Определение среднего значения функции

Обсуждая концепцию математического образования в 12-летней школе [3, с. 13–18], следует уточнить целеполагание одного из основных блоков математического образования – функции. Важным является изучение не столько свойств функций, сколько развитие умений применять функции для описания реальных процессов. Но реальные процессы задаются сложными функциональными зависимостями. Математическое моделирование упрощает зависимости, заменяя одну функцию другой, более простой.

Основная идея введения интеграла – аккумуляция (накопление) информации о функции на отрезке – оказалась незавершенной не только в школьном курсе математики, но и в общем образовании учащихся. Нет возврата к более простой функции, которая порождает такое же значение интеграла, т. е. накапливает такую же информацию на отрезке. Другими словами, нет усреднения заданной функции на отрезке.

В школьных, да и в вузовских учебниках, пропущено очень важное применение определенного интеграла для нахождения среднего значения непрерывной функции на отрезке. Некоторые авторы программ и учебников много говорят о развитии функциональной линии, но ни слова не говорят, как усреднить функцию на промежутке, хотя среднее значение двух величин определяется. Следует сказать больше. Мотивация изучения функциональной линии в общем образовании учащихся оказалась не полностью сформулированной и незавершенной.

Моделирование реальных задач требует усреднения в математических моделях непрерывных функций (в экологии, в метеосводке погодных условий и т. д.), усреднения в компьютерных экспериментах дискретных величин с малым шагом аргумента – что приближается к усреднению непрерывных величин.

Среднее значение функции удобно ввести на примере определения средней скорости движения, как отношения длины всего пройденного пути к величине затраченного времени

Рассмотрим общее определение среднего значения функции.

Площадь криволинейной трапеции, ограниченной графиком непрерывной функции y = f(x) (пусть f(x) принимает неотрицательные значения), осью ox и вертикальными прямыми y = a, y = b, равна площади некоторого прямоугольника, построенного на отрезке [a; b]. Высота этого прямоугольника является средним значением функции y = f(x) на отрезке [a; b]. В общем случае она определяется по формуле [2, с. 559]

(1)

В школьных и вузовских учебниках много внимания уделяется нахождению интегралов. Это необходимое развитие навыков нахождения интегралов, но очевидно, что более важно показать его применения. Из всех учебников и справочников для школы только в справочниках [1, с. 497; 2, с. 368, 369] определяется среднее значение функции на отрезке. Следует отметить, что пропедевтика введения среднего значения функции иногда проводится в задачах следующего типа на вступительных экзаменах в вузы и в учебниках физики.

1. Катер из Нижневартовска в Сургут двигался со скоростью v1, а в обратном направлении со скоростью v2. Найдите среднюю скорость катера на всем пути, т. е. из Нижневартовска в Сургут и обратно.

Ответ:

2. Катер вначале двигался со скоростью v1 в течение некоторого промежутка времени, а затем в течение такого же промежутка времени со скоростью v2. Найдите среднюю скорость катера на всем пути.

Ответ:

3. Первую треть пути между пунктами велосипедист проехал со скоростью v = 5 м/с, затем половину оставшегося времени он ехал со скоростью v = 10 м/с, после чего до конечного пункта он шел с велосипедом со скоростью v = 1 м/с. Определите среднюю скорость движения велосипедиста.

4. Найдите среднюю скорость тела, если первую четверть времени оно двигалось со скоростью v = 5 м/с, вторую четверть времени – со скоростью v = 10 м/с, оставшуюся часть времени со скоростью v = 15 м/с.

Не каждый учитель видит в этих задачах функции. Для многих это постоянные величины. Читатель наверно согласится, что это требует корректировки.

Рассмотрим другие примеры, приводящие к пониманию важности изучения среднего значения. Например, мы иногда не можем определить значение функции в данный момент времени и вынуждены пользоваться средними значениями функции.

Величина переменного тока в данный момент времени t (мгновенное значение тока) определяется по формуле

где I0 – максимальное (амплитудное) значение тока, w – частота, – период. Представим себе, что существует прибор, измеряющий мгновенное значение тока i. Стрелка прибора в течение 1 секунды будет совершать 50 колебаний, показывая значения из отрезка [– I0; I0]. Зафиксировать информацию практически невозможно. С другой стороны, почти все приборы обладают инерционностью, т. е. требуют для измерения величины некоторого времени (быстродействие прибора). Оно, как правило, значительно больше периода быстрых процессов. Принцип измерения величин во многих приборах основан на измерении какого-то действия за определенный промежуток. Поясним примерами.

Среднее значение переменного тока за период T равно 0 для синусоидальной величины и не характеризует величину переменного тока.

Среднее значение переменного тока в течение полупериода по формуле (1) равно

Некоторые электроизмерительные приборы измеряют среднее значение тока за половину периода, но все они практически градуируются в действующих значениях переменного тока, к разъяснению понятия которого мы переходим.

Действующим (эффективным) значением I переменного тока называется значение такого постоянного тока, который производит такое же действие (тепловое, электромагнитное, механическое и др.), как и данный переменный ток.

Работа, совершенная постоянным током за период T, равна

A = UIT = I 2 RT,

а работа, совершенная переменным током, равна

Большинство электроизмерительных приборов в цепях переменного тока показывают действующее значение. Для физики и техники большее значение имеет действующее значение переменного тока, чем среднее значение переменного тока. В медицине иногда также выделяется усреднение на отрезке около наибольшего значения, так как оно может произвести на пациента большее влияние, чем средняя величина за период приема лекарства. Эти примеры показывают, что в некоторых науках усреднение функций производится по-разному, в зависимости от воздействия на объект.

Задача. Интервал движения автобуса a минут, интервал движения микроавтобуса – m минут, a Э N, m Э N. Человек приходит на остановку, не зная графика движения транспорта, т. е. случайным образом. Сколько времени в среднем ожидает человек на остановке, если курсируют автобус и микроавтобус?

Решение. Пусть курсирует только автобус с интервалом a минут. Введем отсчет времени от первого уходящего с остановки автобуса. Если пассажир пришел через t минут (t минут. Оно не зависит от времени прихода на остановку. Рассматривая такие случаи для различных значений t, получим среднее время ожидания – мин. В этой задаче среднее время определено элементарным методом с использованием симметрии относительно середины промежутка [0; a].

Если пассажир пришел на остановку через t минут, то функция времени ожидания автобуса имеет вид

f(t) = at.

Найдем среднее значение времени ожидания автобуса на отрезке [0; a]

Аналогично, если курсирует только микроавтобус, то среднее время ожидания равно мин.

Рассмотрим общий случай, когда курсируют автобус и микроавтобус. Пусть m является делителем числа a, a = mk, k l 2. Пусть автобус приходит спустя s (s

Если s = 0 или s = m, т. е. автобус и микроавтобус приходят на остановку одновременно, то среднее время ожидания в этом частном случае равно мин. Пассажир может воспользоваться микроавтобусом (автобусом он раньше не уедет). Автобус в этом случае можно исключить из рассмотрения, так как он приходит одновременно с микроавтобусом.

Пусть пассажир пришел на остановку через t минут после отхода микроавтобуса. Если 0

Функция ожидания является кусочно-линейной функцией и состоит из отрезков, образующих углы в 135° с осью ox.

Функция ожидания автобуса является периодической функцией с периодом T = a мин.

Учитывая геометрический смысл интеграла, для вычисления среднего значения функции ожидания достаточно вычислить площадь равнобедренных треугольников с катетами

При

Условие задачи также требует уточнения.

Если мы не знаем величины задержки автобуса относительно микроавтобуса, т. е. предположим, что она каждый день может меняться, тогда среднее значение ожидания следует рассмотреть как функцию t(s) от параметра s. Величину t(s) следует проинтегрировать на промежутке [0; m], а затем поделить на длину этого промежутка. Если s Э [im, (i + 1)m], i Э N, i

Итак, среднее время ожидания автобуса на отрезке [0; a] вычисляется следующим образом

Иногда встречается следующая ошибка.

Если рассматривать все средние значения только на отрезке [0; m], то получим следующие результаты

Этот результат получается из предыдущего при k = 1 и это верно. Но если k > 1, то эта формула не учитывает интервал «микроавтобус – микроавтобус, интервал движения m минут, в течение которого не появляется автобус».

Некоторые задачи для самостоятельного решения.

1. Дан отрезок длиной a, на который произвольным образом бросается точка. Найдите среднее расстояние до границы отрезка.
2. Рассматриваются всевозможные треугольники с данными сторонами OA = a, OB = b и переменным углом g Э [0, p ]. Найдите среднее значение площади треугольников.
3. В окружность радиуса R вписаны всевозможные прямоугольники с параллельными сторонами. Найдите среднее значение площади полученных прямоугольников.

Как найти среднее значение функции на отрезке

«Вы, профессор, воля ваша, что-то нескладное придумали! Оно, может, и умно, но больно непонятно. Над вами потешаться будут»

«Мастер и Маргарита», Булгаков М. А.

Жизнь у всех разная и проявляется это ещё и в том, что источники информации, с которыми мы имеем дело, тоже у всех различны. Кроме этого, далеко не каждые сведения оставляют нас равнодушными, не вызывая совершенно никаких эмоций или мыслей. При этом иногда сочетание данных из двух источников может побуждать к весьма своеобразным умозаключениям.

Есть у меня одна книга – пособие для учителя информатики [1] . Не помню, как она у меня появилась – может купил, а может мне её кто-то подарил – однако в школе она мне как-то пригодилась в освоении языка Basic, программы на котором мы тогда собственноручно набивали на болгарских машинах «Правец 8A». Именно из этой книги я когда-то впервые узнал, что помимо так называемого среднего арифметического для нескольких чисел бывает, например, ещё и среднее квадратическое.

На первом курсе (1999-2000 гг.) университета, на лекциях по высшей математике, когда мы проходили определённые интегралы, была упомянута так называемая «теорема о среднем» [2, с. 353] . И вот это-то, в комбинации с сидящими в памяти сведениями из упомянутой книги, почему-то отозвалось в мозгах вопросом: «А какое именно среднее имеется в виду в теореме: арифметическое, кубическое или какое-нибудь другое?». Ну а раз возник вопрос – можно попытаться найти и ответ. Поиск сей вскоре привёл меня к тому, что, собственно, и составляет основу материала данной заметки. Свои измышления я условно назвал «теорией средних» и достаточно долгое время они хранились у меня в виде конспекта. Теперь же результаты этой «мозговой гимнастики» я выложил в сеть по следующим соображениям. Во-первых, если на этот материал наткнётся математик, то, думается, это сможет его повеселить. Во-вторых, мне слабо верится, что никто из профессиональных математиков в своих работах не додумался до чего-то подобному тому, что изложено здесь. В связи с этим мне особенно интересно было бы узнать, чьи это результаты мной, вероятно, «переоткрыты» – к сожалению, я не располагаю возможностью и временем это выяснить самостоятельно, но буду очень благодарен за сведения об этом.

I. Типы средних (введение)

Пусть у нас имеется множество из n чисел x 1, x 2. xn .

а) Среднее арифметическое этих чисел:

б) Среднее квадратическое:

в) Среднее кубическое:

г) Если ни одно из чисел рассматриваемого множества не равно нулю, то для них можно вычислить среднее гармоническое [1, с. 132] :

II. Средние значения функции на замкнутом числовом промежутке

Рассмотрим непрерывную функцию y = f ( x ), определённую на отрезке [ a ; b ]. Разобьём [ a ; b ] на n равных частей величиной Δ xi =( b – a )/ n . Теперь внутри каждого отрезка разбиения Δ xi произвольно выберем точку Ci () и вычислим значение функции y = f ( x ) в точке Ci : yi = f ( Ci ) (Рисунок 1).

Для полученного таким образом множества значений по формулам (1), (2), (3) можно вычислить средние арифметическое, квадратическое и кубическое:

В случае, если f ( x ) на [ a ; b ] ни в одной точке не обращается в ноль, то по (4) можно вычислить и среднее гармоническое:

Будем теперь увеличивать неограниченно n и найдём пределы выражений (5), (6), (7) и (8) при n →∞. Если эти пределы существуют для рассматриваемой функции y = f ( x ) на отрезке [ a ; b ], то назовём их, соответственно, средним арифметическим, средним квадратическим, средним кубическим и средним гармоническим значениями функции y = f ( x ) на отрезке [ a ; b ]. Введём обозначения:

Для удобства операторы

, , ,

назовём арифией, квадрией, кубинией и гармонией соответственно.

III. Вычисление арифии функции на замкнутом числовом промежутке

Вернёмся к Рисунку 1. Составим для функции f ( x ) интегральную сумму Римана:

Эта сумма при неограниченном возрастании n имеет предел, равный интегралу:

Величина ( b – a ) – длина отрезка [ a ; b ] – число постоянное, поэтому

Подставим (9) в (13):

Из (14) как раз и следует ответ на возникший у меня вопрос: в теореме о среднем фигурирует именно среднее арифметическое значение функции на отрезке (придуманная мной «арифия»).

IV. Свойства арифии функции на отрезке

Свойство 1 (свойство линейности оператора арифии):

( C 1 и C 2 – постоянные числа, f ( x ) и g ( x ) – непрерывные и определённые на [ a ; b ] функции).

Свойство 2. Если C =const, то

Свойство 3. Если a c b , то

Свойство 4. Если f ( x ) – чётная функция и a > 0, то

Так как f ( x ) – чётная, то

, &nbsp .

Свойство 5. Если f ( x ) – нечётная функция, то

Так как f ( x ) – нечётная, то

,

Домножим обе части этого неравенства на ( b – a ) ( b – a > 0):

V. Вычисление квадрии, кубинии и гармонии функции на отрезке

Пусть g 1( x )=[ f ( x )] 2 , тогда

Пусть теперь g 2( x )=[ f ( x )] 3 , тогда

Пусть теперь функция y = f ( x ) на [ a ; b ] ни в одной точке не принимает нулевого значения. Обозначим .

6*. Формула среднего значения для определенного интеграла.

Теорема о среднем. Если f(x) непрерывна на отрезке [a,b], то существует точка , такая что. Док-во. Функция, непрерывная на отрезке, принимает на этом отрезке своё наименьшее m и наибольшее M значения. Тогда. Числозаключено между минимальным и максимальным значениями функции на отрезке. Одно из свойств функции, непрерывной на отрезке, заключается в том, что эта функция принимает любое значение, расположенное между m и M. Таким образом, существует точка, такая что. Это свойство имеет простую геометрическую интерпретацию: еслинепрерывна на отрезке [a,b], то существует точкатакая, что площадь криволинейной трапеции ABCD равна площади прямоугольника с основанием [a,b] и высотой f(c) (на рисунке выделен цветом).

7. Интеграл с переменным верхним пределом. Его непрерывность и дифференцируемость.

Рассмотрим функцию f (x), интегрируемую по Риману на отрезке [a, b]. Раз она интегрируема на [a, b], то она также интегрируема на [a, x] ∀x ∈ [a, b]. Тогда при каждом x ∈ [a, b] имеет смысл выражение , и при каждом x оно равно некоторому числу.

Таким образом, каждому x ∈ [a, b] поставлено в соответствие некоторое число ,

т.е. на [a, b] задана функция:

(3.1)

Функция F (x), заданная в (3.1), а также само выражение называется

интегралом с переменным верхним пределом. Она определена на всем отрезке [a, b]

интегрируемости функции f (x).

Условие: f (t) непрерывна на [a, b], а функция F (x) задана формулой (3.1).

Утверждение: Функция F(x) дифференцируема на [a, b], причем F (x) = f (x).

(В точке a она дифференцируема справа, а в точке b – слева.)

Поскольку для функции одной переменной F (x) дифференцируемость равносильна существованию производной во всех точках (в точке a справа, а в точке b – слева), то мы найдем производную F (x). Рассмотрим разность

,

при этом точка ξ лежит на отрезке [x, x + ∆x] (или [x + ∆x, x] если ∆x c=F(a), и

.

Перенесем F(a) в последнем равенстве в левую часть, переобозначим переменную интегрирования снова через x и получим формулу Ньютона – Лейбница:

Adblock
detector