Квантовый компьютер и его основная суть

Три новых правила игры

Квантовая механика — это такой же набор законов природы только для мира очень маленьких частиц — электронов, протонов, фотонов, альтронов. хотя нет, это из Мстителей.

Короче, всех тех штук, из которых мы все состоим.

В начале прошлого века мы внезапно обнаружили, что между ними происходит полная дичь, необъяснимая имевшимися у нас законами физики. Мы нафигачили загадок и парадоксов, о которых все обожают спорить.

Но мы здесь сегодня не для этого.

Пока газеты тешили публику кликбейтными парадоксами, ученые за сотню лет изобрели себе набор законов, которые позволили все эти непотребства вполне логично считать на уровне простых вероятностей.

К сожалению, эти два мира так пока и не дружат, потому как всё это правильно объяснять простым людям никто не придумал. Каждый изобретает свой подход как ввести человека в новые правила игрового мира и выдержать тонкий баланс между «ученые засмеют» и «читатели ничего не поймут».

Здесь все либо впадают в упрощения с котами, которые «как будто одновременно и там и сям», либо в научную заумь с матрицами прямо на лицо.

Сегодня я попробую свой путь, которым я объясняю это своим интересующимся друзьям. ? Как обычно, ничего «моего» во всём этом нет — это лишь компиляция того, как умные люди объясняли тему мне самому. Но я же не могу вот взять и признаться в этом на публике!

Итак, заходя в новый мир, нам надо принять ТРИ самых важных правила этой игры. Тогда остальное будет выводиться как бы автоматически.

Начнём с первого.

Чем отличается работа квантового компьютера от обычного

Работа квантового компьютера от обычного отличается в разы большей скоростью обработки данных. Понять это проще на простом примере. Допустим, нам нужно рассадить 3 человека за 2 столика в ресторане. Вариантов решения этой задачи всего 8 (2³). Эту задачу любой суперкомпьютер решит мгновенно.

Но, если задачу усложнить и предложить машине рассадить 100 человек в два банкетных зала, то вариантов ее решения становится огромное множество. Эта цифра будет выглядеть, как 2 в сотой степени. Это число, состоящее из 30 символов. Самому мощному суперкомпьютеру на обработку всех этих вариантов понадобится приблизительно 4,6х10³⁵ лет. Это неимоверно много. По сути, срок решения задачи сводится к бесконечности.

Получается, что задача вроде бы простая, рассадить 100 человек в два зала. Но вариантов ее решения существует такое множество, что решить ее с помощью привычных устройств невозможно. Квантовый супермощный компьютер способен решить эту задачу за секунды. В этом и есть его основное отличие от обычного.

Суть квантового компьютера конечно же состоит не в том, чтобы подобрать наиболее совместимую компанию для вечеринки. Задачи, которые ставятся перед этим устройством гораздо сложнее.

Что такое кубиты для квантовых компьютеров

Итак, если бит — это одна из двух условных точек (1 или 0), то кубит можно представить себе в виде сферы с полюсами в этих же точках — 1 и 0. Кубит также может принимать значение 1 или 0. Но кроме них он может находиться в состоянии суперпозиции, то есть иметь любое из возможных значений, лежащих на поверхности сферы. И все это — одновременно.

Но что именно расположено на поверхности сферы? Может быть, кубит имеет переменное (плавающее) значение? В некотором смысле это так, но трудность в том, что невозможно узнать это значение для конкретного момента времени, как это делается для обычных переменных. Если выразиться максимально простым языком, кубит похож на магический шар. Если этому шару задать вопрос, то ответом может быть единица или ноль. Но выпадут они с разной вероятностью. Именно вероятности выпадения значений «хранятся» в суперпозиции.

Рука об руку с принципом суперпозиции работает эффект квантовой зацепленности. Две взаимосвязанные квантовые частицы синхронно изменяют свое состояние, даже если между ними миллионы световых лет. Зацепленность дает возможность собирать кубиты в «наборы». Если в наборе из двух бит можно хранить одну определенную последовательность из двух значений (нулей или единиц), то набор из двух кубитов содержит суперпозицию всех возможных вариантов последовательностей из двух этих значений. А это намного больший объем информации.

Ионы и атомы

Но и у сверхпроводящей технологии есть проблемы, которых нет в системах на ионах и нейтральных атомах. Ионы и атомы – естественная реализация квантовой системы, так как они фундаментально все одинаковы, а сверхпроводники – искусственные структуры, поскольку они делаются литографией, и все они разные. Помимо того, что нужно корректировать ошибки, с каждым кубитом надо «разговаривать» на его частоте. К тому же все сделано на твердотельной электронике, которая имеет прямой контакт с окружающей средой, и процессы разрушения квантовости там сильные.

В системах на ионах все очень классно, пока их немного. У них потрясающее качество логических операций, так как заряженные частицы прекрасно взаимодействуют между собой. Но есть проблемы в том, чтобы сделать сотни ионных кубитов. Ионы ловятся электрическими полями. «Не проблема сделать цепочку из ста ионов, – говорит руководитель научной группы по созданию квантового компьютера на холодных ионах Российского квантового центра Кирилл Лахманский. – Но увеличить больше сотни очень трудно. Проблемы начинаются, когда нужно расположить цепочки рядом, поставить две ловушки очень близко друг к другу. Масштабирование – главная проблема при работе с ионами».

Изолированные ионы и нейтральные атомы висят почти в абсолютном вакууме. В квантовых компьютерах на базе холодных атомов используются сфокусированные лазерные лучи, которые могут в области максимальной интенсивности удерживать атомы. Используя лазерные световые ловушки, можно делать решетку из сотен узлов и в каждый поместить одиночный нейтральный атом, который играет роль физического кубита. Увеличение числа кубитов не требует принципиального изменения установки. «Сложности начинаются с логическими операциями, – говорит Станислав Страупе. – Чтобы квантовое состояние распадалось медленнее, чем выполнялся алгоритм, надо научиться делать стабильные кубиты и совершать быстрые операции. С этим проблема во всех технологиях».

Квантовый компьютер внутри

Говоря о самом устройстве, если мы привыкли к полупроводникам и кремнию в обычных процессорах, то в случае квантовых компьютеров люди все еще ищут, какие именно квантовые объекты лучше всего использовать для того, чтобы они выступили кубитами. Сейчас вариантов очень много — это могут быть и электроны со своим спином или, например, фотоны и их поляризация. Вариантов множество.

И это далеко не единственная сложность, с которой столкнулись ученые! Дело в том, что квантовые кубиты довольно нестабильны и их надо держать в холодном месте, чтобы можно было контролировать.

И если вы думаете, что для этого будет достаточно водяного охлаждения вашего системника, отчасти вы правы, только если залить туда жидкий Гелий, температура которого ниже минус двухсот семидесяти градусов Цельсия! А для его получения используются вот такие вот здоровые бочки.

Фактически, квантовые компьютеры — это одни из самых холодных мест во вселенной!

1998

Исследователям из Массачусетского технологического института удалось впервые распределить один кубит между тремя ядерными спинами в каждой молекуле жидкого аланина или молекулы трихлороэтилена. Такое распределение позволило использовать «запутанность» для неразрушающего анализа квантовой информации.

В марте ученые из Национальной лаборатории в Лос Аламосе объявили о создании 7-кубитного квантового компьютера в одной единственной капле жидкости.

Для чего нужен квантовый компьютер

Быстрая обработка больших массивов данных при использовании новых технологий может помочь решить множество задач и затронет самые разные области. Например, КК всего за несколько секунд справится с разложением чисел, состоящих из большого количества знаков, на простые множители (сам по себе процесс не сложен, но требует больших временных затрат, на этом и базируется современная криптография), а также решит ряд похожих задач. Кроме того, технологии подойдут и для моделирования сложных ситуаций, в том числе расчёта физических свойств элементов на молекулярном уровне.

Основные сферы применения квантовых компьютеров:

На данном этапе квантовые компьютеры отличаются сложностью производства и нестабильностью работы, поэтому пока удаётся только разрабатывать высокопроизводительные системы, заточенные под единственный алгоритм и рассчитанные на очень узкий круг задач.

Что же такое квантовый компьютер?

Это компьютер, использующий вместо классических битов (бинарных переменных, единичек и нулей) кубиты — состояния квантовой системы с двумя уровнями. В отличие от битов, кубиты могут находиться в состоянии 0, 1 и в суперпозиции 0 и 1.

— Помните мысленный эксперимент с котом Шредингера? Пока мы не откроем коробку, кот в ней и «жив», и «мертв» одновременно. Состояние кота в коробке и называется суперпозицией.

Суперпозиция позволяет квантовым компьютерам делать параллельные, а не последовательные вычисления, что на порядок ускоряет работу в определенных алгоритмах. И чем больше в нашем процессоре связанных кубитов, тем больше информационное преимущество квантового компьютера над классическим, тем он потенциально мощнее и быстрее.

— В отличие от классических компьютерных битов и транзисторов, кубиты для своего физического воплощения требуют, как правило, отдельных квантовых систем с дискретными энергетическими уровнями и единичных квантов возбуждений.

Кубиты можно реализовать, например, с охлажденными атомами в ловушках, дефектами в нанокристаллах алмаза или сверхпроводящими контурами. Последние на современном этапе считаются самыми перспективными для построения квантовых компьютеров, поскольку сверхпроводящий контур-кубит, по сути, — объект почти макроскопический, размером в микрометры, доступный для манипуляций и массового изготовления.

Сверхпроводящие кубиты можно создавать на основе существующих методов литографии и помещать на чипы, не боясь, что они куда-нибудь сбегут как атомы. Так, в 2015 году Министерство образования и науки РФ сообщало о создании кубитов из четырех джозефсоновских контактов на «петле» размером в один микрон: «Контакты состоят из алюминиевых полосок, разделенных слоем диэлектрика (оксида алюминия) толщиной около 2 нанометров». Для печати кубита использовалась технология электронной и фотолитографии. Процесс этот весьма увлекательный и подробно расписан создателями в их блоге.

Другие гиды и курсы ПостНауки

Альма-матер

Настоящее, прошлое и будущее университетов

Введение в теоретическую фольклористику

11 лекций фольклориста Сергея Неклюдова о принципах изучения устных текстов и традиций

История древней Мезоамерики

10 лекций историка Дмитрия Беляева о становлении мезоамериканской цивилизации, ее культуре и политической жизни

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector