Лекция 1 Поколения ЭВМучебно-методическое пособие

История развития вычислительной техники

Историю развития вычислительной техники условно делят на 5 поколений.

1-е поколение (1945-1954 гг.) — время становления машин с фон-неймановской архитектурой (Джон фон Нейман), основанной на записывании программы и ее данных в память вычислительной машины. В этот период формируется типовой набор структурных элементов, входящих в состав ЭВМ. Типичная ЭВМ должна состоять из следующих узлов: центральный процессор (ЦП), оперативная память (или оперативное запоминающее устройство — ОЗУ) и устройства ввода-вывода (УВВ). ЦП, в свою очередь, должен состоять из арифметико-логического устройства (АЛУ) и управляющего устройства (УУ). Машины этого поколения работали на ламповой элементной базе, из-за чего поглощали огромное количество энергии и были очень ненадежны. С их помощью, в основном, решались научные задачи. Программы для этих машин уже можно было составлять не на машинном языке, а на языке ассемблера.

2-е поколение (1955-1964 гг.). Смену поколений определило появление новой элементной базы: вместо громоздкой лампы в ЭВМ стали применяться миниатюрные транзисторы, линии задержки как элементы оперативной памяти сменила память на магнитных сердечниках. Это в конечном итоге привело к уменьшению габаритов, повышению надежности и производительности ЭВМ. В архитектуре ЭВМ появились индексные регистры и аппаратные средства для выполнения операций с плавающей точкой. Были разработаны команды для вызова подпрограмм. Появились языки высокого уровня — Algol, FORTRAN, COBOL, — создавшие предпосылки для появления переносимого программного обеспечения, не зависящего от типа ЭВМ. С появлением языков высокого уровня возникли компиляторы для них; библиотеки стандартных подпрограмм и другие хорошо знакомые нам сейчас вещи: Важное новшество — это появление процессоров ввода-вывода. Эти специализированные процессоры позволили освободить ЦП от управления вводом-выводом и осуществлять ввод-вывод с помощью специализированного устройства одновременно с процессом вычислений. Для эффективного управления ресурсами машины стали использоваться операционные системы (ОС).

3-е поколение (1965-1970 гг.). Смена поколений вновь была обусловлена обновлением элементной базы: вместо транзисторов в различных узлах ЭВМ стали использоваться интегральные микросхемы различной степени интеграции. Микросхемы позволили разместить десятки элементов на пластине размером в несколько сантимметров. Это, в свою очередь, не только повысило производительность ЭВМ, но и снизило их габариты и стоимость. Увеличение мощности ЭВМ сделало возможным одновременное выполнение нескольких программ на одной ЭВМ. Для этого нужно было научиться координировать между собой одновременно выполняемые действия, для чего были расширены функции операционной системы. Одновременно с активными разработками в области аппаратных и архитектурных решений растет удельный вес разработок в области технологий программирования. В это время активно разрабатываются теоретические основы методов программирования, компиляции, баз данных, операционных систем и т. д. Создаются пакеты прикладных программ для самых различных областей жизнедеятельности человека. Наблюдается тенденция к созданию семейств ЭВМ, то есть машины становятся совместимы снизу вверх на программно-аппаратном уровне. Примерами таких семейств была серия IBM System 360 и наш отечественный аналог — ЕС ЭВМ.

4-е поколение (1970-1984 гг.). Очередная смена элементной базы привела к смене поколений. В 70-е годы активно ведутся работы по созданию больших и сверхбольших интегральных схем (БИС и СБИС), которые позволили разместить на одном кристалле десятки тысяч элементов. Это повлекло дальнейшее существенное снижение размеров и стоимости ЭВМ. В начале 70-х годов фирмой Intel был выпущен микропроцессор (МП) i4004. И если до этого в мире вычислительной техники были только три направления (суперЭВМ, большие Э.ВМ (мэйнфреймы) и мини-ЭВМ), то теперь к ним прибавилось еще одно — микропроцессорное.

Процессором называется функциональный блок ЭВМ, предназначенный для логической и арифметической обработки информации на основе принципа микропрограммного управления. По аппаратной реализации процессоры можно разделить на микропроцессоры (полностью интегрирующие все функции процессора) и процессоры с малой и средней интеграцией. Конструктивно это выражается в том, что микропроцессоры реализуют все функции процессора на одном кристалле, а процессоры других типов реализуют их путем соединения большого количества микросхем.

5-е поколение можно назвать микропроцессорным. В 1976 году фирма Intel закончила разработку 16-разрядного микропроцессора i8086. Он имел достаточно большую разрядность регистров (16 бит) и системной шины адреса (20 бит), за счет чего мог адресовать до 1 Мбайт оперативной памяти. В 1982 году был создан i80286. Этот микропроцессор представлял собой улучшенный вариант i8086. Он поддерживал уже несколько режимов работы: реальный, когда формирование адреса производилось по правилам i8086, и защищенный, который аппаратно реализовывал многозадачность и управление виртуальной памятью, i80286 имел также большую разрядность шины адреса — 24 разряда против, 20 у i8086, и поэтому он мог адресовать до 16 Мбайт оперативной памяти. Первые компьютеры на базе этого микропроцессора появились в 1984 году. В 1985 году фирма Intel представила первый 32-разрядный микропроцессор i80386, аппаратно совместимый снизу вверх со всеми предыдущими микропроцессорами этой фирмы. Он был гораздо мощнее своих предшественников, имел 32-разрядную архитектуру и мог прямо адресовать до 4 Гбайт оперативной памяти. Микропроцессор i386 стал поддерживать новый режим работы — режим виртуального i8086, который обеспечил не только большую эффективность работу программ, разработанных для i8086, но и позволил осуществлять параллельную работу нескольких таких программ.

По теме: методические разработки, презентации и конспекты

СОЦИАЛЬНЫЙ ПРОЕКТ «Формирование культуры межнациональных отношений и толерантности подрастающего поколения»

Проект создан студентами колледжа и защищен на конкурсе студенческих проектов Саратовской области. По данной программе многие школы города и области работают.

Презентация «Поколения ЭВМ»

Презентация «Поколения ЭВМ» выполнена преподавателем ГБОУ СПО Баймакский сельскохозяйственный техникум Мусиной Ж.М. Работа состоит из 18 слайдов, с анимацией и комментариями в поле «Заметки».

Ознакомление с концептуальными основами ФГОС СПО нового поколения

Ведущим понятием компетентностного подхода впервые становится «образовательный модуль». Таким образом, в педагогике профессионального образования компетентностный подход трансформируется в модул.

Рабочая прорамма 3 поколения ФГОС СПО по дисциплине Архитектура КС

Представляю Рабочую программу учебной дисциплины Архитектура КС, разработанную на основе государственного образовательного стандарта (ФГОС) 3 поколения по специальности среднего профессионального обра.

СТРУКТУРА И КОМПОНЕНТЫ СТАНДАРТА ВТОРОГО ПОКОЛЕНИЯ

ПРЕЗЕНТАЦИЯ К ВЫСТУПЛЕНИЮ.

Виды и формы контроля учебных достижений обучающихся ОУ НПО/СПО, освоивших образовательные программы по дисциплинам гуманитарного цикла в пределах ОПОП НПО/СПО в соответствии с требованиями ФГОС нового поколения.

Виды и формы контроля освоения программ среднего (полного) общего образования в пределах ОПОП НПО/СПО согласно требованиям ФГОС нового поколения представлены в виде таблицы.

Организация производственной практики студентов ОУ СПО в соответствии с ФГОС 3-его поколения

Новый ФГОС СПО отличается особой практической направленностью. Подразумевается, что выпускник колледжа не только должен иметь внушительный багаж теоретических знаний, но и владеть прикладными професси.

Первое поколение. Компьютеры на электронных лампах (194х-1955)

Быстродействие: несколько десятков тысяч операций в секунду.

Особенности:

  • Поскольку лампы имеют существенные размеры и их тысячи, то машины имели огромные размеры.
  • Поскольку ламп много и они имеют свойство перегорать, то часто компьютер простаивал из-за поиска и замены вышедшей из строя лампы.
  • Лампы выделяют большое количество тепла, следовательно, вычислительные машины требуют специальные мощные охладительные системы.

Примеры компьютеров:

Колоссус – секретная разработка британского правительства (в разработке принимал участие Алан Тьюринг). Это первый в мире электронный компьютер, хотя и не оказавший влияние на развитие компьютерной техники (из-за своей секретности), но помог победить во Второй мировой войне.

Эниак. Создатели: Джон Моушли и Дж. Преспер Экерт. Вес машины 30 тонн. Минусы: использование десятичной системы счисления; множество переключателей и кабелей.

Эдсак. Достижение: первая машина с программой в памяти.

Whirlwind I. Слова малой длины, работа в реальном времени.

Компьютер 701 (и последующие модели) фирмы IBM. Первый компьютер, лидирующий на рынке в течение 10 лет.

Компьютеры первого поколения строились на

Вычислительная машина Z3 Конрада Цузе

С началом второй мировой войны правительства разных стран начали разрабатывать вычислительные машины, осознавая их стратегическую роль в ведении войны. Увеличение финансирования в значительной степени стимулировало развитие вычислительной техники. В 1930-е годы германские ученые и инженеры разработали принципы построения электронныех вычислительных машин на основе уже работавших в те времена табуляторов Холлерита и механических арифмометров. В 1938 году была запущена первая в мире электронная вычислительная машина Z1, созданная под руководством немецкого инженера Конрада Цузе, а в следующем, 1941 году — значительно усовершенствованная модель Z2, выполнявшая расчеты, необходимые при проектировании самолетов и баллистических ракет Вернера фон Брауна, а также использовавшаяся для вычисления критической массы ядерной реакции распада смеси урана 238 и 235, обогащением которой занималась германская промышленность в те годы, создавая первфй атомный реактор на уране.

В 1943 году английские инженеры завершили создание вычислительной машины для дешифровки сообщений немецкой армии, названной «Колосс». Однако эти устройства не были универсальными вычислительными машинами, они предназначались для решения конкретных задач.
В 1944 году, получив данные о немецких разработках через разведку, американский инженер Говард Эйкен при поддержке фирмы IBM сконструировал компьютер для выполнения баллистических расчетов. Этот компьютер, названный «Марк I», по площади занимал примерно половину футбольного поля и включал более 600 километров кабеля. В компьютере «Марк I» использовался принцип электромеханического реле, заключающийся в том, что электромагнитные сигналы перемещали механические части. «Марк I» был довольно медленной машиной: для того чтобы произвести одно вычисление требовалось 3-5 с. Однако, несмотря на огромные размеры и медлительность. «Марк I» управлялся с помощью программы, которая вводилась с перфоленты. Это дало возможность, меняя вводимую программу, решать довольно широкий класс математических задач.
В 1946 году американские ученые Джон Мокли и Дж. Преспер Эккерт сконструировали электронный вычислительный интегратор и калькулятор (ЭНИАК) — компьютер, в котором электромеханические реле были заменены на электронные вакуумные лампы. Применение вакуумных ламп позволило увеличить скорость работы ЭНИАК в 1000 раз по сравнению с «Марк I». ЭНИАК состоял из 18000 вакуумных ламп, 70000 резисторов, 5 миллионов соединительных спаек и потреблял 160 кВт электрической энергии, что по тем временам было достаточно для освещения большого города. ЭНИАК использовался для расчета баллистических таблиц, расчетов в области атомной энергетики (то есть повторением того, что делали немцы), аэродинамики.
Ранние вычислительные машины могли выполнять только команды, поступающие извне, причем команды выполнялись поочередно. Хотя использование перфокарт позволяло упростить процесс ввода команд, тем не менее, часто процесс настройки вычислительной машины и ввода команд занимал больше времени, чем собственно решение поставленной задачи. Сегодня среди несведущей толпы распространяется миф о том, что американец еврейского происхождения Янош Нейман (называющий себя «Фон Нейман») предложил включить в состав компьютера для хранения последовательности команд и данных специальное устройство — память. Это опровергается реальной историей, которая свидетельствует о том, что принципы последовательной обработки данных и их хранения в «памяти» вычислительной машины бвли разработаны и внедрены германскими специалистами в 1930-х — 1940 году. Первая статья Джона фон Неймана, посвященная способам организации вычислительного процесса, была опубликована в 1946 году, пять лет спустя запуска германской ЭВМ Z2. В действительности архитектура ЭВМ постоянно изменялась и дополнялась, но исходные принципы управления работой компьютера с помощью хранящихся в памяти программ, впервые разработанные и внедренные германскими инженерами, остались нетронутыми, Подавляющее большинство современных компьютеров построено именно по такой последовательной архитектуре. В 1945 году в рамках спецоперации спецслужб США были захвачены и вывезены в США сотни специалистов в области физики, химического производства, вычислительных машин, которыми были укреплены американские НИИ, КБ и производства, в том числе и фирма IBM, являвшаяся главным производителем механической вычислительной техники в США еще до начала XX века.

Первое поколение ЭВМ

В 1951 году был создан первый компьютер, предназначенный для коммерческого использования, — УНИАК (универсальный автоматический компьютер). В 1952 году с помощью УНИАК был предсказан результат выборов президента США.
Работы по созданию вычислительных машин велись и в СССР. Так, в 1950 году в Институте электроники Академии наук Украины под руководством академика Сергея Алексеевича Лебедева была разработана и введена в эксплуатацию МЭСМ (малая электронная счетная машина). МЭСМ стала первой отечественной универсальной ламповой вычислительной машиной в СССР. В 1952-1953 годах МЭСМ оставалась самой быстродействующей (50 операций в секунду) вычислительной машиной в Европе. Принципы построения МЭСМ были разработаны С. А. Лебедевым независимо от аналогичных работ на Западе.
В компьютерах первого поколения использовался машинный язык — способ записи программ, допускающий их непосредственное исполнение на компьютере. Программа на машинном языке представляет собой последовательность машинных команд, допустимых для данного компьютера. Процессор непосредственно воспринимает и выполняет команды, выраженные в виде двоичных кодов. Для каждого компьютера существовал свой собственный машинный язык. Это также ограничивало область применения компьютеров первого поколения.
Появление первого поколения компьютеров стало возможно благодаря трем техническим новшествам: электронным вакуумным лампам, цифровому кодированию информации и созданию устройств памяти на электростатических трубках. Компьютеры первого поколения имели невысокую производительность: до нескольких тысяч операций в секунду. В компьютерах первого поколения использовалась архитектура фон Неймана. Средства программирования и программного обеспечение еще не были развиты, использовался низкоуровневый машинный язык. Область применения компьютеров была ограничена.

Логические схемы создавались на дискретных радиодеталях и электронных вакуумных лампах с нитью накала. В оперативных запоминающих устройствах использовались магнитные барабаны, акустические ультразвуковые ртутные и электромагнитные линии задержки, электронно-лучевые трубки (ЭЛТ). В качестве внешних запоминающих устройств применялись накопители на магнитных лентах, перфокартах, перфолентах и штекерные коммутаторы.

Программирование работы ЭВМ этого поколения выполнялось в двоичной системе счисления на машинном языке, то есть программы были жестко ориентированы на конкретную модель машины и «умирали» вместе с этими моделями.

В середине 1950-х годов появились машинно-ориентированные языки типа языков символического кодирования (ЯСК), позволявшие вместо двоичной записи команд и адресов использовать их сокращенную словесную (буквенную) запись и десятичные числа. В 1956 году был создан первый язык программирования высокого уровня для математических задач — язык Фортран, а в 1958 году — универсальный язык программирования Алгол.

ЭВМ, начиная от UNIVAC и заканчивая БЭСМ-2 и первыми моделями ЭВМ «Минск» и «Урал», относятся к первому поколению вычислительных машин.

ЭВМ второго поколения – существенные отличия

В 1948 году физиками-теоретиками Джоном Бардиным и Уильямом Шокли, вместе с ведущим экспериментатором фирмы «Белл телефон лабораториз» Уолтером Браттейном, был создан первый действующий транзистор. Это был прибор точечно-контактного типа, в котором три металлических «усика» имели контакт с бруском из поликристаллического материала. Таким образом, поколения ЭВМ начали совершенствоваться уже в то далекое время.

Первые виды компьютеров, которые работали на основе транзисторов, отмечают свое появление в конце 1950 годов, а к середине 1960 годов были создано внешние типы устройств с более компактными функциями.

Направления развития компьютеров

Нейрокомпьютеры можно отнести к шестому поколению ЭВМ. Несмотря на то, что реальное применение нейросетей началось относительно недавно, нейрокомпьютингу как научному направлению пошел седьмой десяток лет, а первый нейрокомпьютер был построен в 1958 году. Разработчиком машины был Фрэнк Розенблатт, который подарил своему детищу имя Mark I.

Теория нейронных сетей впервые была обозначена в работе МакКаллока и Питтса в 1943 г.: любую арифметическую или логическую функцию можно реализовать с помощью простой нейронной сети. Интерес к нейрокомпьютингу снова вспыхнул в начале 80-х годов и был подогрет новыми работами с многослойным перцептроном и параллельными вычислениями.

Нейрокомпьютеры — это ПК, состоящих из множества работающих параллельно простых вычислительных элементов, которые называют нейронами. Нейроны образуют так называемые нейросети. Высокое быстродействие нейрокомпьютеров достигается именно за счет огромного количества нейронов. Нейрокомпьютеры построены по биологическим принципу: нервная система человека состоит из отдельных клеток — нейронов, количество которых в мозгу достигает 10 12 , при том, что время срабатывания нейрона — 3 мс. Каждый нейрон выполняет достаточно простые функции, но так как он связан в среднем с 1 — 10 тыс. других нейронов, такой коллектив успешно обеспечивает работу человеческого мозга.

Представитель VI-го поколения ЭВМ — Mark I

В оптоэлектронных компьютерах носителем информации является световой поток. Электрические сигналы преобразуются в оптические и обратно. Оптическое излучение в качестве носителя информации имеет ряд потенциальных преимуществ по сравнению с электрическими сигналами:

  • Световые потоки, в отличие от электрических, могут пересекаться друг с другом;
  • Световые потоки могут быть локализованы в поперечном направлении нанометровых размеров и передаваться по свободному пространству;
  • Взаимодействие световых потоков с нелинейными средами распределено по всей среде, что дает новые степени свободы в организации связи и создания параллельных архитектур.

В настоящее время ведутся разработки по созданию компьютеров полностью состящих из оптических устройств обработки информации. Сегодня это направление является наиболее интересным.

Оптический компьютер имеет невиданную производительность и совсем другую, чем электронный компьютер, архитектуру: за 1 такт продолжительностью менее 1 наносекунды (это соответствует тактовой частоте более 1000 МГц) в оптическом компьютере возможна обработка массива данных около 1 мегабайта и больше. К настоящему времени уже созданы и оптимизированы отдельные составляющие оптических компьютеров.

Оптический компьютер размером с ноутбук может дать пользователю возможность разместить в нем едва ли не всю информацию о мире, при этом компьютер сможет решать задачи любой сложности.

Биологические компьютеры — это обычные ПК, только основанные на ДНК-вычислений. Реально показательных работ в этой области так мало, что говорить о существенных результатах не приходится.

Молекулярные компьютеры — это ПК, принцип действия которых основан на использовании изменении свойств молекул в процессе фотосинтеза. В процессе фотосинтеза молекула принимает различные состояния, так что ученым остается только присвоить определенные логические значения каждом состояния, то есть «0» или «1». Используя определенные молекулы, ученые определили, что их фотоцикл состоит всего из двух состояний, «переключать» которые можно изменяя кислотно-щелочной баланс среды. Последнее очень легко сделать с помощью электрического сигнала. Современные технологии уже позволяют создавать целые цепочки молекул, организованные подобным образом. Таким образом, очень даже возможно, что и молекулярные компьютеры ждут нас «не за горами».

История развития компьютеров еще не закончена, помимо совершенствования старых, идет и разработка совершенно новых технологий. Пример тому квантовые компьютеры — устройства, работающие на основе квантовой механики. Полномасштабный квантовый компьютер — гипотетическое устройство , возможность построения которого связана с серьезным развитием квантовой теории в области многих частиц и сложных экспериментов; эта работа лежит на передовом крае современной физики. Экспериментальные квантовые компьютеры уже существуют; элементы квантовых компьютеров могут применяться для повышения эффективности вычислений на уже существующей приборной базе.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector