Квантовые компьютеры – объясняем, чем отличаются от классической вычислительной техники

Что такое квантовый компьютер? Разбор

Интересно, а какая сторона у монетки в тот момент, когда она в воздухе? Орел или решка, горит или не горит, открытое или закрытое, 1 или 0. Все это примеры двоичной системы, то есть системы, которая имеет всего два возможных состояния. Все современные процессоры в своем фундаменте основаны именно на этом!

При правильной организации транзисторов и логических схем можно сделать практически все! Или все-таки нет?

Современные процессоры это произведение технологического искусства, за которым стоят многие десятки, а то и сотни лет фундаментальных исследований. И это одни из самых высокотехнологичных устройств в истории человечества! Мы о них уже не раз рассказывали, вспомните хотя бы процесс их создания!

Процессоры постоянно развиваются, мощности растут, количество данных увеличивается, современные дата-центры ворочают данные сотнями петабайт (10 в 15 степени = 1 000 000 000 000 000 байт). Но что если я скажу что на самом деле все наши компьютеры совсем не всесильны!

Например, если мы говорим о BigData (больших данных) то обычным компьютерам могут потребоваться года, а то и тысячи лет для того, чтобы обработать данные, рассчитать нужный вариант и выдать результат.

И тут на сцену выходят квантовые компьютеры. Но что такое квантовые компьютеры на самом деле? Чем они отличаются от обычных? Действительно ли они такие мощные? Будет ли на них CS:GO идти в 100 тысяч ФПС?

Небольшая затравочка — мы вам расскажем, как любой из вас может уже сегодня попробовать воспользоваться квантовым компьютером!

Устраивайтесь поудобнее, наливайте чай, будет интересно.

Что это за «квант»?

Квант – это не физический объект. В физике термин «квант» используется для описания наименьшей возможной части чего-либо. Это может быть «квант мощности», «квант времени» или «квант частицы». Следуя этому пути, мы придём к таким терминам, как «квантовая физика» и «квантовая механика», то есть к областям науки, имеющим дело с минимально возможными взаимодействиями или системами – на уровне атомов и даже отдельных кварков.

Мы подошли к кубиту (квантовому биту), то есть «наименьшей и неделимой единице квантовой информации». В то же время мы подходим к первой точке касания, которая говорит нам о сходствах и различиях в том, как классические компьютеры (с использованием битов) и квантовые компьютеры (с использованием кубитов) выполняют вычисления.

В классических компьютерах каждая часть информации хранится в виде последовательности нулей и единиц. Вкл/выкл – только такую информацию понимают и интерпретируют современные компьютеры, консоли, смартфоны, умные часы и умные телевизоры. То же самое и с операциями, выполняемыми с этой информацией. Просматриваем ли мы фотографии из отпуска, болтаем с друзьями в чате, играем в последнюю игру или выполняем сложные криптографические вычисления – всё происходит в двоичном формате, где либо 0, либо 1, и ничего больше.

Насколько неэффективна эта система, мы можем увидеть, когда подойдем к её пределам. И независимо от того, не хватает ли нам места на смартфоне для нового селфи или ученым приходится неделями создавать математические модели развития пандемии, вина кроется в том, что для этого нужно слишком много нулей и единиц, а места для их хранения и ресурсов для обработки не хватает.

Кубит решает эту проблему! Этот способ хранения информации использует свойства квантовой физики, которые позволяют ему оставаться в суперпозиции. Кубит может принимать любое значение от 0 до 1 – он обладает свойствами всего спектра и может составлять, например, 15 процентов в данный момент и 85 процентов – в следующий. Теоретически это позволяет хранить гораздо больше информации или ускорить вычисления, но также связано с множеством проблем, которые сложно контролировать и даже понять.

Ещё одна особенность квантовых компьютеров, которая позволяет дополнительно масштабировать вычислительную мощность – это использование квантовой запутанности. Это состояние, когда два кубита соединены друг с другом, и всякий раз, когда мы наблюдаем за одним из них, другой будет находиться в точно таком же состоянии. Запутанность позволяет группировать кубиты в ещё более эффективные единицы для записи и обработки информации.

Почему кубиты такие хрупкие?

Реальность такова, что монеты, или кубиты, в конечном итоге прекращают вращаться и коллапсируют в определенное состояние, будь то орел или решка. Цель квантовых вычислений состоит в том, чтобы поддерживать их вращение в суперпозиции в множестве состояний длительное время. Представьте, что у меня на столе крутится монетка и кто-то толкает стол. Монетка может упасть быстрее. Шум, изменение температуры, электрические флуктуации или вибрация – все это может помешать работе кубита и привести к утрате его данных. Один из способов стабилизировать кубиты определенных типов – поддерживать их в холодном состоянии. Наши кубиты работают в холодильнике размером с бочку на 55 галлонов и используют специальный изотоп гелия для охлаждения почти до температуры абсолютного нуля.

Интересно, как будет работать такая штука.

Кванты вместо транзисторов

Подобные эффекты позволяют отойти от логического принципа работы машин Тьюринга, по которому построены все современные компьютеры оперируют логическими понятиями нуля и единицы.

«Все наши машины независимо от их сложности и возможностей параллельной работы фактически является надстройкой над оригинальной машиной Тьюринга, – говорит Фридман. – Это классическая модель, а есть квантовая модель, в которой перескочить с одного состояния на другое – это как будто заглянуть в основы мироздания за его кулисы».

Квантовый компьютер – это очень сложная машина, однако они позволят решать много важных задач. Их решение на обычных суперкомпьютерах потребовало бы времени больше, чем будет существовать вселенная, говорит исследователь и менеджер отдела квантовых вычислений Microsoft Research Криста Свор (Krysta Svore). «Мы думаем, что квантовый компьютер смог бы решить подобные проблемы за значительно более короткое время, возможно несколько лет, дней или даже секунд», – предполагает она.

С какими сложностями столкнулись ученые

Решить, какие из квантовых объектов наиболее целесообразно использовать для новых технологий, чтобы они выступали в роли кубитов, ученые пока что еще не смогли. Они рассматривают варианты с фотонами, электронами и другими частицами. Другая проблема заключается в нестабильности кубитов. Для контроля за этими частицами нужно очень мощное охлаждение.

квантовый компьютер

Как появился суперкомпьютер

В 1980-е годы, когда возникли первые игровые 3D-миры вроде Maze War и Battlezone, перед их создателями встал вопрос, как достоверно отобразить трехмерные объекты на плоском экране. Для этого требовалось просчитать траекторию смещения всех точек проекции на экране, то есть решить простое геометрическое уравнение для каждой точки. Сама по себе задача проста, но проблема заключалась в следующем: проводить вычисления для множества точек стандартными процессорами, которые выполняют операции только последовательно, было бы долго и дорого.

Решение нашлось довольно быстро: пришлось объединить усилия маломощных ядер в одном процессоре. Каждое из этих ядер параллельно с другими решало свою небольшую задачу. Так появились графические сопроцессоры GPU, как бы состоящие из тысячи маленьких компьютеров, способных решать ограниченный класс задач.

Именно системы с чрезвычайно высокой вычислительной производительностью, работающие по принципу «делить задачу на множество более простых подзадач и решать их параллельно», называют суперкомпьютерами.

Прародителем суперкомпьютеров считают Cray-1, который был представлен широкой публике в 1975 году. Первую в своем роде машину получила одна из лабораторий министерства энергетики США: новая вычислительная мощность обеспечила учреждению шестимесячную фору перед остальными организациями, пока инженеры готовили вторую систему.

Современные суперкомпьютеры состоят из нескольких тысяч мощных вычислительных серверов, соединенных друг с другом высокоскоростной магистралью для достижения максимальной производительности при распараллеливании сложной вычислительной задачи.

Сейчас в этой нише лидируют японский Fugaku и американский Summit. Первый, к примеру, способен производить 400 квадриллионов операций в секунду — он примерно в три раза быстрее, чем Summit. По общему количеству вычислительных устройств в государстве лидирует Китай, причем с большим отрывом: из топ-500 суперкомпьютеров 187 функционируют именно там, а в Штатах — 122. Однако половина самых мощных машин установлена в США.

Другими словами, технология давно известна и активно применяется, а победитель этой супергонки напрямую зависит от размера инвестиций и последующего масштабирования. Так, несколько лет назад отечественная разработка «Ломоносов-2» входила в двадцатку лучших, а сейчас она на 199 месте в мировом Топ-500. По общей мощности супервычислителей Россия находится на 18 месте в мире.

И квантовый Давид побеждает классического Голиафа: квантовый компьютер, в котором всего 53 кубита, решает задачу лучше, чем самый современный в мире суперкомпьютер.

То есть какой-то класс задач, который не может быть быстро решен на суперкомпьютерах, уже подвластен квантовым компьютерам маленького масштаба.

— Если бы квантовый компьютер уже был создан и сейчас его натренировали на изобретение лекарств, то пандемия коронавируса переживалась бы легче?

— Мне кажется, что квантовые технологии могли бы ускорить этот процесс [процесс создания или обнаружения среди существующих препарата, эффективного против COVID-19. — Прим. ред.]. Я слышал, что потенциальные лекарства искали с помощью ИИ. Квантовый компьютер, несомненно, в этом помог бы.

— В первую очередь эти компьютеры нужны тем, кто занимается большими данными, верно?

— Большими данными, а также сложными вычислительными задачами, моделированием предсказательной динамики сложных систем, в которых большую роль играют квантовые эффекты.

Принцип работы КК

Привычная схема работы компьютеров, ноутбуков, смартфонов или планшетов, использующая цифровой принцип, базируется на использовании классических алгоритмов, что кардинально отличается от принципа действия квантового компьютера. Так, обычный компьютер покажет одинаковый результат вне зависимости от того, сколько раз запустить вычисление, варианты просчитываются последовательно.

Принцип работы КК

Квантовый компьютер использует совершенно иной – вероятностный принцип работы. В определённом смысле система уже содержит все возможные варианты решений. Результат вычислений – это наиболее вероятностный ответ, а не однозначный, при этом при каждом последующем запуске квантового алгоритма вероятность получения правильного ответа растёт, а значит, спустя 3–4 быстрых прогона можно быть уверенным, что мы пришли к верному решению, например, ключу шифрования.

В квантовых системах, применяющих в своей работе кубиты, с ростом числа частиц растёт в геометрической прогрессии и количество обрабатываемых одновременно значений.

Говоря о том, как работает квантовый компьютер, стоит упомянуть и о связи кубитов. При наличии нескольких кубитов в системе изменение одного повлечёт также изменение остальных частиц. Вычислительная мощность достигается путём параллельных расчётов.

Несмотря на многомиллионные вложения, развиваются квантовые технологии достаточно медленно. Это связано с большим количеством трудностей, с которыми пришлось столкнуться учёным в процессе исследований, включая необходимость построения низкотемпературных саркофагов с максимальной изоляцией камеры с процессором от любых возможных внешних воздействий для сохранения квантовых свойств системы. Кроме того, перед исследователями стоит задача по решению ошибок, поскольку квантовые процессы и вычисления имеют вероятностную природу и не могут быть стопроцентно верными.

Построение стабильных систем к тому же далеко от идеала, а при реализации квантового компьютера на физическом уровне применяется несколько вариантов решений с использованием разных технологий. Так что создание полноценного универсального квантового компьютера всё ещё в будущем, хоть и не таком далёком, как казалось ещё пять лет назад. Его созданием занимаются крупнейшие компании, такие как IBM, Google, Intel, Microsoft, внёсшие большой вклад в развитие технологий, а также некоторые государства, для которых данный вопрос имеет стратегическое значение.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector