелочисленной системой счисления с нецелочисленным основанием равным числу е=2,71. .

    В целом, однако, выбор внутренней системы представления данных не меняет базовых принципов работы компьютера — любой компьютер может эмулировать любой другой.

    Программируемый

    Способность машины к выполнению определённого изменяемого набора инструкций (программы) без необходимости физической переконфигурации является фундаментальной особенностью компьютеров. Дальнейшее развитие эта особенность получила, когда машины приобрели способность динамически управлять процессом выполнения программы. Это позволяет компьютерам самостоятельно изменять порядок выполнения инструкций программы в зависимости от состояния данных.

    Хранящий программы и данные

    Во время выполнения вычислений часто бывает необходимо сохранить промежуточные данные для их дальнейшего использования. Производительность многих компьютеров в значительной степени определяется скоростью, с которой они могут читать и писать значения в (из) памяти и её общей ёмкости. Первоначально компьютерная память использовалась только для хранения промежуточных значений, но вскоре было предложено сохранять код программы в той же самой памяти (См. Архитектура фон Неймана), что и данные. Это удачное решение используется сегодня в большинстве компьютерных систем. Однако для управляющих контроллеров (микро-ЭВМ) более удобной оказалась схема, при которой данные и программы хранятся в различных разделах памяти (гарвардская архитектура).

    Классификация по способностям

    Одним из наиболее простых способов классифицировать различные типы вычислительных устройств является определение их способностей. Все вычислители могут, таким образом, быть отнесены к одному из трёх типов:

    • специализированные устройства, умеющие выполнять только одну функцию (например, Антикитерский механизм87 год до н. э. или ниточный предсказатель Вильяма Томсона1876 года);
    • устройства специального назначения, которые могут выполнять ограниченный диапазон функций (первая разностная машина Чарльза Бэббиджа и разнообразные дифференциальные анализаторы);
    • устройства общего назначения, используемые сегодня. Название компьютер применяется, как правило, именно к машинам общего назначения.

    Современный компьютер общего назначения

    При рассмотрении современных компьютеров наиболее важной особенностью, отличающей их от ранних вычислительных устройств, является то, что при соответствующем программировании любой компьютер может подражать поведению любого другого (хоть эта возможность и ограничена, к примеру, вместимостью средств хранения данных или различием в скорости). Таким образом, предполагается, что современные машины могут эмулировать любое вычислительное устройство будущего, которое когда-либо может быть создано. В некотором смысле эта пороговая способность полезна для различия компьютеров общего назначения и устройств специального назначения. Определение «компьютер общего назначения» может быть формализовано в требовании, чтобы конкретный компьютер был способен подражать поведению универсальной машины Тьюринга. Первым компьютером, удовлетворяющим такому условию, считается машина Z3, созданная немецким инженером Конрадом Цузе в 1941 году (доказательство этого факта было сделано в 1998).

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector