Объект модель компьютер процессор

Каким должен быть компьютер или ноутбук для рендеринга и моделирования

Сложно представить работу в сфере 3D-дизайна без мощного персонального компьютера (ПК), на который можно беспрепятственно установить весь необходимый софт, моделировать без подтормаживания программ и рендерить с высокой скоростью.
Это не значит, что дорога в эту сферу без дорогого гаджета закрыта: сделать первые шаги в профессии можно даже на офисном ноутбуке.

Мы собрали всю важную информацию по выбору компьютера и его комплектующих для 3D-дизайнеров, работающих в 3ds Max.
Детально рассмотрим, какие гаджеты лучше всего подходят и какие у них должны быть характеристики.

Содержание

Программное обеспечение при компьютерном моделировании

Моделирование – это метод научного исследования явлений, процессов, объектов, устройств или систем, основанный на построении, изучении и использовании моделей с целью получения новых знаний, совершенствования характеристик объектов исследования или управления ими.

Моделирование необходимо для изучения сущности изучаемого объекта, определения способ управления им, прогнозирования возможных последствий тех или иных событий, решения задач прикладного характера – все это делает моделирование необходимым изобретением для многих сфер жизни общества. Одним из видов моделирования является компьютерноемоделирование.

Компьютерное моделирование – это метод решения задачи, анализа или синтеза сложной системы на основе использования ее компьютерной модели.

Компьютерная модель бывает двух видов:

1. Структурно-функциональная модель – условный образ объекта, описанный с помощью взаимосвязанных компьютерных таблиц, диаграмм, рисунков и т.д.

2. Имитационная модель– отдельная программа, позволяющая воспроизводить процессы функционирования объекта при воздействии на него различных факторов.

Компьютерное моделирование, как деятельность, предполагает поэтапность :

  1. Анализ требований и проектирование (постановка цели и задачи моделирования, сбор информации об объекте, построение концептуальной и проверка её достоверности)
  2. Разработка модели ( выбор среды моделирования, составление логической модели, назначение модели и модельного времени, проверка истинности и адекватности модели)
  3. Проведение эксперимента ( запуск, прогноз и отладка модели, анализ результатов моделирования и подведение итогов)

Нас интересует второй этап, а именно среда моделирования.

Несмотря на наличие множества специализированных пакетов компьютерного моделирования, табличный процессор Microsoft Excel является наиболее доступным, поэтому именно его применяют для решения большинства прикладных задач. В связи с этим рассмотрим именно его в качестве примера.

Microsoft Excel позволяет решать оптимизационные задачи, что является актуальным для коммерсанта. Среди них выделяют следующие :

  1. Задача сетевого планирования и управления.
  2. Задачи массового обслуживания.
  3. Задачи управления запасами
  4. Задачи распределения ресурсов
  5. Задачи ремонта и замены оборудования
  6. Задачи составления расписания.
  7. Задачи планировки и размещения
  8. Задачи выбора маршрута или сетевые задачи.

Оптимизационная задача– это экономико-математическая задача, цель которой состоит в нахождении наилучшего варианта использования имеющихся ресурсов.

Давайте рассмотрим некоторые аспекты работы с Microsoft Excel, позволяющие решать оптимизационные задачи.

Элементы экрана : открываяMicrosoft Excelмы видим таблицу, которая называется рабочим листом. Таблица состоит из строк и столбцов, образуя ячейки в которые вводятся данные. Сверху таблицы находиться строка заголовка, строка меню и строка формулы с отображением активной ячейки. Все это можно увидеть на рисунке.

Формулы служат для проведения разнообразных расчетов. С помощью Excel можно быстро вводить формулу. Формула состоит из трех основных частей :

  1. Знак равенства
  2. Совокупность значений или ссылки на ячейки, с которыми выполняются расчеты
  3. Операторы

Если знак равенства не введен, то вводимые значения воспринимаются как просто данные.

Так же функцию можно ввести нажав на специальную кнопку вызова функции.

Надстройка – поиск решения : Надстройка «поиск решения» позволяет решать оптимизационные задачи.

В строке меню выбираем поиск решения и у нас открывается диалоговое окно «параметры поиска решения», в которых указаны три основных поля:

1. Оптимизировать целевую функцию

2. Изменяя ячейки переменных

3. В соответствии с ограничениями.

Оптимизировать целевую ячейку означает выбрать ту ячейку, которая будет связана с другими ячейками формулой и которая будет отображать результат задачи. Можно выбирать поиск max и min значения ячейки, в зависимости от условия.

Изменяя ячейки переменных означает, что нужно указать переменные ячейки, которые не должны содержать формул и в которых изменение их значения должно повлиять на результат целевой ячейки.

В соответствии с ограничениям означает, что надо указать ячейки, которые будут отображать ограничения данной задачи. Все это можно увидеть на рисунке.

В целом решение оптимизационной задачи в Microsoft Excel состоит из следующих этапов:

  1. Ввести исходные данные
  2. Ввести зависимость для целевой функции
  3. Ввести зависимость для ограничений
  4. Запустить команду Поиск решения
  5. Оптимизировать целевую функцию
  6. Изменить ячейки переменных
  7. Ввести ограничения
  8. Найти решение и создать отчеты.

В данной работе мы в краткой форме рассмотрели сущность компьютерного моделирования, как вид моделирования и один из видов программного обеспечения, а именно Microsoft Excel, предназначенного для моделирования на ЭВМ. А в Excel был продемонстрирован один способов решения прикладных задач, связанных с компьютерным моделированием, тем самым была обоснована актуальность данной темы.

Объект модель компьютер процессор

Под компьютерным моделированием в самом широком смысле будем понимать процесс создания и исследования моделей с помощью компьютера. Выделяют следующие виды моделирования:

? физическое моделирование: компьютер — часть экспериментальной установки или тренажера, он воспринимает внешние сигналы, осуществляет соответствующие расчеты и выдает сигналы, управляющие различными манипуляторами. Например, учебная модель самолета, представляющая собой кабину, установленную на соответствующих манипуляторах, соединенных с компьютером, который реагирует на действия пилота и изменяет наклон кабины, показания приборов, вид из иллюминатора и т.д., имитируя полет реального самолета;

? динамическое или численное моделирование, предполагающее численное решение системы алгебраических и дифференциальных уравнений методами вычислительной математики и проведение вычислительного эксперимента при различных параметрах системы, начальных условиях и внешних воздействиях. Используется для моделирования различных физических, биологических, социальных и других явлений: колебания маятника, распространение волны, изменение численности населения, популяции данного вида животных и т.д.;

? имитационное моделирование состоит в создании компьютерной программы (или пакета программ), имитирующей поведение сложной технической, экономической или иной системы на ЭВМ с требуемой точностью. Имитационное моделирование предусматривает формальное описание логики функционирования исследуемой системы с течением времени, которое учитывает существенные взаимодействия ее компонентов и обеспечивает проведение статистических экспериментов. Объектно-ориентированные компьютерные симуляции используются для исследования поведения экономических, биологических, социальных и иных систем, для создания компьютерных игр, так называемого «виртуального мира», обучающих программ и анимаций. Например, модель технологического процесса, аэродрома, некоторой отрасли производства и т.д.;

? статистическое моделирование используется для изучения стохастических систем и состоит в многократном проведении испытаний с последующей статистической обработкой получающихся результатов. Подобные модели позволяют исследовать поведение всевозможных систем массового обслуживания, многопроцессорных систем, информационно-вычислительных сетей, различных динамических систем, на которые воздействуют случайные факторы. Статистические модели применяются при решении вероятностных задач, а также при обработке больших массивов данных (интерполяция, экстраполяция, регрессия, корреляция, расчет параметров распределения и т.д.). Они отличаются от детерминированных моделей, использование которых предполагает численное решение систем алгебраических или дифференциальных уравнений, либо замену изучаемого объекта детерминированным автоматом;

? информационное моделирование заключается в создании информационной модели, то есть совокупности специальным образом организованных данных (знаков, сигналов), отражающих наиболее существенные стороны исследуемого объекта. Различают наглядные, графические, анимационные, текстовые, табличные информационные модели. К ним относятся всевозможные схемы, графы, графики, таблицы, диаграммы, рисунки, анимации, выполненные на ЭВМ, в том числе цифровая карта звездного неба, компьютерная модель земной поверхности и т.д.;

? моделирование знаний предполагает построение системы искусственного интеллекта, в основе которой лежит база знаний некоторой предметной области (части реального мира). Базы знаний состоят из фактов (данных) и правил. Например, компьютерная программа, умеющая играть в шахматы, должна оперировать информацией о «способностях» различных шахматных фигур и «знать» правила игры. К данному виду моделей относят семантические сети, логических модели знаний, экспертные системы, логические игры и т.д. Логические модели используются для представления знаний в экспертных системах, для создания систем искусственного интеллекта, осуществления логического вывода, доказательства теорем, математических преобразований, построения роботов, использования естественного языка для общения с ЭВМ, создания эффекта виртуальной реальности в компьютерных играх и т.д.

Исходя из целей моделирования, компьютерные модели подразделяют на группы:

? дескриптивные модели, используемые для понимания природы исследуемого объекта, выявления наиболее существенных факторов, влияющих на его поведение;

? оптимизационные модели, позволяющие выбрать оптимальный способ управления технической, социально экономической или иной системой (например, космической станцией);

? прогностические модели, помогающие прогнозировать состояние объекта в последующие моменты времени (модель земной атмосферы, позволяющая предсказать погоду);

? учебные модели, применяемые для обучения, тренинга и тестирования учащихся, студентов, будущих специалистов;

? игровые модели, позволяющие создать игровую ситуацию, имитирующую управление армией, государством, предприятием, человеком, самолетом и т.д., либо играющие в шахматы, шашки и другие логические игры.

Из чего состоит компьютер?

Каждый пользователь ПК прекрасно знает, что компьютер состоит из монитора, клавиатуры, мышки, колонок и системного блока. Но понятное дело, что это только верхушка айсберга. Это, так сказать, всего лишь одна сторона медали. Если заглянуть вовнутрь системного блока и других составных компьютера, то мы найдём ещё огромное количество деталей, благодаря которым, он, собственно говоря, и работает.

Самым основным, конечно же, является системный блок.

Из чего состоит компьютер?

В общем-то, он и является непосредственно компьютером, который проделывает сотни тысяч операций. Если мы заменим монитор, клавиатуру или мышку, то нам станет просто удобней просматривать фильмы, слушать музыку, набирать тексты и прочее, но параметры ПК останутся всё теми же. Всё то, что отображается на мониторе и звучит в колонках, зависит от того, что находится внутри. Внутренними деталями системного блока определяются возможности системы в целом.

Системный блок компьютера состоит из: видеокарты, жесткого диска, модулей ОЗУ, кулеров, процессора, материнской платы и многих других частей. Рассмотрим важные детали и их функции более подробно.

Материнская плата – это основа всего системного блока.

Из чего состоит компьютер?

Это плата, к которой присоединены все остальные детали механизма: видеокарта, процессор, жесткий диск и прочее. Из-за этого и название у нее соответственное. Она обеспечивает жизнедеятельность других деталей. Основной функцией материнской платы является связь остальных частей, таким образом, чтобы они работали как одно целое. Если открыть крышку с системного блока, то Вы сразу же ее заметите.

Центральный процессор – это, так называемое, сердце компьютера.

Из чего состоит компьютер?

Именно процессор выполняет все те команды, которые задает пользователь ПК. Скорость и возможности компьютера зависят от того, насколько мощный процессор. Процессор расположен на материнской плате в специальном разъеме, который так и называется «разъем центрального процессора» или «сокет».

Кулер . Эта деталь находится сразу над процессором.

Из чего состоит компьютер?

Кулер представляет собой небольшой радиатор с вентилятором, который рассеивает тепло и, таким образом, охлаждает процессор. Это очень важная деталь, так как если процессор перегреется, компьютер будет выключаться. А это быстро приведет к поломке ПК.

Винчестер или жесткий диск – это устройство, на котором сохраняется вся информация Вашего ПК.

Из чего состоит компьютер?

Само собой разумеется, что чем больше обьем жесткого диска, тем больше информации способен вмещать в себя компьютер. Месторасположение винчестера в современных компьютерах немного отличается от более старых. Сейчас они присоединены с помощью интерфейса. Как правило, жесткие диски тоже часто перегреваются, а поэтому, для более долгого срока службы компьютера, установите ещё один небольшой кулер возле винчестера, которого будет вполне достаточно, чтобы избежать ремонтов.

Видеокарта – часть компьютера, отвечающая за скорость обработки видеоинформации.

Из чего состоит компьютер?

В современных компьютерах к материнской плате видеокарта устанавливается через разъем PCI-Express. Существуют также материнские платы, у которых имеется несколько разъемов PCI-Express, это естественно позволяет улучшить картинку, и делает графическую подсистему в целом более мощной. Но в основном, обычной видеокарты хватает для среднестатистического юзера. Мощные видеокарты необходимы тем, кто, непосредственно, работает с графикой или просто любителям поиграть в игрушки с более чёткой картинкой, что бы ощутить всю атмосферу игры. Также в каждом компьютере имеется звуковая и сетевая карты. Их названия сами говорят за их функции в ПК.

Модули ОЗУ – это оперативная память другими словами.

Из чего состоит компьютер?

В оперативной памяти временно сохраняются данные, которые необходимы процессору, чтобы выполнить операцию. По окончанию таких процессов, к примеру, после закрытия той или иной операции, данные с оперативной памяти, тут же удаляются. Скорость оперативной памяти, точнее доступа к ней, гораздо выше скорости доступа к винчестеру. Это помогает получать фактически моментальный доступ к нужной информации. Существуют разные модели ОЗУ, и поэтому разъемы для них на материнской плате тоже существуют разные.

Это, конечно же, не все детали, из которых состоит компьютер. Для того чтобы расширить возможности Вашего ПК, устанавливаются также различные ТВ-тюнеры, модемы и прочее. Это зависит уже от желаний пользователя.

Ну и, конечно же, для того, что бы все это функционировало, Вам необходим блок питания, который даст жизнь всему этому «железу».

Процессоры в фильме «Терминатор»

Фильм «Терминатор» полон моментов, когда робот сканирует все происходящее перед ним. Перед его глазами образуются странные для зрителей коды. Через несколько лет становится очевидным тот факт, что появлению таких кодов создатели фильма обязаны компании MOS с ее процессором версии 6502. Это заставляет повеселиться разработчиков, которым кажется забавным ситуация, при которой в фильме про далекое будущее используется процессор семидесятых годов.

В конце семидесятых годов компания Intel представила свою очередную новинку. Она получила название Intel 8086. Благодаря этому чипу все ближайшие преследователи компании на рынке остались далеко позади. Он обладал высоким уровнем мощности, но это дало ему возможности стать популярным. В нем использовалась 16 разрядная шина, которая обладал высоким уровнем стоимости. Для этого процессора необходимо было использовать специальные микросхемы и переделывать материнскую плату.

Затем компания выпустила свой более успешный продукт Intel 8088. В нем имелось более тридцати тысяч транзисторов.

Компания Motorola в то же время выпустила свой продукт MC68000. Он был одним из самых мощных на то время. Для его использования необходимо было иметь специальные микросхемы. Однако он все равно пользовался большим спросом среди потребителей. Он предлагал пользователям огромные возможности для его использования.

В это же время компания Zilog тоже представила пользователям свою новую разработку. Она создала процессор Z8000. Данная новинка до сих пор вызывает большое количество споров. По своим техническим параметрам она была приемлемой и ее стоимость была низкой. Однако не многие пользователи хотели использовать ее на своих компьютерных устройствах.

2. Виды используемых структур памяти по принципам размещения и поиска информации

В традиционных ЭВМ используется иерархическая система памяти. Непосредственно в процессоре могут быть интегрированы регистры общего назначения (РОНы), первые ступени кэш-памяти, дополнительные устройства памяти, иногда – программно недоступные. Это устройства сохранения адресов возврата, аппаратные таблицы переадресации, буферы предсказаний ветвлений и т.д.

Основной памятью, на работу с которой ориентирован процессор, является оперативная память. Остальные системы памяти для процессора, как правило, являются внешними устройствами.

Особый статус имеют уровни кэш-памяти. Это элементы системы «оперативная память – процессор»

По принципам размещения и поиска информации устройства оперативной памяти разделяются на:

Адресная память

В адресных устройствах памяти массив элементов хранения информации разбивается на отдельные нумерованные последовательности. Номер конкретной последовательности является ее адресом, по которому происходит обращение для записи или чтения информации. Это модель плоской (двухкоординатной) памяти. Иногда используются наборы плоских устройств памяти для получения структурированных систем памяти.

Обычно для хранения информации в ЭВМ используются двоичные элементы (хранимые значения – биты), а минимально адресуемой последовательностью бит является байт.

Байт – это количество бит, необходимое для кодирования символов в используемых стандартных кодах. В настоящее время байт – это 8 бит.

Байты укрупняются в слова. Для РС и мини-ЭВМ слово – это два байта, для полноразрядныхЭВМ корпорации IBM – четыре байта. В качестве программных объектов могут использоваться биты, байты, слова и более крупные объекты, кратные двоичной степени байта.

Ассоциативная память

В ассоциативных системах памяти массив элементов хранения информации, как и в адресных системах, разбивается на отдельные последовательности, но нумерация последовательности необязательна.

Кроме функций записи и хранения, в таких системах памяти аппаратно реализуются функции ассоциативного поиска информации. В простейшем случае – это поиск информации по совпадению входного «эталона» –ключа с частью последовательности хранимой информации. Результаты ассоциативного поиска используются в операциях чтения или записи для поиска искомых строк данных.

Ассоциативный поиск реализуется сравнением входной информации со всеми хранимыми объектами (байтами, словами и т.д.).

Ассоциативный поиск может быть реализован чисто программно последовательным перебором ячеек в обычной адресной памяти с последовательным сравнением ключа с хранимой в памяти информацией.

В ассоциативной памяти поиск реализуется аппаратно путем параллельного сравнения слова-ключа со всеми записанными словами. Для этого каждый набор элементов хранения программных объектов дополняется схемами сравнения.

Части хранимой информации, по которым производится ассоциативный поиск, могут быть выделены в отдельный блок (блок тегов) или задаваться схемами маскирования в блоке хранения информации.

Стековая память

Стековая память это список со стратегией работы «последний вошел – первый вышел». Стековая память обычно реализуется на основе обычной линейной адресной памяти с использованием специального регистра – указателя стека (SP). Для стековой памяти определены две операции: занесение единицы данных в стек и удаление единицы данных из стека. При занесении в стек объекта, например слова, содержимое указателя стека уменьшают на длину объекта и результат используют в качестве адреса записи. При удалении объекта из стека производят чтение из вершины стека, а затем производят корректировку указателя стека: увеличивают содержимоеSPна длину удаляемого объекта. Это вариант стека с распространением (при заполнении) в сторону уменьшения адресов. Возможен симметричный вариант стека с распространением в сторону увеличения адресов.

Стек может использоваться в аппаратных процедурах, например для сохранения контекста программ в процедурах передачи управления на подпрограммы (включая программы обработки прерываний) и возврата из подпрограмм.

Для программной работы со стеком используются или специальные команды, или режимы адресации.

Использование специальных команд для организации стека

Многие процессоры имеют наборы команд работы со стеком. Наиболее общими из них являются команды:

PUCHА – поместить в стек А, где А – непосредственный операнд, регистр или ячейка памяти;

POPA– восстановить (выбрать) данные из стека в А,где А – регистр или ячейка памяти.

Построение стека на основе обычной адресной памяти позволяет производить чтение и модификацию данных и по произвольному адресу внутри стека.

В МП Intel для обращения по произвольному адресу внутри стека используется регистр EBP – указатель базы (кадра) стека. Перед началом использования стека, для возможности доступа к данным стека по произвольным адресам, в этом регистре должно быть скопировано содержимое указателя стека (ESP – адрес вершины стека).

В МП Intel для работы со стеком предусмотрены: стековый сегмент (определяемый сегментным регистром ЕSS), регистр указателя вершины стека (ЕSP) и регистр базового адреса кадра стека (EBP).

Использование режимов адресации

В процессорах корпорации DECнет специальных команд (кодов операций) для работы со стеком. Для создания стека может использоваться любая область единой адресной памяти. Одна из областей памяти выделена для аппаратного стека. Аппаратный стек предназначен для использования аппаратурой или операционной системой. Аппаратура использует стек для сохранения данных в процедурах передачи управления подпрограммам, включая подпрограммы обработки прерываний. Программы пользователей также могут использовать множество стеков.

Для работы со стеками используются не специальные команды, а режимы адресации: автоинкрементный и автодекрементный. В качестве указателя стека может использоваться любой регистр общего назначения (РОН).

В современных ЭВМ используются все три типа памяти. Как правило, в качестве оперативной памяти используется адресная память.

Вопросы для самопроверки:

Адресная память.

Ассоциативный поиск информации в памяти.

Ассоциативная память.

Стековая память.

Минимальный формат адресуемых данных.

Размер формата данных – «слово».

Процедура поиска информации в ассоциативной памяти.

Понятие «стековая память».

Команды работы со стеком в МП IA.

Использование РОНа EBP при работе со стеком в МП IA.

Использования РОНа ESP при работе со стеком в МП IA.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector