Одноимённые заряды отталкиваются друг от друга или всё же притягиваются к третьему? Это не журнал, это записная книжка

Это не журнал, это записная книжка.

Мои записи и мысли : http://ru-fenomen.livejournal.com/

Все тела окружающего нас мира состоят из двух видов стабильных частиц — протонов, заряженных положительно, и электронов, имеющих такой же заряд е отрицательного знака. Число электронов равно числу протонов. Поэтому Вселенная электрически нейтральна.

Так как электрон и протон никогда (во всяком случае, за последние 14 миллиардов лет) не распадаются, то Вселенная не может нарушить своей нейтральности какими-либо воздействиями со стороны человека. Все тела обычно также электрически нейтральны, т. е. содержат одинаковое число электронов и протонов.

Для того чтобы тело сделать заряженным, из него нужно уда­лить, перенеся на другое тело, или добавить к нему, взяв из другого тела, некоторое число N электронов или протонов. Заряд тела станет равным Ne. При этом необходимо помнить (о чем обычно забывают), что такой же заряд обратного знака (Ne) неизбежно образуется на другом теле (или телах). Натирая шерстью эбонитовую палочку, мы заряжаем не только эбонит, но и шерсть, перенося с одного на другое часть электронов.

Утверждение о притяжении двух тел с одинаковыми разноименными зарядами по принципам верификации и фальсификации научно, так как может быть в принципе подтверждено или опровергнуто эксперимен­тально. Здесь опыт может быть поставлен чисто, без вовлечения третьих тел, простым перенесением части электронов или протонов с одного опытного тела на другое.

Совсем иная картина с утверждением об отталкивании одноименных зарядов. Дело в том, что только два, например положительных, заряда q1, q2 для проведения эксперимента не могут быть созданы, так как при попытке их создания всегда неизбежно появляется третий, отрицательный заряд q3 = -(qi + q2). Поэтому в опыте будут обязательно участвовать не два, а три заряда. Провести эксперимент с двумя одноименными зарядами в принципе невозможно.

Поэтому утверждение Кулона об отталкивании одноименных зарядов по упомянутым принципам ненаучно.

По той же причине невозможен и опыт с двумя зарядами разных знаков q1, — q2, если эти заряды не равны друг другу. Здесь также неизбежно появляется третий заряд q3 = q1 — q2, который участвует во взаимодействии и оказывает влияние на результирующую силу.

Наличие третьего заряда забывается и не учитывается слепыми сторонниками Кулона. Два тела с одинаковыми зарядами разных знаков могут быть созданы разрывом атомов на две заряженные части и переносом этих частей с одного тела на другое. При таком разрыве необходимо совершить работу и затратить энергию. Естественно, что заряженные части будут стремиться вернуться в исходное состояние с меньшей энергией и соединиться, т. е. должны притягиваться друг к другу.

С точки зрения близкодействия любое взаимодействие предполагает наличие обмена между взаимодействующими телами чем-то материальным, а мгновенное действие на расстоянии и телекинез невозможны. Электростатические взаимодействия между зарядами осуществляются постоянным электрическим полем. Мы не знаем что это такое, но можем с уверенностью утверждать, что поле материально, так как оно обладает энергией, массой, импульсом и конечной скоростью распространения.

Принятые для изображения электрического поля силовые линии выходят из одного заряда (положительного) и не могут обрываться в пустоте, а всегда входят в другой (отрицательный) заряд. Они как щупальцы тянутся от одного заряда к другому, соединяя их. Для уменьшения энергии системы зарядов объем, занимаемый полем, стремится к минимуму. Поэтому протянутые «щупальцы» электрического поля всегда стремятся к сокращению подобно упругим, натянутым при зарядке резинкам. Вот за счет этого сокращения и осуществляется притяжение разноименных зарядов. Силу притяжения можно измерить экспериментально. Она и дает закон Кулона.

Совсем другое дело в случае одноименных зарядов. Суммарное электрическое поле двух зарядов выходит из каждого из них и уходит в бесконечность, а контакта полей одного и другого зарядов не достигается. Упругие «щупальцы” одного заряда не достигают другого. Поэтому нет и прямого материального воздействия одного заряда на другой, им нечем взаимодействовать. Поскольку телекинез мы не признаем, то, следовательно, не может быть никакого отталкивания.

А как же тогда объяснить расхождение лепестков элероскопа и наблюдаемое в опытах Кулона отталкивание зарядов? Вспомним, что когда мы создаем для нашего опыта два положительных заряда, то в окружающем пространстве неизбежно образуем и отрицательный заряд.

Вот притяжение к нему ошибочно и принимается за отталкивание.

Электрический заряд. Закон Кулона

Подобно понятию гравитационной массы тела в механике Ньютона, понятие заряда в электродинамике является первичным, основным понятием.

Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Электрический заряд обычно обозначается буквами q или Q.

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

• Существует два рода электрических зарядов, условно названных положительными и отрицательными.

• Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

• Одноименные заряды отталкиваются, разноименные – притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда.

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны, отрицательно заряженные электроны и нейтральные частицы – нейтроны. Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному заряду e.

В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером. Атом данного вещества может потерять один или несколько электронов или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион.

Заряд может передаваться от одного тела к другому только порциями, содержащими целое число элементарных зарядов. Таким образом, электрический заряд тела – дискретная величина:

Физические величины, которые могут принимать только дискретный ряд значений, называются квантованными. Элементарный заряд e является квантом (наименьшей порцией) электрического заряда. Следует отметить, что в современной физике элементарных частиц предполагается существование так называемых кварков – частиц с дробным зарядом и Однако, в свободном состоянии кварки до сих пор наблюдать не удалось.

В обычных лабораторных опытах для обнаружения и измерения электрических зарядов используется электрометр (или электроскоп) – прибор, состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 1.1.1). Стержень со стрелкой изолирован от металлического корпуса. При соприкосновении заряженного тела со стержнем электрометра, электрические заряды одного знака распределяются по стержню и стрелке. Силы электрического отталкивания вызывают поворот стрелки на некоторый угол, по которому можно судить о заряде, переданном стержню электрометра.

Перенос заряда с заряженного тела на электрометр

Электрометр является достаточно грубым прибором; он не позволяет исследовать силы взаимодействия зарядов. Впервые закон взаимодействия неподвижных зарядов был открыт французским физиком Шарлем Кулоном в 1785 г. В своих опытах Кулон измерял силы притяжения и отталкивания заряженных шариков с помощью сконструированного им прибора – крутильных весов (рис. 1.1.2), отличавшихся чрезвычайно высокой чувствительностью. Так, например, коромысло весов поворачивалось на 1° под действием силы порядка 10 –9 Н.

Идея измерений основывалась на блестящей догадке Кулона о том, что если заряженный шарик привести в контакт с точно таким же незаряженным, то заряд первого разделится между ними поровну. Таким образом, был указан способ изменять заряд шарика в два, три и т. д. раз. В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами.

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь.

Силы взаимодействия одноименных и разноименных зарядов

На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

Силы взаимодействия подчиняются третьему закону Ньютона:

Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках (рис. 1.1.3). Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц. В Международной системе СИ за единицу заряда принят кулон (Кл).

Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока (Ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения.

Коэффициент k в системе СИ обычно записывают в виде:

Где электрическая постоянная.

В системе СИ элементарный заряд e равен:

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции:

Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Рис. 1.1.4 поясняет принцип суперпозиции на примере электростатического взаимодействия трех заряженных тел.

Принцип суперпозиции электростатических сил

Принцип суперпозиции является фундаментальным законом природы. Однако, его применение требует определенной осторожности, в том случае, когда речь идет о взаимодействии заряженных тел конечных размеров (например, двух проводящих заряженных шаров 1 и 2). Если к системе из двух заряженных шаров поднсти третий заряженный шар, то взаимодействие между 1 и 2 изменится из-за перераспределения зарядов.

Принцип суперпозиции утверждает, что при заданном (фиксированном) распределении зарядов на всех телах силы электростатического взаимодействия между любыми двумя телами не зависят от наличия других заряженных тел.

Закон Кулона простым языком

Взаимодействия электрических зарядов исследовали ещё до Шарля Кулона. В частности, английский физик Кавендиш в своих исследованиях пришёл к выводу, что неподвижные заряды при взаимодействии подчиняются определённому закону. Однако он не обнародовал своих выводов. Повторно закон Кулона был открыт французским физиком, именем которого был назван этот фундаментальный закон.

Рисунок 1. Закон Кулона

  1. История открытия
  2. Формулировка
  3. Границы применения
  4. Коэффициент k
  5. Закон Кулона в диэлектриках
  6. Применение на практике
  7. Видео по теме

История открытия

Эксперименты с заряженными частицами проводили много физиков:

  • Г. В. Рихман;
  • профессор физики Ф. Эпинус;
  • Д. Бернулли;
  • Пристли;
  • Джон Робисон и многие другие.

Все эти учёные очень близко подошли к открытию закона, но никому из них не удалось математически обосновать свои догадки. Несомненно, они наблюдали взаимодействие заряженных шариков, но установить закономерность в этом процессе было непросто.

Кулон проводил тщательные измерения сил взаимодействия. Для этого он даже сконструировал уникальный прибор – крутильные весы (см. Рис. 2).

Рис. 2. Крутильные весы

У придуманных Кулоном весов была чрезвычайно высокая чувствительность. Прибор реагировал на силы порядка 10 -9 Н. Коромысло весов, под действием этой крошечной силы, поворачивалось на 1 º . Экспериментатор мог измерять угол поворота, а значит и приложенную силу, пользуясь точной шкалой.

Благодаря гениальной догадке учёного, идея которой состояла в том, что при соприкосновении заряженного и незаряженного шариков, электрический заряд делился между ними поровну. На это сразу реагировали крутильные весы, коромысло которых поворачивалось на определённый угол. Заземляя неподвижный шарик, Кулон мог нейтрализовать на нём полученный заряд.

Таким образом, учёный смог уменьшать первоначальный заряд подвижного шарика кратное число раз. Измеряя угол отклонения после каждого деления заряда, Кулон увидел закономерность в действии отталкивающей силы, что помогло ему сформулировать свой знаменитый закон.

Формулировка

Кулон исследовал взаимодействие между шариками, ничтожно малых размеров, по сравнению с расстояниями между ними. В физике такие заряженные тела называются точечными. Другими словами, под определение точечных зарядов подпадают такие заряженные тела, если их размерами, в условиях конкретного эксперимента, можно пренебречь.

Для точечных зарядов справедливо утверждение: Силы взаимодействия между ними направлены вдоль линии, проходящей через центры заряженных тел. Абсолютная величина каждой силы прямо пропорциональна произведению зарядов и обратно пропорциональна квадрату расстояния между ними (см. рис. 3). Данную зависимость можно выразить формулой: |F1|=|F2|=(ke*q1*q2) / r 2

Рис. 3. Взаимодействие точечных зарядов

Остаётся добавить, что векторы сил направлены друг к другу для разноименных зарядов, и противоположно, в случае с одноимёнными зарядами. То есть между разноимёнными зарядами действует электрическое притяжение, а между одноимёнными – отталкивание.

Таким образом, закон Кулона описывает взаимодействие между двумя электрическими зарядами, которое лежит в основе всех электромагнитных взаимодействий.

Для того чтобы действовал сформулированный выше закон, необходимо выполнение следующий условий:

  • соблюдение точечности зарядов;
  • неподвижность заряженных тел;
  • закон выражает зависимости между зарядами в вакууме.

Границы применения

Описанная выше закономерность при определённых условиях применима для описания процессов квантовой механики. Правда, закон Кулона формулируется без понятия силы. Вместо силы используется понятие потенциальной энергии кулоновского взаимодействия. Закономерность получена путём обобщения экспериментальных данных.

Следует отметить, что на сверхмалых расстояниях (при взаимодействиях элементарных частиц) порядка 10 — 18 м проявляются электрослабые эффекты. В этих случаях закон Кулона, строго говоря, уже не соблюдается. Формулу можно применять с учётом поправок.

Нарушение закона Кулона наблюдается и в сильных электромагнитных полях (порядка 10 18 В/м), например поблизости магнитаров (тип электронных звёзд). В такой среде кулоновский потенциал уменьшается не обратно пропорционально, а экспоненциально.

Кулоновские силы подпадают под действие третьего закона Ньютона: F1 = – F2. Они используются для описания законов всемирного тяготения. В этом случае формула приобретает вид: F = ( m1* m2 ) / r 2 , где m1 и m2 – массы взаимодействующих тел, а r – расстояние между ними.

Закон Кулона стал первым открытым количественным фундаментальным законом, обоснованным математически. Его значение в исследованиях электромагнитных явлений трудно переоценить. С момента открытия и обнародования закона Кулона началась эра изучения электромагнетизма, имеющего огромное значение в современной жизни.

Коэффициент k

Формула содержит коэффициент пропорциональности k, который для согласования соразмерностей в международной системе СИ. В этой системе единицей измерения заряда принято называть кулоном (Кл) – заряд, проходящий за 1 секунду сквозь проводник, где силы тока составляет 1 А.

Коэффициент k в СИ выражается следующим образом: k = 1/4πε0, где ε0 – электрическая постоянная: ε0 = 8,85 ∙10 -12 Кл 2 /Н∙м 2 . Выполнив несложные вычисления, мы находим: k = 9×10 9 H*м 2 / Кл 2 . В метрической системе СГС k =1.

На основании экспериментов было установлено, что кулоновские силы, как и принцип суперпозиции электрических полей, в законах электростатики описывают уравнения Максвелла.

Если между собой взаимодействуют несколько заряженных тел, то в замкнутой системе результирующая сила этого взаимодействия равняется векторной сумме всех заряженных тел. В такой системе электрические заряды не исчезают – они передаются от тела к телу.

Закон Кулона в диэлектриках

Выше было упомянуто, что формула, определяющая зависимость силы от величины точечных зарядов и расстояния между ними, справедлива для вакуума. В среде сила взаимодействия уменьшается благодаря явлению поляризации. В однородной изотопной среде уменьшение силы пропорционально определённой величине, характерной для данной среды. Эту величину называют диэлектрической постоянной. Другое название – диэлектрическая проницаемость. Обозначают её символом ε. В этом случае k = 1/4πεε0.

Диэлектрическая постоянная воздуха очень близка к 1. Поэтому закон Кулона в воздушном пространстве проявляется так же как в вакууме.

Интересен тот факт, что диэлектрики могут накапливать электрические заряды, которые образуют электрическое поле. Проводники лишены такого свойства, так как заряды, попадающие на проводник, практически сразу нейтрализуются. Для поддержания электрического поля в проводнике необходимо непрерывно подавать на него заряженные частицы, образуя замкнутую цепь.

Применение на практике

Вся современная электротехника построена на принципах взаимодействия кулоновских сил. Благодаря открытию Клоном этого фундаментального закона развилась целая наука, изучающая электромагнитные взаимодействия. Понятие термина электрического поля также базируется на знаниях кулоновских сил. Доказано, что электрическое поле неразрывно связано с зарядами элементарных частиц.

Грозовые облака не что иное как скопление электрических зарядов. Они притягивают к себе индуцированные заряды земли, в результате чего появляется молния. Это открытие позволило создавать эффективные молниеотводы для защиты зданий и электротехнических сооружений.

На базе электростатики появилось много изобретений:

  • конденсатор;
  • различные диэлектрики;
  • антистатические материалы для защиты чувствительных электронных деталей;
  • защитная одежда для работников электронной промышленности и многое другое.

На законе Кулона базируется работа ускорителей заряженных частиц, в частности, функционирование Большого адронного коллайдера (см. Рис. 4).

Рис. 4. Большой адронный коллайдер

Ускорение заряженных частиц до околосветовых скоростей происходит под действием электромагнитного поля, создаваемого катушками, расположенными вдоль трассы. От столкновения распадаются элементарные частицы, следы которых фиксируются электронными приборами. На основании этих фотографий, применяя закон Кулона, учёные делают выводы о строении элементарных кирпичиков материи.

Использованная литература:

  1. Сивухин Д. В. Общий курс физики. — М.: Физматлит; Изд-во МФТИ, 2004.
  2. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика: Учеб. пособ.: Для вузов.
  3. Ландсберг Г. С. Элементарный учебник физики. Том II. Электричество и магнетизм.

Электрический заряд. Взаимодействие электрических зарядов. Закон Кулона

Знакомство с явлениями электростатики лучше начинать в сухую погоду. Расчесывая волосы, снимая свитер можно наблюдать в темноте проскакивание крошечных искр и слабое потрескивание. Если потереть пластиковую расческу о волосы и поднести ее к мелким кусочкам бумаги, то они начнут притягиваться к расческе.

Электризация – физическое явление, которое приводит к возникновению взаимодействия (притяжения или отталкивания) двух тел , например, при приведении их в плотный контакт или при трении (стекло и кожа, плексиглас и шерсть, резина и шерсть). Обнаружено в Древней Греции при трении янтаря (по-гречески – «электрон») о шерсть.

Взаимодействие наэлектризованных тел в состоянии покоя называется электростатическим взаимодействием.

Опыты по взаимодействию заряженных тел показали, что в природе существуют два вида заряда. Б. Франклин назвал один из них положительным, а другой – отрицательным. Разноименные заряды притягиваются, а одноименные – отталкиваются.

Различают следующие виды электризации:

  1. Трением.
  2. Соприкосновением.
  3. Через влияние
  4. При облучении.

При электризации тел трением всегда одновременно заряжаются оба участвующих в электризации тела (например, стекло и шелк). Причем одно из них приобретает положительный заряд, а другое – отрицательный. Если до электризации оба тела не были заряжены, то величина положительного заряда первого тела оказывается в точности равной величине отрицательного заряда второго тела.

Современная теория объясняет электризацию твердых тел как перемещение электронов, входящих в состав атомов любых тел, с одного тела на другое.

В состав ядра входят положительно заряженные элементарные частицы – протоны. На теле, приобретающем отрицательный заряд, образуется избыточное число электронов по сравнению с числом протонов, а на положительно заряженном теле оказывается недостаток электронов по сравнению с числом протонов.

Электрический заряд – характеристика заряженного тела. Минимальный заряд обозначается буквой e и равен 1,6·10 –19 Кл. Такой заряд имеют электрон и протон. Первые, наиболее точные определения заряда электрона были выполнены американским ученым Р. Милликеном и русским физиком А. Ф. Иоффе.

Для обнаружения и измерения электрического заряда используют электрометр. По углу отклонения стрелки модно судить о величине заряда.

Уменьшение числа электронов в одном теле равно увеличению их числа в другом. При этом полный заряд такой системы не изменяется, оставаясь равным нулю.

Сохранение числа протонов и электронов на соприкасающихся телах объясняет подтверждающийся опытом закон сохранения заряда: в электрически замкнутой системе алгебраическая сумма зарядов не меняется .

Количественное исследование взаимодействия заряженных тел осуществил в 1785 году французский физик Ш. Кулон (1736-1806). Он исследовал взаимодействие небольших заряженных металлических шариков при помощи крутильных весов.

На тонкой проволоке была подвешена стеклянная палочка с двумя металлическими шариками на концах. Одному шарику сообщали электрический заряд. Рядом с ним помещали неподвижный заряженный таким же по знаку зарядом шар. По углу поворота стеклянной палочки Ш.Кулон определял силу взаимодействия. Расстояние измерялось между центрами шаров.

Модуль силы взаимодействия F12 между двумя неподвижными точечными электрическими зарядами q1 и q2 в вакууме пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния R12 между ними.

Точечный заряд – модель реальных заряженных тел, размер которых значительно меньше, чем расстояние между ними.

Если имеется система точечных зарядов, то сила, действующая на каждый из них, определяется как векторная сумма сил, действующих на данный заряд со стороны всех других зарядов системы. При этом сила взаимодействия данного заряда с каким-то конкретным зарядом рассчитывается так, как будто других зарядов нет.

Сила взаимодействия точечных зарядов зависит от свойств среды, в которой они находятся:

Свойства среды определяет диэлектрическая проницаемость среды ε.

Границы применимости закона Кулона:

  • для точечных зарядов
  • для неподвижных зарядов
  • справедлив до расстояний не меньше 10 -15 м

Применение электризации

1.Электрофильтры.

Для очистки воздуха от пыли, например, при производстве цемента, очистки частиц дыма на ТЭС используют электрофильтры. Наэлектризованные частицы пыли притягиваются к заряженному элементу внутри фильтра.

2. Равномерное распыление краски краскопультом.

Электростатическая покраска используется для покрытия металлических поверхностей, например, в покрасочном цехе автомобильных кузовов. Для равномерного распыления краски на краскопульт подают отрицательный заряд, а кузову автомобиля сообщают положительный заряд. Отрицательно заряженные капельки краски равномерно распределяются по поверхности кузова, образуя прочный, ровный слой.

3. Изготовление наждачной бумаги.

4. Генератор высокого напряжения Ван де Граафа.

Электризация нашла практическое применение в науке и технике. До недавнего времени в ядерных исследованиях на ускорителях элементарных частиц широко применялся генератор Ван-дер-Ваальса. С его помощью удавалось генерировать напряжение до нескольких миллионов вольт. Генератор разработан в 1929 году американским физиком Робертом Ван-дер-Ваальсом. Используется электризация трением. Заряд переносится на движущейся ленте и многократно снимается с нее на полый металлический проводник.

5. Очистка зерна.

6. Дактилоскопия.

7. Лазерный принтер и ксерокс.

Электризация тел при облучении нашла применение в ксерокопирование и лазерном принтере.

8. Медицина.

При работе люстры Чижевского образуется большое количество отрицательных ионов кислорода. При вдыхании воздуха ионы кислорода отдают электрические заряды эритроцитам крови, а затем – клеткам. Вследствие чего улучшается обмен веществ в организме.

III. Основы электродинамики

Тестирование онлайн

Электрический заряд

Нам приходится буквально отлеплять одну от другой свежевыстиранные и доставаемые из сушилки вещи, или когда мы никак не можем привести в порядок наэлектризованные и буквально встающие дыбом волосы. А кто не пробовал подвесить воздушный шарик к потолку, после трения его о голову? Подобное притяжение и отталкивание является проявлением статического электричества. Подобные действия называются электризацией.

Статическое электричество объясняется существованием в природе электрического заряда. Заряд является неотъемлемым свойством элементарных частиц. Заряд, который возникает на стекле при трении его о шелк, условно называют положительным, а заряд, возникающий на эбоните при трении о шерсть, — отрицательным.

Рассмотрим атом. Атом состоит из ядра и, летающих вокруг него, электронов (на рисунке синие частицы). Ядро состоит из протонов (красные) и нейтронов (черные).

.

Носителем отрицательного заряда является электрон, положительного — протон. Нейтрон — нейтральная частица, не имеет заряда.

Величина элементарного заряда — электрона или протона, имеет постоянное значение и равна

Весь атом нейтрально заряжен, если количество протонов соответствует электронам. Что произойдет, если один электрон оторвется и улетит? У атома станет на один протон больше, то есть положительных частиц больше, чем отрицательных. Такой атом называют положительным ионом. А если присоединится один электрон лишний — получим отрицательный ион. Электроны, оторвавшись, могут не присоединятся, а некоторое время свободно перемещаться, создавая отрицательный заряд. Таким образом, в веществе свободными носителями заряда являются электроны, положительные ионы и отрицательные ионы.

Для того, чтобы имелся свободный протон, необходимо, чтобы разрушилось ядро, а это означает разрушение атома целиком. Такие способы получения электрического заряды мы рассматривать не будем.

Тело становится заряженным, когда оно содержит избыток одних или иных заряженных частиц (электронов, положительных или отрицательных ионов).

Величина заряда тела кратна элементарному заряду. Например, если в теле 25 свободных электронов, а остальные атомы являются нейтральными, то тело заряжено отрицательно и его заряд составляет . Элементарный заряд не делим — это свойство называется дискретностью

Одноименные заряды (два положительных или два отрицательных) отталкиваются, разноименные (положительный и отрицательный) — притягиваются

Точечный заряд — это материальная точка, которая имеет электрический заряд.

Закон сохранения электрического заряда

Замкнутая система тел в электричестве — это такая система тел, когда между внешними телами нет обмена электрическими зарядами.

Алгебраическая сумма электрических зарядов тел или частиц остается постоянной при любых процессах, происходящих в электрически замкнутой системе.

На рисунке пример закона сохранения электрического заряда. На первой картинке два тела разноименного заряда. На втором рисунке те же тела после соприкосновения. На третьем рисунке в электрически замкнутую систему внесли третье нейтральное тело и тела привели во взаимодействие друг с другом.

В каждой ситуации алгебраическая сумма заряда (с учетом знака заряда) остается постоянной.

Главное запомнить

1) Элементарный электрический заряд — электрон и протон
2) Величина элементарного заряда постоянна
3) Положительный и отрицательный заряды и их взаимодействие
4) Носителями свободных зарядов являются электроны, положительные ионы и отрицательные ионы
5) Электрический заряд дискретен
6) Закон сохранения электрического заряда

Adblock
detector