Лекция представление чисел в компьютере
§ 17. Числа в памяти компьютера
Основные темы параграфа:
♦ представление целых чисел;
♦ размер ячейки и диапазон значений чисел;
♦ особенности работы компьютер с целыми числами;
♦ представление вещественных чисел;
♦ особенности работы компьютера с вещественными числами.
Любая информация в памяти компьютера представляется в двоичном виде: последовательностью нулей и единиц. Исторически первым типом данных, с которыми стали работать компьютеры были числа. Теперь это и числа, и тексты, и изображение, и звук. Работа с данными любого типа в конечном счете сводится к обработке двоичных чисел — чисел, записываемых с помощью двух цифр — 0 и 1. Поэтому современные компьютерные технологииназывают цифровыми технологиями.
В компьютере различаются два типа числовых величин: целые числа и вещественные числа. Различаются способы их представления в памяти компьютера.
Представление целых чисел
Часть памяти, в которой хранится одно число, будем называть ячейкой. Минимальная ячейка, в которой может храниться целое число, имеет размер 8 битов — 1 байт. Получим представление десятичного числа 25 в такой ячейке. Для этого нужно перевести число в двоичную систему счисления. Как это делается, вы уже знаете. Результат перевода:
Теперь осталось «вписать» его в восьмиразрядную ячейку (записать так называемое внутреннее представление числа). Делается это так:
Число записывается «прижатым» к правому краю ячейки (в младших разрядах). Оставшиеся слева разряды (старшие) заполняются нулями.
Самый старший разряд — первый слева, хранит знак числа. Если число положительное, то в этом разряде ноль, если отрицательное — единица. Самому большому положительному целому числу соответствует следующий код:
Чему он равен в десятичной системе? Можно расписать это число в развернутой форме и вычислить выражение. Но можно решить задачу быстрее. Если к младшему разряду этого числа прибавить единицу, то получится число 10000000. В десятичной системе оно равно 2 7 = 128. Значит:
011111112 = 128 — 1 = 127.
Максимальное целое положительное число, помещающееся в 8-разрядную ячейку, равно 127.
Теперь рассмотрим представление целых отрицательных чисел. Как, например, в 8-разрядной ячейке памяти будет представлено число -25? Казалось бы, очевидным ответом является следующий: нужно в представлении числа 25 заменить старший разряд с 0 на 1. К сожалению, в компьютере все несколько сложнее.
Для представления отрицательных целых чисел используется дополнительный код.
Получить дополнительный код можно по следующему алгоритму:
1) записать внутреннее представление положительного числа X;
2) записать обратный код этого числа заменой во всех разрядах 0 на 1 и 1 на 0;
3) к полученному числу прибавить 1.
Определим по этим правилам внутреннее представление числа -2510 в 8-разрядной ячейке:
1) 00011001
2) 11100110
3) +1
11100111 — это и есть представление числа -25.
В результате выполнения такого алгоритма единица в старшем разряде получается автоматически. Она и является признаком отрицательного значения.
Проверим полученный результат. Очевидно, что при сложении чисел +25 и -25 должен получиться ноль.
00011001
+11100111
1 00000000
Единица в старшем разряде, получаемая при сложении, выходит за границу ячейки и исчезает. В ячейке остается ноль!
Из этого примера теперь можно понять, почему представление отрицательного числа называется дополнительным кодом.
Представление восьмиразрядного отрицательного числа -X дополняет представление соответствующего положительного числа +Х до значения 2 6 .
Размер ячейки к диапазон значений чисел
Наибольшее по модулю отрицательное значение в 8-разрядной ячейке равно -2 7 = -128. Его внутреннее представление: 10000000. Таким образом, диапазон представления целых чисел в восьмиразрядной ячейке следующий:
-128 X 127, или -2 7 X 2 7 — 1.
Восьмиразрядное представление целых чисел обеспечивает слишком узкий диапазон значений. Если требуется больший диапазон, нужно использовать ячейки большего размера. Для 16-разрядной ячейки диапазон значений будет следующим:
-2 15 X 2 15 — 1, или -32 768 X 32 767.
Теперь становится очевидной обобщенная формула для диапазона целых чисел в зависимости от разрядности N ячейки:
-2 N-1 X 2 N-1 -1.
Диапазон для 32-разрядной ячейки получается достаточно большим:
-2 31 Х 2 31 — 1, или
-2 147 483 648 X 2 147 483 647.
Особенности работы компьютера с целыми числами
Выполняя на компьютере вычисления с целыми числами, нужно помнить об ограниченности диапазона допустимых значений. Выход результатов вычислений за границы допустимого диапазона называется переполнением. Переполнение при вычислениях с целыми числами не вызывает прерывания работы процессора. Машина продолжает считать, но результаты могут оказаться неправильными.
Представление вещественных чисел
Целые и дробные числа в совокупности называются вещественными числами. В математике также используется термин «действительные числа». Решение большинства математических задач сводится к вычислениям с вещественными числами.
Всякое вещественное число (X) можно записать в виде произведения мантиссы m и основания системы счисления р в некоторой целой степени n, которую называют порядком:
Например, число 25,324 можно записать в таком виде: 0,25324 · 10 2 . Здесь m = 0,25324 — мантисса, n = 2 — порядок. Порядок указывает, на какое количество позиций и в каком направлении должна сместиться десятичная запятая в мантиссе.
Чаще всего для хранения вещественных чисел в памяти компьютера используется либо 32-разрядная, либо 64-разрядная ячейка. Первый вариант называется представлением с обычной точностью, второй — представлением с удвоенной точностью. В ячейке хранятся два числа в двоичной системе счисления: мантисса и порядок. Здесь мы не будем подробно рассматривать правила представления вещественных чисел. Отметим лишь основные следствия, вытекающие из этих правил, которые важно знать пользователю компьютера, занимающемуся математическими вычислениями.
Особенности работы компьютера с вещественными числами
1. Диапазон вещественных чисел ограничен. Но он значительно шире, чем для рассмотренного ранее способа представления целых чисел. Например, при использовании 32-разрядной ячейки этот диапазон следующий:
-3,4 · 10 38 X 3,4 · 10 38 .
2. Выход за диапазон (переполнение) — аварийная ситуация для процессора, который прерывает свою работу.
3. Результаты машинных вычислений с вещественными числами содержат погрешность. При использовании удвоенной точности эта погрешность уменьшается.
Коротко о главном
В памяти компьютера целые числа представляются в двоичной системе счисления и могут занимать ячейку размером 8, 16, 32 и т. д. битов.
Диапазон значений целых чисел ограничен. Чем больше размер ячейки, тем шире диапазон.
При выходе результатов вычислений с целыми числами за допустимый диапазон работа процессора не прерывается. При этом результаты могут оказаться неверными.
Вещественные числа представляются в виде совокупности мантиссы и порядка в двоичной системе счисления. Обычный размер ячейки — 32 или 64 бита.
Результаты вычислений с вещественными числами приближенные. Переполнение приводит к прерыванию работы процессора.
Вопросы и задания
1. Как в памяти компьютера представляются целые положительные и отрицательные числа?
2. Укажите, каков был бы диапазон значений целых чисел, если бы для их хранения использовалась 4-разрядная ячейка.
3. Запишите внутреннее представление следующих десятичных чисел, используя 8-разрядную ячейку.
а) 32; б) -32; в) 102; г) -102; д) 126; е) -126.
4. Определите, каким десятичным числам соответствуют следующие двоичные коды 8-разрядного представления целых чисел.
а) 00010101; б) 11111110; в) 00111111; г) 10101010.
И. Семакин, Л. Залогова, С. Русаков, Л. Шестакова, Информатика, 9 класс
Отослано читателями из интернет-сайтов
Планы уроков информатики, скачать тесты бесплатно, всё для учителя и школьника в подготовке к уроку по информатике 9 класс, домашние задания, вопросы и ответы
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь — Образовательный форум.
Представление целых чисел в беззнаковых целых типах.
Для беззнакового представления все разряды ячейки отводятся под представление самого числа. Например, в байте (8 бит) можно представить беззнаковые числа от 0 до 255. Поэтому, если известно, что числовая величина является неотрицательной, то выгоднее рассматривать её как беззнаковую.
Для представления со знаком самый старший (левый) бит отводится под знак числа, остальные разряды — под само число. Если число положительное, то в знаковый разряд помещается 0, если отрицательное — 1. Например, в байте можно представить знаковые числа от -128 до 127.
Представление чисел в компьютере
Числовые данные обрабатываются в компьютере в двоичной системе счисления. Числа хранятся в памяти компьютера в двоичном коде, т. е. в виде последовательности нулей и единиц, и могут быть представлены в формате с фиксированной или плавающей запятой.
Целые числа хранятся в памяти в формате с фиксированной запятой. При таком формате представления чисел для хранения целых неотрицательных чисел отводится регистр памяти, состоящий из восьми ячеек памяти (8 бит). Каждому разряду ячейки памяти соответствует всегда один и тот же разряд числа, а запятая находится справа после младшего разряда и вне разрядной сетки. Например, число 110011012 будет храниться в регистре памяти следующим образом:
Максимальное значение целого неотрицательного числа, которое может храниться в регистре в формате с фиксированной запятой, можно определить из формулы: 2n – 1, где n – число разрядов числа. Максимальное число при этом будет равно 28 – 1 = 25510 = 111111112и минимальное 010 = 000000002. Таким образом, диапазон изменения целых неотрицательных чисел будет находиться в пределах от 0 до 25510.
В отличие от десятичной системы в двоичной системе счисления при компьютерном представлении двоичного числа отсутствуют символы, обозначающие знак числа: положительный (+) или отрицательный (-), поэтому для представления целых чисел со знаком в двоичной системе используются два формата представления числа: формат значения числа со знаком и формат дополнительного кода. В первом случае для хранения целых чисел со знаком отводится два регистра памяти (16 бит), причем старший разряд (крайний слева) используется под знак числа: если число положительное, то в знаковый разряд записывается 0, если число отрицательное, то – 1. Например, число 53610 = 00000010000110002 будет представлено в регистрах памяти в следующем виде:
а отрицательное число -53610 = 10000010000110002 в виде:
Максимальное положительное число или минимальное отрицательное в формате значения числа со знаком (с учетом представления одного разряда под знак) равно 2n-1 – 1 = 216-1 – 1 = 215 – 1 = 3276710 = 1111111111111112 и диапазон чисел будет находиться в пределах от -3276710 до 32767.
Наиболее часто для представления целых чисел со знаком в двоичной системе применяется формат дополнительного кода, который позволяет заменить арифметическую операцию вычитания в компьютере операцией сложения, что существенно упрощает структуру микропроцессора и увеличивает его быстродействие.
Для представления целых отрицательных чисел в таком формате используется дополнительный код, который представляет собой дополнение модуля отрицательного числа до нуля. Перевод целого отрицательного числа в дополнительный код осуществляется с помощью следующих операций:
1) модуль числа записать прямым кодом в n (n = 16) двоичных разрядах;
2) получить обратный код числа (инвертировать все разряды числа, т. е. все единицы заменить на нули, а нули – на единицы);
3) к полученному обратному коду прибавить единицу к младшему разряду.
Например, для числа -53610 в таком формате модуль будет равен 00000010000110002, обратный код – 1111110111100111, а дополнительный код – 1111110111101000.
Необходимо помнить, что дополнительный код положительного числа – само число.
Для хранения целых чисел со знаком помимо 16-разрядного компьютерного представления, когда используются два регистра памяти (такой формат числа называется также форматом коротких целых чисел со знаком), применяются форматы средних и длинных целых чисел со знаком. Для представления чисел в формате средних чисел используется четыре регистра (4 х 8 = 32 бит), а для представления чисел в формате длинных чисел – восемь регистров (8 х 8 = 64 бита). Диапазоны значений для формата средних и длинных чисел будут соответственно равны: -(231 – 1) … + 231 – 1 и -(263-1) … + 263 – 1.
Компьютерное представление чисел в формате с фиксированной запятой имеет свои преимущества и недостатки. К преимуществам относятся простота представления чисел и алгоритмов реализации арифметических операций, к недостаткам – конечный диапазон представления чисел, который может быть недостаточным для решения многих задач практического характера (математических, экономических, физических и т. д.).
Вещественные числа (конечные и бесконечные десятичные дроби) обрабатываются и хранятся в компьютере в формате с плавающей запятой. При таком формате представления числа положение запятой в записи может изменяться. Любое вещественное число К в формате с плавающей запятой может быть представлено в виде:
где А – мантисса числа; h – основание системы счисления; p – порядок числа.
Выражение (2.7) для десятичной системы счисления примет вид:
Такая форма представления числа также называется нормальной. С изменением порядка запятая в числе смещается, т. е. как бы плавает влево или вправо. Поэтому нормальную форму представления чисел называют формой с плавающей запятой. Десятичное число 15,5, например, в формате с плавающей запятой может быть представлено в виде: 0,155 · 102; 1,55 · 101; 15,5 · 100; 155,0 · 10-1; 1550,0 · 10-2 и т. д. Эта форма записи десятичного числа 15,5 с плавающей запятой не используется при написании компьютерных программ и вводе их в компьютер (устройства ввода компьютеров воспринимают только линейную запись данных). Исходя из этого выражение (2.7) для представления десятичных чисел и ввода их в компьютер преобразовывают к виду
где Р – порядок числа,
т. е. вместо основания системы счисления 10 пишут букву Е, вместо запятой – точку, и знак умножения не ставится. Таким образом, число 15,5 в формате с плавающей запятой и линейной записи (компьютерное представление) будет записано в виде: 0.155Е2; 1.55Е1; 15.5Е0; 155.0Е-1; 1550.0Е-2 и т.д.
Независимо от системы счисления любое число в форме с плавающей запятой может быть представлено бесконечным множеством чисел. Такая форма записи называется ненормализованной. Для однозначного представления чисел с плавающей запятой используют нормализованную форму записи числа, при которой мантисса числа должна отвечать условию
где |А| — абсолютное значение мантиссы числа.
Условие (2.9) означает, что мантисса должна быть правильной дробью и иметь после запятой цифру, отличную от нуля, или, другими словами, если после запятой в мантиссе стоит не нуль, то число называется нормализованным. Так, число 15,5 в нормализованном виде (нормализованная мантисса) в форме с плавающей запятой будет выглядеть следующим образом: 0,155 · 102, т. е. нормализованная мантисса будет A = 0,155 и порядок Р = 2, или в компьютерном представлении числа 0.155Е2.
Числа в форме с плавающей запятой имеют фиксированный формат и занимают в памяти компьютера четыре (32 бит) или восемь байт (64 бит). Если число занимает в памяти компьютера 32 разряда, то это число обычной точности, если 64 разряда, то это число двойной точности. При записи числа с плавающей запятой выделяются разряды для хранения знака мантиссы, знака порядка, мантиссы и порядка. Количество разрядов, которое отводится под порядок числа, определяет диапазон изменения чисел, а количество разрядов, отведенных для хранения мантиссы, – точность, с которой задается число.
При выполнении арифметических операций (сложение и вычитание) над числами, представленными в формате с плавающей запятой, реализуется следующий порядок действий (алгоритм) :
1) производится выравнивание порядков чисел, над которыми совершаются арифметические операции (порядок меньшего по модулю числа увеличивается до величины порядка большего по модулю числа, мантисса при этом уменьшается в такое же количество раз);
Вопросы и задания
1. Ознакомьтесь с материалами презентации к параграфу, содержащейся в электронном приложении к учебнику. Используйте эти материалы при подготовке ответов на вопросы и выполнении заданий.
2. Как в памяти компьютера представляются целые положительные и отрицательные числа?
3. Любое целое число можно рассматривать как вещественное, но с нулевой дробной частью. Обоснуйте целесообразность наличия особых способов компьютерного представления целых чисел.
4. Представьте число 6310 в беззнаковом 8-разрядном формате.
5. Найдите десятичные эквиваленты чисел по их прямым кодам, записанным в 8-разрядном формате со знаком:
а) 01001100;
б) 00010101.
6. Какие из чисел 4438, 1010102, 25610 можно сохранить в 8-разрядном формате?
7. Запишите следующие числа в естественной форме:
а) 0,3800456 • 10 2 ;
б) 0,245 • 10 -3 ;
в) 1,256900Е+5;
г) 9,569120Е-3.
8. Запишите число 2010,010210 пятью различными способами в экспоненциальной форме.
9. Запишите следующие числа в экспоненциальной форме с нормализованной мантиссой — правильной дробью, имеющей после запятой цифру, отличную от нуля:
10. Изобразите схему, связывающую основные понятия, рассмотренные в данном параграфе.
Представление вещественных чисел
- 472000000=4,72⋅10 8
- 472000000=47,2⋅10 7
- 472000000=472,0⋅10 6
С экспоненциальной формой записи чисел вы могли встречаться при выполнении вычислений с помощью калькулятора, когда в качестве ответа получали записи следующего вида:4,72E+8.
Здесь знак E обозначает основание десятичной системы счисления и читается как «умножить на десять в степени». Из приведённого выше примера видно, что положение запятой в записи числа может изменяться. Для единообразия мантиссу обычно записывают как правильную дробь, имеющую после запятой цифру, отличную от нуля. В этом случае число 472000000 будет представлено как 0,472⋅10 9 .
Вещественное число может занимать в памяти компьютера 32 или 64 разряда. При этом выделяются разряды для хранения знака мантиссы, знака порядка, порядки и мантиссы. Пример:
Диапазон представления вещественных чисел определяется количеством разрядов, отведённых для хранения порядка числа, а точность определяется количеством разрядов, отведённых для хранения мантиссы.
Максимальное значение порядка числа для приведённого выше примера составляет 11111112=12710 и, следовательно, максимальное значение числа: 0,11111111111111111111111⋅10 1111111 .
Широкий диапазон представления вещественных чисел важен для решения научных и инженерных задач. Вместе с тем следует понимать, что алгоритмы обработки таких чисел более трудоёмки по сравнению с алгоритмами обработки целых чисел.
Вещественные числа в компьютере
Понятие вещественного (действительного) числа в математику ввел Исаак Ньютон в XVIII веке. В математике множество вещественных чисел непрерывно, бесконечно и не ограничено. Оно включает в себя множество целых чисел и еще бесконечное множество нецелых чисел. Между двумя любыми точками на числовой оси лежит бесконечное множество вещественных чисел, что и означает непрерывность множества.
Как мы говорили выше, числа в компьютере (в том числе и вещественные) представлены в двоичной системе счисления. Покажем, что множество вещественных чисел в компьютере дискретно, ограничено и конечно. Нетрудно догадаться, что это, так же как и в случае целых чисел, вытекает из ограничения размера ячейки памяти.
Снова для примера возьмем калькулятор с десятиразрядным индикаторным табло. Экспериментально докажем дискретность представления вещественных чисел. Выполним на калькуляторе деление 1 на 3. Из математики вам известно, что 1/3 — это рациональная дробь, представление которой в виде десятичной дроби содержит бесконечное количество цифр: 0,3333333333. (3 в периоде). На табло калькулятора вы увидите:
Первый разряд зарезервирован под знак числа. После запятой сохраняется 8 цифр, а остальные не вмещаются в разрядную сетку (так это обычно называют). Значит, это не точное значение, равное 1/3, а его «урезанное» значение.
Следующее по величине число, которое помещается в разрядную сетку:
Оно больше предыдущего на 0,00000001. Это шаг числовой последовательности. Следовательно, два рассмотренных числа разделены между собой конечным отрезком. Очевидно, что предыдущее число такое:
Оно тоже отделено от своего «соседа справа» по числовой оси шагом 0,00000001. Отсюда делаем вывод: множество вещественных чисел, представимых в калькуляторе, дискретно, поскольку числа отделены друг от друга конечными отрезками.
А теперь выясним вот что: будет ли шаг в последовательности вещественных чисел на калькуляторе постоянной величиной (как у целых чисел)?
Вычислим выражение 100000/3. Получим:
Это число в 100 000 раз больше предыдущего и, очевидно, тоже приближенное. Легко понять, что следующее вещественное число, которое можно получить на табло калькулятора, будет больше данного на 0,0001. Шаг стал гораздо больше.
Отсюда приходим к выводу: множество вещественных чисел, представимых в калькуляторе, дискретно с переменной величиной шага между соседними числами.
Если отметить на числовой оси точные значения вещественных чисел, которые представимы в калькуляторе, то эти точки будут расположены вдоль оси неравномерно. Ближе к нулю — чаще, дальше от нуля — реже (рис. 1.8).
Рис. 1.8. Условное представление взаимного расположения множества вещественных чисел, представимых в компьютере
Все выводы, которые мы делаем на примере калькулятора, полностью переносятся на компьютер с переходом к двоичной системе счисления и с учетом размера ячейки компьютера, отводимой под вещественные числа. Неравномерное расположение вещественных чисел, представимых в компьютере, также имеет место.
Ответим на вопрос: ограничено ли множество вещественных чисел в памяти компьютера? Если продолжать эксперименты с калькулятором, то ответ на этот вопрос будет таким: да, мнолсест-во вещественных чисел в калькуляторе ограничено. Причиной тому служит все та же ограниченность разрядной сетки. Отсюда же следует и конечность множества.
Самое большое число у разных калькуляторов может оказаться разным. У самого простого это будет то же число, что мы получали раньше: 999999999. Если прибавить к нему единицу, то калькулятор выдаст сообщение об ошибке. А на другом, более «умном» и дорогом, калькуляторе прибавление единицы приведет к такому результату:
Данную запись на табло надо понимать так: 1 • 10 9 .
Такой формат записи числа называется форматом с плавающей запятой, в отличие от всех предыдущих примеров, где рассматривалось представление чисел в формате с фиксированной запятой.
Число, стоящее перед буквой «е», называется мантиссой, а стоящее после — порядком. «Умный» калькулятор перешел к представлению чисел в формате с плавающей запятой после того, как под формат с фиксированной запятой не стало хватать места на табло.
В компьютере то же самое: числа могут представляться как в формате с фиксированной запятой (обычно это целые числа), так и в формате с плавающей запятой.
Но и для формата с плавающей запятой тоже есть максимальное число. В нашем «подопытном» калькуляторе это число:
То есть 99999 • 10 99 . Самое большое по модулю отрицательное значение -99999 • 10 99 . Данные числа являются целыми, но именно они ограничивают представление любых чисел (целых и вещественных) в калькуляторе.
В компьютере всё организовано аналогично, но предельные значения еще больше. Это зависит от разрядности ячейки памяти, выделяемой под число, и от того, сколько разрядов выделяется под порядок и под мантиссу.
Рассмотрим пример: пусть под всё число в компьютере выделяется 8 байтов — 64 бита, из них под порядок — 2 байта, под мантиссу — 6 байтов. Тогда диапазон вещественных чисел, в переводе в десятичную систему счисления, оказывается следующим:
±(5 • 10 -324 — 1,7 • 10 308 ).
Завершая тему, посмотрим на рис. 1.9. Смысл, заложенный в нем, такой: непрерывное, бесконечное и не ограниченное множество вещественных чисел, которое рассматривает математика, при его представлении в компьютере обращается в дискретное, конечное и ограниченное множество.
Рис. 1.9. Представление о множестве вещественных чисел в математике и в информатике
Система основных понятий
Вопросы и задания
- Почему множество целых чисел, представимых в памяти компьютера, дискретно, конечно и ограничено?
- Определите диапазон целых чисел, хранящихся в 1 байте памяти в двух вариантах: со знаком и без знака.
- Получите внутреннее представление числа 157 в 8-разрядной ячейке памяти в формате со знаком.
- Получите внутреннее представление числа -157 в 8-разрядной ячейке памяти в формате со знаком.
- Почему множество действительных (вещественных) чисел, представимых в памяти компьютера, дискретно, конечно и ограничено?
- На какие две части делится число в формате с плавающей запятой?
* Конечно, и «внутри калькулятора» числа представляются в двоичном виде. Однако мы в это вдаваться не будем, рассмотрев лишь внешнее представление. Пример с калькулятором нам нужен был только для иллюстрации проблемы ограниченности.