Квантовые компьютеры в России и мире: как развивается технология

Квантовые технологии. Модуль 4

• как и из чего создают составные элементы квантовых компьютеров — кубиты;
• какие преимущества и недостатки есть у разных типов квантовых систем;
• как устроены и как создают самый распространенный тип кубитов — сверхпроводящие кубиты на базе контактов Джозефсона;
• о конкретных попытках создания квантовых вычислительных устройств;
• о путях преодоления ошибок в квантовых устройствах.

Элементы квантовых компьютеров — кубиты — могут представлять собой самые разные объекты: холодные атомы, фотоны, дефекты в кристаллической решетке, но самым популярным и перспективным типом кубита сегодня считаются сверхпроводящие кубиты на базе контактов Джозефсона. Именно на базе кубитов такого типа сегодня чаще всего разрабатывают квантовые вычислительные устройства. Их использует для своих симуляторов компания D-Wave, на них основаны процессоры IBM и Intel.

Однако пока существующие квантовые вычислители — либо симуляторы, способные решать только одну задачу, либо экспериментальные компьютеры с небольшим количеством кубитов. Ни те, ни другие еще не способны показать результаты, однозначно свидетельствующие о том, что удалось достичь квантового превосходства, — рубежа, где квантовые компьютеры покажут, что им под силу задачи, которые либо вовсе недоступны для обычных компьютеров, либо требуют значительно больших ресурсов. Главное препятствие — декогеренция, потеря кубитами квантового состояния, и неизбежные вследствие этого ошибки.

Компактные решения

В январе 2019 года IBM объявила о выпуске Quantrum System One, первой в мире модели квантового компьютера для бизнеса. Устройство помещено в гладкий стеклянный корпус объемом 9 кубических футов.

Q System One

Осенью 2020 года IBM представила дорожную карту развития своих квантовых компьютеров. Компания собирается в 2023 году создать квантовый компьютер с 1121-кубитовым процессором. Долгосрочная цель — построить квантовую систему на миллион кубитов. Компания считает, что появление систем с 1000 кубитами снимет ограничения для коммерческого использования квантовых систем.

Дорожная карта

В 2021 году IBM запустила первый Q System One за пределами США, в Германии. Это самый мощный коммерческий квантовый компьютер в Европе, который имеет процессор в 27 кубитов. Систему будет использовать научно-исследовательский институт Фраунгофера.

Что такое квантовое преимущество?

Квантовые компьютеры в будущем действительно могут заменить собой обычные, но на данный момент они далеки от совершенства. Однако, даже имея при себе всего лишь несколько кубитов, некоторые задачи они решают в тысячи раз быстрее даже самых мощных компьютеров. Такие достижения называются квантовым преимуществом и в 2019 году таким успехом поделилась компания Google. Разработанный ею квантовый компьютер Sycamore решила одну сложную задачу за 3 минуты. А для суперкомпьютера Summit для этого потребовалось бы более 10 000 лет. Но скептики отметили, что при правильной настройке компьютер Summit справился с задачей за несколько дней. Так что факт достижения квантового превосходства компанией Google до сих пор подвергается сомнению.

В Китае создан квантовый компьютер, который решил самую сложную задачу за 200 секунд (4 фото)

Квантовый компьютер Sycamore

Интересный факт: изначально упомянутый выше термин звучал как «квантовое превосходство». Но потом это словосочетание сочли неполиткорректным и заменили на «квантовое преимущество».

Как инженер стал теоретиком

Вас, наверно, называли вундеркиндом. Ведь вы в 15 лет поступили в Бауманку. Кстати, как студент инженерного вуза вдруг оказался в сугубо теоретической квантовой физике?

Алексей Федоров: В школе толком не знал, чем хочу заниматься. У меня инженерная семья. Инженерами были прадедушка, дедушка, мама, брат учился в Бауманке. У меня сложился образ русского инженера-созидателя, которым быть очень почетно. Под этим влиянием и поступил в этот вуз. Но когда начал учиться, понял, мне не хватает физики, пошел на эту кафедру, познакомился с новыми преподавателями, ходил на различные научные семинары. Узнав, что создается Российский квантовый центр, написал туда письмо, что хочу у вас поработать. Руководитель научной группы РКЦ Александр Львовский ответил, что в центре нужны физики, а я инженер. Другой профиль. Тогда я попросил, скажите, что почитать, что выучить, я все сделаю. Если надо, возьму академический отпуск. Саша мне посоветовал литературу, я читал, мы с ним переписывались, потом встречались, говорили про физику. Моя настойчивость и упорство, наверно, произвели положительное впечатление. И он написал мне письмо-приглашение в квантовый центр Калгари, где тогда был профессором. Сейчас он профессор Оксфордского университета. Дорогу мне оплатил мой университет, а зарплату платил Саша. Там я проходил стажировку. А когда она закончилась, он поручил мне создать аналогичную лабораторию в России.

Но ведь вам было всего 18 лет. И откуда время? Ведь продолжали учиться в таком сложном вузе.

Алексей Федоров: Все делалось под руководством Львовского, который возглавил научную лабораторию в РКЦ, а я по его поручениям вел многие организационные вопросы. Закупал оборудование, занимался даже строительными вопросами, а параллельно — учебой и научной работой, планированием будущих экспериментов. А время? Был более энергичным, чем даже подозревал. С третьего по пятый курсы вообще не было ни минуты свободного времени. Работал днями и ночами. Вот так и получилось, что создали лабораторию за полгода, пошли эксперименты.

Потом работали в США, Франции, Китае, Швейцарии. Предлагали остаться? Ведь был шанс поработать на самом передовом крае, где квантовый компьютер из теории уже становится реальностью? А здесь пока далекая перспектива.

Алексей Федоров: Шанс, конечно, был, но в какой-то момент я твердо решил работать в России. По двум соображениям. Первое — сугубо практическое. За границей уже все налажено, структуры созданы, научную карьеру в моем возрасте там придется начинать с нижней ступеньки. И первое время реализовывать идеи научного руководителя. В России ситуация иная. У нас все только начиналось, можно выиграть грант и создать собственную группу. Кстати, в Китае мне предложили нечто похожее, но сама система, конечно, совершенно другая.

Кроме практического было и, так сказать, романтическое соображение. Я читал статьи российских ученых, которые сделали себе имя за границей и решили вернутся на родину. Среди них был Артем Оганов. Он оставлял постоянную позицию профессора в американском университете, чтобы создать лабораторию в России. Его пример на меня как-то особенно подействовал и вдохновил.

Слушая ваши лекции о сложнейших для подавляющего большинства темах, думаешь, этот человек живет в каком-то особенном мире. Чем занимаетесь в «нормальной» жизни?

Алексей Федоров: Например, играю в футбол. Вообще у меня достаточно широкий круг общения. Причем далеко не все ученые. Кто-то работает в бизнесе, кто-то на предприятиях, кто-то создает стартапы. Люблю путешествовать, открывать новые места. Читаю книги, по большей части биографические. С удовольствием смотрю сериалы. Рекомендую сериал «Теория большого взрыва», помогает сформировать представление о работе ученых и современном научном мире.

Нейронаука

Нейроморфные компьютеры, лечение зависимости микрочипами и нейромодуляция эмоций

Пока появление квантовых компьютеров остается отдаленной перспективой, ученые тратят много сил на усовершенствование «обычных» компьютеров. Эксперты предсказывают, что в следующее десятилетие мы увидим бум новых компьютерных архитектур, и одним из наиболее многообещающих направлений считаются нейроморфные компьютеры .

Разработчики вдохновляются устройством человеческого мозга и используют для их создания системы глубинного обучения. Нейроморфные системы будут лучше анализировать неструктурированную информацию, что сможет приблизить человечество к созданию сильного ИИ (AGI) — то есть ИИ, способного мыслить и осознавать себя (именно таким ИИ любят воображать научные фантасты).

В этой сфере особо выделяются китайские ученые из Университета Цинхуа (альма-матер генсека Си Цзиньпина): они первыми представили модель «нейроморфной завершенности» (то есть рабочую модель нейроморфного компьютера) в нескольких статьях для журнала Nature. Они также создали работающий по принципу биологических нейронных сетей чип Tianjic, который уже сейчас можно встраивать в автономные велосипеды.

Но еще интереснее китайские разработки в сфере исследований человеческого мозга. Запад наслышан о нейроимплантах (мозговых компьютерах) компании Neuralink Илона Маска. Но пока Маск экспериментирует на свиньях и обезьянах, в Китае не первый год проходят испытания по взаимодействию нейроимплантов с мозгами реальных людей.

В начале 2000-х годов китайские ученые проводили эксперименты на наркозависимых крысах и макаках-резусах — операции на мозгах этих животных приводили к заметному уменьшению зависимости.

В 2004 году китайские нейрохирурги провели не меньше 1000 операций на мозгах страдающих опиоидной зависимостью людей. В целом эксперимент считался успешным, так как привел к уменьшению рецидивов у прооперированных наркозависимых, и только у некоторых из них выявили ощутимые побочные эффекты.

А уже в 2010-х китайские ученые от простых операций перешли к техникам нейромодуляции — усилению или подавлению мозговой активности с помощью вживленных в мозг устройств. В 2019-м мир узнал историю Яна — 33-летнего мужчины с зависимостью от метамфетамина. В нейроклинику его привел отец, поставивший ультиматум: или опять на реабилитацию, или к нейрохирургам. Ян выбрал нейрохирургов и глубокую стимуляцию мозга — ему просверлили череп в двух местах, вживили в мозг электроды и вшили в грудную клетку батарейный блок питания для мозговых электродов.

Теперь доктор может управлять активностью вживленных в мозг Яна электродов с помощью приложения на планшете. «Эта машина — чистая магия», — говорит Ян. — «Доктор велит ей сделать тебя счастливым, и ты чувствуешь счастье, или сделать тебя нервным — и ты нервничаешь. Она контролирует твое счастье, злость, скорбь и радость».

Аналогичную операцию в ближайшем будущем будет делать и Neuralink, разве что батарейный блок в грудь вшивать не станут. Нейроимпланты, пожалуй, самая прорывная потребительская технология ближайшего будущего. И пока Маск дойдет до потребителя, благодаря поддержке правительства китайские ученые могут серьезно вырваться вперед.

Глава пятая

Последствия для национальной безопасности

Каждое направление квантовой технологии потенциально имеет серьезные последствия для национальной безопасности (а также для частного сектора), хотя временные рамки для этих последствий различаются.

Большинство приложений квантового зондирования, связанных с национальной безопасностью – ISR (системы наблюдения и разведки) и PNT. Квантовый радар, в принципе, может быть особенно эффективным против самолетов-невидимок. Однако до реализации этой возможности, вероятно, еще много лет, и, возможно, она никогда не будет реализована. Совет по оборонной науке пришел к выводу: «Квантовый радар не предоставит усовершенствованных возможностей МО».

В ближайшем будущем технология визуализации фантомных изображений может улучшить ISR воздушного базирования за счет преодоления облачности и дыма. Чувствительные атомные часы могут улучшить позиционирование на основе GPS, а магнитометры и гравитометры могут позволить осуществлять навигацию в условиях, где отсутствует GPS, через поля Земли. Акселерометры могут улучшить инерциальные навигационные системы, в том числе и в управляемых ракетах. Военно-воздушные силы пришли к выводу, что при устойчивом развитии эти технологии могут стать зрелыми в ближайшие несколько лет.

В ближайшем будущем технология квантовой связи может использовать QKD для защиты конфиденциальных зашифрованных сообщений (военных, правительственных или коммерческих) от враждебного перехвата. На этом приложении сосредоточено внимание китайского правительства. С другой стороны, американские исследователи не уделяют внимания QKD. Более того, ВВС пришли к выводу, что QKD вряд ли обеспечит значительное преимущество перед существующими возможностями, а Совет по оборонным наукам обнаружил, что «QKD был реализован с недостаточными для использования в миссии Министерства обороны США возможностями и безопасностью».

Коммуникационный штаб правительства Соединенного Королевства также выступил против принятия правительством или военными QKD. Агентство национальной безопасности США согласно с этой оценкой и публично заявило, что «не поддерживает использование QKD. . . для защиты коммуникаций в системах национальной безопасности». Это связано с тем, что QKD привносит новую сложность (и, следовательно, потенциальные уязвимости) в коммуникационную цепочку. Квантовая информация останется уязвимой для использования других слабых звеньев (например, программные уязвимости на конечных точках). Тот факт, что Китай, Европа и Япония быстро продвигаются к развертыванию QKD, в то время как оборонные сообщества США и Соединенного Королевства публично противодействуют его развертыванию, указывает на две разные точки зрения этих групп стран относительно полезности QKD.

Теоретически квантовые вычисления могут в итоге оказать самое серьезное влияние на национальную безопасность. Крупномасштабный квантовый компьютер, способный развернуть алгоритм Шора на текущем коммерческом шифровании (таком как 2048-битный RSA), окажет разрушительное влияние практически на всю безопасность в Интернете. Без надежного шифрования приватное общение онлайн станет невозможным, что сделало бы невозможными онлайн-торговлю и другие финансовые транзакции (без средств безопасной передачи платежной информации), а также сделало бы электронную почту бесполезной для конфиденциальной связи.

Но квантовые компьютеры, способные выполнять алгоритм Шора, почти наверняка появятся более чем через десять. Более того, правительство США уже разрабатывает ответ на угрозу, исходящую от квантовых компьютеров. В частности, Национальный институт стандартов и технологий разрабатывает новые алгоритмы шифрования, которые считаются безопасными от атак со стороны будущих квантовых компьютеров.

Хотя переход на новые алгоритмы будет разрушительным, маловероятно, что разработка крупномасштабных квантовых компьютеров навсегда разрушит возможность криптографии с открытым ключом.

В ближайшем будущем компьютеры NISQ меньшего размера не окажут очевидного прямого воздействия на национальную безопасность. Задачи, актуальные для военных и разведывательного сообщества (например, оптимизация целей и машинное обучение), вероятно, слишком сложны для компьютеров NISQ. Любое воздействие на национальную безопасность, скорее всего, будет только косвенным и приведет к общим экономическим выгодам от улучшенных (общедоступных) научных и биомедицинских знаний.

Последствия для человечества

Значит ли это, что в скором времени мы сможем получать товары и продукты прямо на дому, из квантовых принтеров? Значит ли это, что открывается возможность создания органических и неорганических предметов «из ничего»? Значит ли это, что появится возможность перемещать живые существа — в том числе человека — мгновенно в пространстве? Во времени?

После вчерашнего неожиданного прорыва, который, по всей вероятности, ускорит создание квантовых сетей, над этими вопросами уже невозможно не задумываться. Квантовая сеть, объединившая возможности нескольких квантовых устройств, даже в нынешнем ограниченном состоянии меняет правила игры в технологии, производстве и коммуникации.

История создания квантового компьютера

У истоков самой идеи квантового программирования стоит человек, известный каждому, кто хоть немного интересуется физикой. Знаменитый американский ученый и популяризатор науки Ричард Фейнман, лауреат Нобелевской премии по физике, предположил возможность существования квантового компьютера еще в 1981 году. Произошло это на совместной конференции, которую организовали корпорация IBM и MIT (Массачусетский технологический институт). В то время никто еще не задумывался всерьез о реализации этой идеи на практике. Даже в теории она казалась весьма непростой. Квантовая механика, в отличие от классической, которую все мы изучали в школе, описывает явления не на уровне тел, а на уровне атомов, электронов, фотонов и прочих элементарных частиц. И квантовые эффекты, которые предполагалось использовать, создавая первый квантовый компьютер, проявляются в микроскопических масштабах.

Переместиться на микроуровень в поисках новых возможностей ученых заставили физические основы, на которых базируется традиционная вычислительная техника. Схема ее работы основана на транзисторах, в каждом современном компьютере их миллионы или даже миллиарды. Каждый из них может в определенный момент времени находиться в «открытом» или «закрытом» состоянии — как электрический переключатель. Эти два состояния и представляют собой те самые нули и единицы, с помощью которых человек общается с компьютером (и наоборот). По мере развития технологий производители размещают на процессорах компьютеров все большее и большее количество транзисторов. Это увеличивает скорость работы и вычислительные возможности техники. Но всему есть физический предел, и мы вплотную к нему приблизились. Если раньше вычислительная мощность производимых процессоров удваивалась примерно каждые два года, то сегодня этот темп падает на глазах. В то же время потребности человечества в вычислениях постоянно растут, опережая развитие электроники.

Но вернемся к Ричарду Фейнману и его теории. Основное отличие квантового компьютера от обычного заключается в представлении информации в его процессоре. Единица информации в обычном компьютере — бит, представляющий собой ноль или единицу. Третьего не дано. Единица хранения информации для квантового компьютера — квантовый бит, или, сокращенно, кубит. Это квантовый объект — вещь, которую гораздо проще описать, чем представить.

Подводим итоги

Участники криптосообщества разделились на два лагеря: одни считают, что квантовый компьютер представляет угрозу рынку цифровых активов, другие не видят в устройстве опасности.

Несмотря на то, что в настоящий момент такие машины функционируют только на государственном уровне, не исключено, что в будущем доступ к ним смогут получить мошенники.

Как вы думаете, что сделал бы главный критик биткоина – Питер Шифф – в случае, если бы в его распоряжении оказался квантовый компьютер? Предлагаем обсудить тему в нашем Telegram-канале.

Дисклеймер

Вся информация, содержащаяся на нашем вебсайте, публикуется на принципах добросовестности и объективности, а также исключительно с ознакомительной целью. Читатель самостоятельно несет полную ответственность за любые действия, совершаемые им на основании информации, полученной на нашем вебсайте.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector