Классическая архитектура ПК. Основные особенности архитектуры современных ПК
Несмотря на то что современные модели компьютеров представлены на рынке широким спектром брендов, собраны они в рамках небольшого количества архитектур. С чем это связано? Какова специфика архитектуры современных ПК? Какие программные и аппаратные компоненты ее формируют?
Что такое архитектура ПК? Под этим довольно широким термином принято понимать совокупность логических принципов сборки компьютерной системы, а также отличительные особенности технологических решений, внедряемых в нее. Архитектура ПК может быть инструментом стандартизации. То есть компьютеры в рамках нее могут собираться согласно установленным схемам и технологическим подходам. Объединение тех или иных концепций в единую архитектуру облегчает продвижение модели ПК на рынке, позволяет создавать программы, разработанные разными брендами, но гарантированно подходящие для нее. Единая архитектура ПК также позволяет производителям компьютерной техники активно взаимодействовать на предмет совершенствования тех или иных технологических компонентов ПК.
Под рассматриваемым термином может пониматься совокупность подходов к сборке компьютеров или отдельных его компонентов, принятых на уровне конкретного бренда. В этом смысле архитектура, которая разработана производителем, является его интеллектуальной собственностью и используется только им, может выступать конкурентным инструментом на рынке. Но даже в таком случае решения от разных брендов иногда могут быть классифицированы в рамках общей концепции, объединяющей в себе ключевые критерии, которые характеризуют компьютеры различных моделей.
Термин «архитектура ПК» информатика как отрасль знаний может понимать по-разному. Первый вариант трактовки предполагает интерпретацию рассматриваемого понятия как стандартизирующего критерия. В соответствии с другой интерпретацией архитектура — это, скорее, категория, позволяющая одному бренду-производителю стать конкурентным в отношении других.
Интереснейший аспект — то, как соотносятся история и архитектура ПК. В частности, это появление классической логической схемы конструирования компьютеров. Рассмотрим ее особенности.
Основные виды архитектуры ЭВМ
При рассмотрении компьютерных устройств принято различать их архитектуру и структуру. Архитектурой компьютера называется его описание на некотором общем уровне, включающее описание пользовательских возможностей программирования, системы команд, системы адресации, организации памяти и т.д. Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера: процессора, оперативного ЗУ, внешних ЗУ и периферийных устройств. Общность архитектуры разных компьютеров обеспечивает их совместимость с точки зрения пользователя. Структура компьютера — это совокупность его функциональных элементов и связей между ними. Элементами могут быть самые различные устройства — от основных логических узлов компьютера до простейших схем. Структура компьютера графически представляется в виде структурных схем, с помощью которых можно дать описание компьютера на любом уровне детализации. Наиболее распространены следующие архитектурные решения.
1. Классическая архитектура (архитектура фон Неймана) — одно арифметико-логическое устройство (АЛУ), через которое проходит поток данных, и одно устройство управления (УУ), через которое проходит поток команд. Это однопроцессорный компьютер. К этому типу архитектуры относится и архитектура персонального компьютера с общей шиной. Все функциональные блоки здесь связаны между собой общей шиной, называемой также системной магистралью. Совокупность проводов магистрали разделяется на отдельные группы: шину адреса, шину данных и шину управления. Периферийные устройства подключаются к аппаратуре компьютера через специальные контроллеры — устройство управления, которое связывает периферийное оборудование или каналы связи с центральным процессором, освобождая процессор от непосредственного управления функционированием данного оборудования.
2. Многопроцессорная архитектура. Наличие в компьютере нескольких процессоров означает, что параллельно может быть организовано много потоков данных и много потоков команд (параллельно могут обрабатываться несколько фрагментов одной задачи). Структура такой машины имеет общую оперативную память и несколько процессоров. Такая архитектура применяется для решения задач с огромным объемом вычислений.
3. Многомашинная вычислительная система. Здесь несколько процессоров, входящих в вычислительную систему, не имеют общей оперативной памяти, а имеют каждый свою (локальную). Отдельный компьютер в многомашинной системе имеет классическую архитектуру и такая система применяется достаточно широко. Однако эффект от применения такой вычислительной системы может быть получен только при решении задач, имеющих специальную структуру: она должна разбиваться на столько слабо связанных подзадач, сколько компьютеров в системе.
В современных машинах часто присутствуют элементы различных типов архитектурных решений. Существуют и такие архитектурные решения, которые радикально отличаются от рассмотренных.
Классификация ВМ
Многообразие свойств и характеристик порождает различные виды классификации вычислительных машин. Их делят: по этапам развития, по принципу действия, по назначению, по производительности и функциональным возможностям, по условиям эксплуатации, по количеству процессоров и т.д. Четких границ между классами компьютеров не существует.По мере совершенствования структур и технологии производства, появляются новые классы компьютеров (и границы существующих классов существенно изменяются).
1. По принципу действия вычислительные машины делятся на три больших класса: аналоговые (АВМ), цифровые (ЦВМ) и гибридные (ГВМ). АВМ – вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, т.е. в виде непрерывного ряда значений какой-либо физической величины(механического воздействия, перемещения, электрического напряжения и др.). ЦВМ – вычислительные машины дискретного действия, работают с информацией, представленной в дискретной, а точнее, в цифровой форме. ГВМ – вычислительные машины комбинированного действия, работают с информацией, представленной и в цифровой, и в аналоговой форме (совмещают в себе достоинства АВМ и ЦВМ). Их используют в управлении сложными техническими комплексами.
2. По назначениювычислительные машины делятся на три группы: универсальные (общего назначения), проблемно-ориентированные и специализированные.
Универсальные вычислительные машины предназначены для решения самых разных задач: экономических, математических, информационных и других, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных.
Характерными чертами универсальных машин являются:
· разнообразие форм обрабатываемых данных: двоичных, десятичных, символьных, при большом диапазоне их изменения и высокой точности их представления;
· обширная номенклатура выполняемых операций, как арифметических, логических, так и специальных;
· большая емкость оперативной памяти;
· развитая организация системы ввода-вывода информации.
Проблемно-ориентированные вычислительные машины служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими объектами; регистрацией, накоплением и обработкой относительно небольших объемов данных; выполнением расчетов по относительно несложным алгоритмам. Они обладают ограниченными по сравнению с универсальными машинами аппаратными и программными ресурсами. К проблемно-ориентированным вычислительным машинам можно отнести, в частности, всевозможные управляющие вычислительные системы (АСУТП, САПР).
Специализированные вычислительные машины используются для решения узкого круга задач или реализации строго определенной группы функций. Такая их узкая ориентация позволяет четко специализировать структуру, существенно снизить их сложность и стоимость при сохранении высокой производительности и надежности их работы. К специализированным машинам можно отнести, например, программируемые микропроцессоры специального назначения, выполняющие логические функции управления отдельными несложными техническими устройствами, агрегатами и процессами.
3. По размерам и функциональным возможностям вычислительные машины можно разделить на сверхбольшие (суперЭВМ) – многопроцессорные и (или) многомашинные комплексы, которые используются для решения сложных и больших научных задач — в управлении, разведке, в качестве централизованных хранилищ информации и т.д. Большие (мэйнфреймы) — предназначены для решения широкого класса научно-технических задач. Малые (конструктивно выполненные в одной стойке). Сверхмалые (микроЭВМ).
Заметим, что иногда классификация осуществляется и по иным признакам: например, элементной базе, конструктивному исполнению и др.
Свойства ЭВМ любого типа оценивается с помощью их технико-экономических характеристик, основными из которых являются: операционные ресурсы(характеризуются количеством реализуемых операций, формами представления данных, а также способами адресации), емкость памяти (определяется общим количеством ячеек памяти для хранения информации), быстродействие(определяется числом коротких операций типа сложения, выполняемых за 1 сек), надежность(среднее время работы между двумя отказами),стоимость(это суммарные затраты на приобретение аппаратных и базовых программных средств ЭВМ, а также затраты на эксплуатацию).
Компьютеры серверы коммуникационное оборудование относится к архитектуре какой
Компоновка и компоненты сети. «Сервер» и «рабочая станция»
Вычислительная сеть (ВС) – это сложный комплекс взаимосвязанных и согласованно функционирующих аппаратных и программных компонентов. Аппаратными компонентами локальной сети являются компьютеры и различное коммуникационное оборудование (кабельные системы, концентраторы и т. д.). Программными компонентами ВС являются операционные системы (ОС) и сетевые приложения.
Компоновкой сети называется процесс составления аппаратных компонентов с целью достижения нужного результата.
В зависимости от того, как распределены функции между компьютерами сети, они могут выступать в трех разных ролях:
1. Компьютер, занимающийся исключительно обслуживанием запросов других компьютеров, играет роль выделенного сервера сети (рис. 1.4).
2. Компьютер, обращающийся с запросами к ресурсам другой машины, играет роль узла-клиента (рис. 1.5).
3. Компьютер, совмещающий функции клиента и сервера, является одноранговым узлом (рис. 1.6).
Рис. 1.4. Компьютер ‑ выделенный сервер сети
Рис. 1.5. Компьютер в роли узла-клиента
Очевидно, что сеть не может состоять только из клиентских или только из серверных узлов.
Сеть может быть построена по одной из трех схем:
· сеть на основе одноранговых узлов – одноранговая сеть;
· сеть на основе клиентов и серверов – сеть с выделенными серверами;
· сеть, включающая узлы всех типов – гибридная сеть.
Каждая из этих схем имеет свои достоинства и недостатки, определяющие их области применения.
Рис. 1.6. Компьютер ‑ одноранговый узел
В одноранговых сетях один и тот же ПК может быть и сервером, и клиентом, в том числе и клиентом своего клиента. В иерархических сетях разделяемые ресурсы хранятся только на сервере, сам сервер может быть клиентом только другого сервера более высокого уровня иерархии.
При этом каждый из серверов может быть реализован как на отдельном компьютере, так и в небольших по объему ЛВС, быть совмещенным на одном компьютере с каким-либо другим сервером.
Существуют и комбинированные сети, сочетающие лучшие качества одноранговых сетей и сетей на основе сервера. Многие администраторы считают, что такая сеть наиболее полно удовлетворяет их запросы.
Архитектура сети определяет основные элементы сети, характеризует ее общую логическую организацию, техническое обеспечение, программное обеспечение, описывает методы кодирования. Архитектура также определяет принципы функционирования и интерфейс пользователя.
Далее будет рассмотрено три вида архитектур:
— архитектура терминал-главный компьютер;
Архитектура терминал-главный компьютер
Архитектура терминал-главный компьютер (terminal-host computer architecture) – это концепция информационной сети, в которой вся обработка данных осуществляется одним или группой главных компьютеров.
Рассматриваемая архитектура предполагает два типа оборудования:
— главный компьютер, где осуществляется управление сетью, хранение и обработка данных;
— терминалы, предназначенные для передачи главному компьютеру команд на организацию сеансов и выполнения заданий, ввода данных для выполнения заданий и получения результатов.
Главный компьютер через МПД взаимодействуют с терминалами, как представлено на рис. 1.7.
Классический пример архитектуры сети с главными компьютерами – системная сетевая архитектура (System Network Architecture – SNA).
Рис. 1.7. Архитектура терминал-главный компьютер
Одноранговая архитектура
Одноранговая архитектура (peer-to-peer architecture) – это концепция информационной сети, в которой ее ресурсы рассредоточены по всем системам. Данная архитектура характеризуется тем, что в ней все системы равноправны.
К одноранговым сетям относятся малые сети, где любая рабочая станция может выполнять одновременно функции файлового сервера и рабочей станции. В одноранговых ЛВС дисковое пространство и файлы на любом компьютере могут быть общими. Чтобы ресурс стал общим, его необходимо отдать в общее пользование, используя службы удаленного доступа сетевых одноранговых операционных систем. В зависимости от того, как будет установлена защита данных, другие пользователи смогут пользоваться файлами сразу же после их создания. Одноранговые ЛВС достаточно хороши только для небольших рабочих групп.
Одноранговые ЛВС являются наиболее легким и дешевым типом сетей для установки. При соединении компьютеров, пользователи могут предоставлять ресурсы и информацию в совместное пользование.
Одноранговые сети имеют следующие преимущества:
— они легки в установке и настройке;
— отдельные ПК не зависят от выделенного сервера;
— пользователи в состоянии контролировать свои ресурсы;
— малая стоимость и легкая эксплуатация;
— минимум оборудования и программного обеспечения;
— нет необходимости в администраторе;
— хорошо подходят для сетей с количеством пользователей, не превышающим десяти.
Проблемой одноранговой архитектуры является ситуация, когда компьютеры отключаются от сети. В этих случаях из сети исчезают виды сервиса, которые они предоставляли. Сетевую безопасность одновременно можно применить только к одному ресурсу, и пользователь должен помнить столько паролей, сколько сетевых ресурсов. При получении доступа к разделяемому ресурсу ощущается падение производительности компьютера. Существенным недостатком одноранговых сетей является отсутствие централизованного администрирования.
Использование одноранговой архитектуры не исключает применения в той же сети также архитектуры терминал-главный компьютер или архитектуры клиент-сервер.
Архитектура клиент-сервер
Архитектура клиент-сервер (client-server architecture) – это концепция информационной сети, в которой основная часть ее ресурсов сосредоточена в серверах, обслуживающих своих клиентов (рис. 1.8). Рассматриваемая архитектура определяет два типа компонентов: серверы и клиенты.
Сервер – это объект, предоставляющий сервис другим объектам сети по их запросам. Сервис – это процесс обслуживания клиентов.
Сервер работает по заданиям клиентов и управляет выполнением их заданий. После выполнения каждого задания сервер посылает полученные результаты клиенту, пославшему это задание.
Сервисная функция в архитектуре клиент-сервер описывается комплексом прикладных программ, в соответствии с которым выполняются разнообразные прикладные процессы.
Рис. 1.8. Архитектура клиент – сервер
Процесс, который вызывает сервисную функцию с помощью определенных операций, называется клиентом. Им может быть программа или пользователь. На рис. 1.9 приведен перечень сервисов в архитектуре клиент-сервер.
Клиенты – это рабочие станции, которые используют ресурсы сервера и предоставляют удобные интерфейсы пользователя. Интерфейсы пользователя (рис. 1.9) это процедуры взаимодействия пользователя с системой или сетью.
В сетях с выделенным файловым сервером на выделенном автономном ПК устанавливается серверная сетевая операционная система. Этот ПК становится сервером. ПО, установленное на рабочей станции, позволяет ей обмениваться данными с сервером. Наиболее распространенные сетевые операционная системы:
— NetWare фирмы Novel;
— Windows NT фирмы Microsoft;
Помимо сетевой операционной системы необходимы сетевые прикладные программы, реализующие преимущества, предоставляемые сетью.
Рис. 1.9. Модель клиент-сервер
Круг задач, которые выполняют серверы в иерархических сетях, многообразен и сложен. Чтобы приспособиться к возрастающим потребностям пользователей, серверы в ЛВС стали специализированными. Так, например, в операционной системе Windows NT Server существуют различные типы серверов:
1. Файл-серверы и принт-серверы. Они управляют доступом пользователей к файлам и принтерам. Так, например, для работы с текстовым документом вы прежде всего запускаете на своем компьютере (PC) текстовый процессор. Далее требуемый документ текстового процессора, хранящийся на файл-сервере, загружается в память PC, и таким образом Вы можете работать с этим документом на PC. Другими словами, файл-сервер предназначен для хранения файлов и данных.
2. Серверы приложений (в том числе сервер баз данных (БД), WEB-сервер). На них выполняются прикладные части клиент серверных приложений (программ). Эти серверы принципиально отличаются от файл-серверов тем, что при работе с файл-сервером нужный файл или данные целиком копируются на запрашивающий PC, а при работе с сервером приложений на PC пересылаются только результаты запроса. Например, по запросу можно получить только список работников, родившихся в сентябре, не загружая при этом в свою PC всю базу данных персонала.
3. Почтовые серверы управляют передачей электронных сообщений между пользователями сети.
4. Факс-серверы управляют потоком входящих и исходящих факсимильных сообщений через один или несколько факс-модемов.
5. Коммуникационные серверы управляют потоком данных и почтовых сообщений между данной ЛВС и другими сетями или удаленными пользователями через модем и телефонную линию. Они же обеспечивают доступ к Internet.
6. Сервер служб каталогов предназначен для поиска, хранения и защиты информации в сети. Windows NT Server объединяет PC в логические группы-домены, система защиты которых наделяет пользователей различными правами доступа к любому сетевому ресурсу.
Клиент является инициатором и использует электронную почту или другие сервисы сервера. В этом процессе клиент запрашивает вид обслуживания, устанавливает сеанс, получает нужные ему результаты и сообщает об окончании работы.
Сети на базе серверов имеют лучшие характеристики и повышенную надежность. Сервер владеет главными ресурсами сети, к которым обращаются остальные рабочие станции.
В современной клиент-серверной архитектуре выделяется четыре группы объектов: клиенты, серверы, данные и сетевые службы. Клиенты располагаются в системах на рабочих местах пользователей. Данные в основном хранятся в серверах. Сетевые службы являются совместно используемыми серверами и данными. Кроме того службы управляют процедурами обработки данных.
Сети клиент-серверной архитектуры имеют следующие преимущества:
— позволяют организовывать сети с большим количеством рабочих станций;
— обеспечивают централизованное управление учетными записями пользователей, безопасностью и доступом, что упрощает сетевое администрирование;
— эффективный доступ к сетевым ресурсам;
— пользователю нужен один пароль для входа в сеть и для получения доступа ко всем ресурсам, на которые распространяются права пользователя.
Наряду с преимуществами сети клиент-серверной архитектуры имеют и ряд недостатков:
— неисправность сервера может сделать сеть неработоспособной;
— требуют квалифицированного персонала для администрирования;
— имеют более высокую стоимость сетей и сетевого оборудования.
Выбор архитектуры сети
Выбор архитектуры сети зависит от назначения сети, количества рабочих станций и от выполняемых на ней действий.
Следует выбрать одноранговую сеть, если:
— количество пользователей не превышает десяти;
— все машины находятся близко друг от друга;
— имеют место небольшие финансовые возможности;
— нет необходимости в специализированном сервере, таком как сервер БД, факс-сервер или какой-либо другой;
— нет возможности или необходимости в централизованном администрировании.
Следует выбрать клиент-серверную сеть, если:
— количество пользователей превышает десять;
— требуется централизованное управление, безопасность, управление ресурсами или резервное копирование;
— необходим специализированный сервер;
— нужен доступ к глобальной сети;
— требуется разделять ресурсы на уровне пользователей.
© 2022 Научная библиотека
Копирование информации со страницы разрешается только с указанием ссылки на данный сайт