Квантовые компьютеры — что это такое? Принцип работы и фото квантового компьютера

Как работает квантовый компьютер: простыми словами о будущем

Пару лет назад, во время пресс-конференции в канадском Институте теоретической физики в Ватерлоо, один из журналистов решил подшутить над канадским премьер-министром Джастином Трюдо, спросив его о квантовых компьютерах.

Пару лет назад, во время пресс-конференции в канадском Институте теоретической физики в Ватерлоо, один из журналистов решил подшутить над канадским премьер-министром Джастином Трюдо, спросив его о квантовых компьютерах.

Трюдо, нимало не смутившись, в двух словах объяснил принцип работы этих устройств, что сделало его в глазах прогрессивной общественности настоящей звездой. Почему именно этот вопрос журналист посчитал наиболее каверзным? Действительно ли можно разобраться в том, что такое квантовые вычисления и квантовая механика, не будучи специалистом? Не будем утверждать, что это легкая задача, но давайте попробуем. Итак, квантовый компьютер для чайников.

Принцип работы квантового компьютера

Чтобы понимать, как работает новый процессор, необходимо иметь хотя бы поверхностные знания принципов квантовой механики. Нет смысла приводить здесь математические раскладки и выводить формулы. Обывателю достаточно ознакомиться с тремя отличительными особенностями квантовой механики:

  • Состояние или положение частицы определяется только с какой-либо долей вероятности.
  • Если частица может иметь несколько состояний, то она и находится сразу во всех возможных состояниях. Это принцип суперпозиции.
  • Процесс измерения состояния частицы приводит к исчезновению суперпозиции. Характерно, что полученное измерением знание о состоянии частицы отличается от реального состояния частицы до проведения замеров.

С точки зрения здравого смысла – полная бессмыслица. В нашем обычном мире эти принципы можно представить следующим образом: дверь в комнату закрыта, и в то же время открыта. Закрыта и открыта одновременно.

что такое квантовые компьютеры

В этом и заключено разительное отличие вычислений. Обычный процессор оперирует в своих действиях бинарным кодом. Компьютерные биты могут находиться только в одном состоянии – иметь логическое значение 0 или 1. Квантовые компьютеры оперируют кубитами, которые могут иметь логическое значение 0, 1, 0 и 1 сразу. Для решения определённых задач они будут иметь многомиллионное преимущество по сравнению с традиционными вычислительными машинами. Сегодня уже есть десятки описаний алгоритмов работы. Программисты создают особый программный код, который сможет работать по новым принципам вычислений.

Как работает кубит

Бит и кубит

В стандартных компьютерах информация представлена двоичным кодом. Биты для хранения и обработки данных принимают значения 0 или 1. Транзисторы выполняют математические операции, а на экране возникает результат преобразования двоичного кода.

Кубит – единица хранения информации в квантовом компьютере. Кроме 0 и 1, он может находиться в неопределенном пограничном состоянии, называемом суперпозицией. Для получения кубита нужно взять один атом, зафиксировать и стабилизировать его, оградив от посторонних излучений, связать с другим атомом.

Чем больше таких элементов соединено между собой, тем стабильнее работает система. Чтобы превзойти классический суперкомпьютер, нужно связать более 49 кубитов. Сделать это очень сложно: атомы, независимо от используемых материалов, всегда нестабильны.

Переопределение безопасности

Скорость квантового компьютера также является серьезной проблемой в области шифрования и криптографии. Современные системы финансовой безопасности в мире основаны на факторизации больших чисел (алгоритмы RSA или DSA), которые буквально не могут быть взломаны обычными компьютерами в течение жизни Земли. Тем не менее квантовый компьютер может рассчитывать числа в разумный период времени.

С другой стороны, квантовые компьютеры смогут обеспечить небьющиеся функции безопасности. Они могут блокировать важные данные (например, онлайн-транзакции, учетные записи электронной почты) с гораздо лучшим шифрованием.
Многие алгоритмы были разработаны для квантовых компьютеров — наиболее известными являются алгоритм Гровера для поиска в неструктурированной базе данных и алгоритм Шора для факторизации больших чисел.

Как устроен компьютер будущего

Теперь рассмотрим подробнее, из чего состоит высокотехнологичная система. Как мы уже выяснили, минимальной единицей информации в обычном компьютере является бит, принимающий значение 1 или 0 (включён или выключен), в квантовом компьютере – это кубиты, которые могут принимать все значения. При этом квантовые частицы зависят от измерения, что означает отсутствие информации о кубите до момента его измерения, сам процесс измерения также оказывает влияние на значение квантового бита, что может показаться странным, но дело обстоит именно так.

Благодаря данному свойству кубитов (одновременное пребывание сразу во всех состояниях), до того времени, пока частица не была измерена, компьютер мгновенно переберёт вероятные варианты решения ввиду имеющейся связи между кубитами. Таким образом, решение известно сразу же, как только были введены исходные данные, то есть суперпозиция обуславливает параллельность вычислений, ускоряющую функционирование алгоритмов в разы.

Устройство квантового компьютера включает:

Для работы между атомами обеспечивается квантовая связь, причём, чем больше связей образуют кубиты, тем меньшей будет стабильность системы. Для квантового превосходства над стандартным компьютером потребуется не менее 49 кубитов, а в таком случае устойчивость системы уже под вопросом. Когда создаются многочисленные зависимости, повлиять на них могут любые внешние воздействия.

Ввиду хрупкости связей КК, состоящий из нескольких основных уровней, включает охлаждение атомов практически до абсолютного нуля, что позволяет оградить от внешних процессов, по этой причине устройство с предусмотренной защитой квантового процессора занимает большой объём места.

Квантовые компьютеры изменят мир и общество

Квантовые компьютеры способны привести к резкому прорыву в открытии и разработке новых лекарств, давая ученым и врачам возможность решать задачи, которые невозможно решить сейчас. Специалисты швейцарской фармацевтической компании Roche надеются, что квантовое моделирование ускорит разработку вакцин для защиты от инфекций, подобных COVID-19, лекарств от гриппа, рака и даже болезни Альцгеймера. Квантовое моделирование может заменить лабораторные эксперименты, чем снизит стоимость исследований и сведет к минимуму потребности в тестировании препаратов с участием животных и людей.

Квантовые компьютеры потенциально могут ускорить создание новых катализаторов для утилизации СО2 из воздуха или отработанных газов, которые не только сократят выбросы, но и позволят получать ценные нефтехимические продукты.

С помощью «квантового отжига» можно рассчитать траекторию движения каждой частицы воздушного потока над новым типом крыла, что может привести к изобретению новых технологий в аэродинамике. Подобный принцип можно использовать для решения задач оптимизации трафика в городе или потока данных в сети.

Ожидаются изменения и в финансовом секторе, где квантовые вычисления поспособствуют более глубокой аналитике и новым торговым возможностям, например, ускорению транзакций и обмена данными. Многие крупные банки, включая JP Morgan Chase, Goldman Sachs, BBVA Bank, Barclays, уже экспериментируют с квантовыми технологиями, чтобы оценить их роль в ближайшем будущем. Экспоненциально ускоренные вычисления могут иметь огромное значение для финансового моделирования, что изменит оценку инвестиционных проектов и повлияет на бизнес-стратегии. Компании, которые смогут позволить себе квантовый компьютер, обретут огромное конкурентное преимущество.

Источником дохода для компаний, занимающихся квантовыми вычислениями, станут услуги удаленного доступа к их ресурсам. Хотя в будущем квантовые компьютеры получат широкое распространение, в настоящее время заказчики более склонны к тому, чтобы выполнять квантовые вычисления через облако, а не совершать рискованные инвестиции в дорогостоящее оборудование. Параллельно с этим будет расти предложение программных приложений для квантовых компьютеров, инструменты для разработки. Появятся специалисты, которые будут развивать инфраструктуру, используя мощь двух технологий — квантовых вычислений и искусственного интеллекта, изучение которых станет неотъемлемой частью учебной программы.

В России в рамках создания Национальной квантовой лаборатории на первом этапе планируют запустить образовательные проекты и заняться подготовкой высококвалифицированных кадров. Планируется создать устойчивую экосистему квантовых вычислений и вывести ее на международный уровень, что объединит представителей науки, бизнеса и инноваций. Все это поможет нашей стране достигнуть высокого уровня в этой сфере и значительно повысить скорость вычислений и решения сложнейших задач науки.

Квантовые компьютеры (перевод с сайта Explaining Computers)

Квантовые вычисления — это быстро развивающаяся область компьютерных исследований, коммерческое применение которой ожидается в ближайшее время. К этому времени квантовые компьютеры превзойдут традиционные компьютеры в определённых задачах, к которым относятся молекулярное и материальное моделирование, оптимизация логистики, финансовое моделирование, криптография и обучение искусственного интелекта.

Основы квантовых вычислений

Традиционные компьютеры построены из кремниевых микросхем, содержащих миллионы или миллиарды миниатюрных транзисторов. Каждый из них может быть включен — в понимании машины это состояние «0» или «1». Впоследствии компьютер хранит и обрабатывают данные, используя «двоичные числа» или «биты».

Квантовые компьютеры работают с «квантовыми битами» или «кубитами». Они могут поддерживаться аппаратно разными способами — например, с помощью квантово-механических свойств сверхпроводящих электрических цепей или отдельных захваченных ионов.

Кубиты могут существовать более чем в одном состоянии или «суперпозиции» в один и тот же момент времени. Что позволяет кубиту принимать значение «1», «0» или оба значения одновременно. Это позволяет квантовому компьютеру обрабатывать гораздо большее количество данных, чем классический компьютер, и выполнять массовую параллельную обработку. Это также означает, что каждый кубит, добавленный в квантовый компьютер, экспоненциально увеличивает его мощность.

Большинство людей теряется, когда слышит про свойства кубита. Подброшенная монета не может выпадать одновременно орлом и решкой. И всё же, квантовому состоянию кубита под силу что-то подобное. Поэтому неудивительно, что известный физик-ядерщик Нильс Бор однажды заявил: «Всякий, кого не шокирует квантовая теория, просто её не понимает!»

Помимо суперпозиций, кубиты могут «запутываться». «Запутанность» — ещё одно ключевое квантово-механическое свойство, означающее, что состояние одного кубита может зависеть от состояния другого. Это означает, что наблюдение за одним кубитом может выявить состояние его ненаблюдаемой пары.

Создавать кубиты и управлять ими очень сложно. Многие из сегодняшних экспериментальных квантовых процессоров используют квантовые явления, возникающие в сверхпроводящих материалах, и, следовательно, нуждаются в охлаждении почти до абсолютного нуля (около минус 272 градусов Цельсия). Также требуется защита от фонового шума, и даже в этом случае выполнение вычислений с использованием кубитов потребуют исправления ошибок. Основной задачей квантовых вычислений является создание отказоустойчивой машины.

Квантовые первопроходцы

К компаниям, которые в настоящее время разрабатывают оборудование для квантовых компьютеров, относятся: IBM, Alibaba, Microsoft, Google, Intel, D-Wave Systems, Quantum Circuits, IonQ, Honeywell, Xanadu и Rigetti. Многие из них работают совместно с исследовательскими группами крупных университетов, и все они продолжают добиваться значительных успехов. Дальше приводится обзор работы каждой из этих компаний.

IBM работает над созданием квантового компьютера уже более 35 лет. Она добилась значительного прогресса с несколькими работающими машинами. Согласно веб-сайту IBM-Q: «Сегодня квантовые вычисления — это игровая площадка для исследователей, но через пять лет они станут мейнстримом». Через пять лет эффект квантовых вычислений выйдет за рамки исследовательской лаборатории. Он будет широко использоваться новыми категориями профессионалов и разработчиков, которые используют этот новый метод вычислений для решения проблем, которые когда-то считались неразрешимыми».

В 2016 году IBM запустила сайт под названием IBM Q Experience, который показал 5-кубитный квантовый компьютер всему интернету. С этого времени, к нему присоединились вторая машина на 5 кубитов и машина на 16 кубитов, обе из которых доступны для экспериментов. Чтобы помочь тем, кто хочет узнать о квантовых вычислениях и принять участие в их разработке, IBM предлагает программную платформу для квантовых вычислений с открытым исходным кодом под названием Qiskit.

В ноябре 2017 года IBM объявила, что к её квантовому облаку добавляются две 20-кубитные машины. Их могут использовать клиенты, которые являются зарегистрированными членами IBM Q Network. IBM описывает это как «всемирное сообщество ведущих компаний, стартапов, академических институтов и национальных исследовательских лабораторий из списка Fortune 500, работающих с IBM над продвижением квантовых вычислений и изучением практических приложений для бизнеса и науки».

Также в ноябре 2017 года IBM объявила что сконструировала квантовый процессор на 50 кубитов, который на тот момент считался самым мощным квантовым оборудованием.

50-кубитный квантовый компьютер IBM

В январе 2019 года IBM объявила о выпуске своей IBM Q System One как «первой в мире интегрированной универсальной системы приближенных квантовых вычислений, разработанной для научного и коммерческого использования». Эта модульная и относительно компактная система предназначена для использования вне лабораторных условий. Вы можете узнать больше о IBM Q System One в этом пресс-релизе.

Google

Ещё один технологический гигант, который усердно работает над тем, чтобы квантовые вычисления стали реальностью, — это Google, у которой есть лаборатория квантового ИИ. В марте 2017 года инженеры Масуд Мохсени, Питер Рид и Хартмут Невен, которые работают на этом объекте, опубликовали статью в Nature. В ней они рассказали, что квантовые вычисления возможны на относительно небольших устройствах, которые появятся в течение следующих пяти лет. Это подтверждает взгляды IBM на сроки появления коммерческих квантовых вычислений.

На раннем этапе развития квантовых вычислений компания Google использовала машину от канадской компании D-Wave Systems. Однако сейчас компания активно разрабатывает собственное оборудование, а в марте 2018 года анонсировала новый 72-кубитный квантовый процессор под названием Bristlecone.

В июне 2019 года директор лаборатории квантового искусственного интеллекта Google Хартмут Невен отчитался, что мощность их квантовых процессоров в настоящее время растет вдвое экспоненциально. Это было названо «законом Невана» и предполагает, что мы можем достичь точки квантового превосходства, когда квантовый компьютер может превзойти любой классический компьютер к концу 2019 года.

В октябре 2019 года команда инженеров Google опубликовала в Nature статью, в которой утверждала, что достигла квантового превосходства. В частности, учёные Google использовали квантовый процессор под названием Sycamore для выборки выходного сигнала псевдослучайной квантовой схемы. Sycamore потребовалось около 200 секунд, чтобы выполнить выборку одного экземпляра схемы миллион раз. Для сравнения, команда Google подсчитала, что классическому суперкомпьютеру потребуется около 10 000 лет для выполнения тех же вычислений. Далее команда пришла к выводу: «Квантовые процессоры на основе сверхпроводящих кубитов теперь могут выполнять вычисления за пределами досягаемости самых быстрых классических суперкомпьютеров, доступных сегодня. Этот эксперимент знаменует собой первое вычисление, которое может быть выполнено только на квантовом процессоре. Таким образом, квантовые процессоры достигли режима квантового превосходства».

Это откровение инженеров Google было большой новостью, но вскоре вызвало споры. IBM опубликовала сообщение в блоге, сказав, что вычисления в эксперименте Google могут быть выполнены на классическом компьютере за два с половиной дня, а не за 10 000 лет. И по утверждению IBM: «Поскольку первоначальное значение термина ‘квантовое превосходство’, предложенное Джоном Прескиллом в 2012 году, заключалось в описании точки, в которой квантовые компьютеры могут делать то, что не могут классические компьютеры — эта граница ещё не преодолена».

Alibaba

В Китае главным интернет-гигантом является Alibaba, а не Google. А в июле 2015 года они объединилась с Китайской Академией Наук, чтобы сформировать «Лабораторию квантовых вычислений CAS — Alibaba». Как пояснил профессор Цзянвэй Пан, их цель состоит в том, чтобы «провести передовые исследования систем, которые кажутся наиболее многообещающими для реализации практических приложений квантовых вычислений, а также разрушить узкие места закона Мура и классических вычислений». Вы можете посетить сайт лаборатории здесь.

Как и IBM, Alibaba сделала экспериментальный квантовый компьютер доступным в Интернете. В частности, в марте 2018 года китайский гигант электронного бизнеса запустил своё «сверхпроводящее облако квантовых вычислений», чтобы обеспечить доступ к 11-кубитному квантовому компьютеру. Он был разработан с Китайской Академией Наук и позволяет пользователям запускать квантовые программы и загружать результаты.

Microsoft

Как и следовало ожидать, Microsoft тоже заинтересована в квантовых вычислениях и работает с некоторыми ведущими учёными и университетами мира. С этой целью Microsoft создала несколько лабораторий «Station Q», например лабораторию в Калифорнийском университете. В феврале 2019 года компания также анонсировала Microsoft Quantum Network, чтобы объединить вместе все партнёрские коалиции.

Ключевым элементом стратегии Microsoft является разработка квантовых компьютеров на основе «топологических кубитов», которые, по мнению компании, будут менее подвержены ошибкам (следовательно, для исправления ошибок потребуется меньшее количество системных ресурсов). Microsoft также считает, что топологические кубиты будет легче масштабировать для коммерческого применения. Согласно статье в Computer Weekly за май 2018 года, вице-президент Microsoft, отвечающий за квантовые вычисления, считает, что коммерческие квантовые компьютеры могут появиться на их облачной платформе Azure всего через пять лет.

Что касается программного обеспечения, то в декабре 2017 года Microsoft выпустила предварительную версию своего инструмента разработчика вычислительной техники. Его можно загрузить бесплатно, он включает язык программирования под названием Q# и симулятор квантовых вычислений. В мае 2019 года Microsoft сообщила, что собирается открыть исходный код инструмента разработчика. А в мае 2020 года компания анонсировала свой сервис облачных вычислений Azure Quantum.

Intel

Intel, как ведущий производитель микропроцессоров в мире, тоже работает над созданием микросхем для квантовых вычислений. Компания применяет два различных подхода. Одно из этих направлений проводится совместно с ведущим голландским пионером квантовых вычислений QuTech. 17 ноября 2017 года Intel объявила о поставке своему партнеру в Нидерландах тестового чипа на 17 кубитов. Затем, в январе 2018 года на выставке CES, компания объявила о поставке тестового квантового процессора на 49 кубитов под названием Tangle Lake.

Второе направление исследований Intel в области квантовых вычислений проводится исключительно внутри компании и включает в себя создание процессоров на основе технологии, называемой «спиновой кубит». Это важное нововведение, поскольку чипы спиновых кубитов производятся с использованием традиционных методов изготовления кремния Intel. В июне 2018 года Intel сообщила, что начала тестирование 26-спинового кубитного чипа.

Спиновые кубиты Intel имеют диаметр всего около 50 нанометров, или 1/1500 ширины человеческого волоса. Это означает, что, возможно, через десять лет Intel сможет производить крошечные квантовые процессоры, содержащие тысячи или миллионы кубитов. В отличие от обычных процессоров, их нужно охлаждать почти до абсолютного нуля. Но потенциал поистине захватывающий. Согласно разделу сайта Intel, посвященному квантовым вычислениям, компания нацелена на производство квантовых процессоров в течение десяти лет и ожидает, что технология начнет входить в свою «коммерческую фазу» примерно в 2025 году.

D-Wave Systems

D-Wave Systems — пионер квантовых вычислений, базирующийся в Канаде, и ещё в 2007 году продемонстрировавший 16-кубитный квантовый компьютер. В 2011 году компания продала 128-кубитную машину D-Wave One за 10 миллионов долларов американской военно-промышленной корпорации Lockheed Martin. В 2013 году — 512-кубитные D-Wave Two ведомству NASA и компании Google. К 2015 году D-Wave преодолела барьер в 1000 кубитов со своим D-Wave 2X, а в январе 2017 года продала свою первую 2000-кубитную машину D-Wave 2000Q фирме, специализирующейся в кибербезопасности, Temporal Defense Systems.

Читая этот список достижений, вы, возможно, пришли к выводу, что D-Wave должен быть ведущим производителем квантовых компьютеров в мире. В конце концов, это единственная компания, которая торгует такими машинами. Тем не менее, работа компании остаётся спорной. Это потому, что их оборудование основано на «адиабатическом» процессе, называемом «квантовый отжиг», который другие пионеры отвергли как «ограничительный» и «тупиковый». IBM, например, использует подход к квантовым вычислениям «на основе затвора», который позволяет ей управлять кубитами аналогично тому, как транзистор управляет потоком электронов в обычном микропроцессоре. Но в системе D-Wave такого контроля нет.

Вместо этого квантовый компьютер D-Wave использует факт того, что все физические системы стремятся к состояниям с минимальной энергией. Так, например, если вы заварите чашку чая и отлучитесь по делам — когда вы вернетесь, она будет холодной, потому что содержимое стремится к минимальному энергетическому состоянию. Кубиты в системе D-Wave также этому подвержены, и поэтому компания использует своё оборудование для решения проблем оптимизации, которые могут быть выражены как «проблемы минимизации энергии». Это ограничивает в возможностях, но всё же позволяет аппаратному обеспечению выполнять определенные алгоритмы намного быстрее, чем классический компьютер. Вы можете ознакомиться с видео, в котором D-Wave объясняет свой подход к квантовым вычислениям.

В августе 2016 года в статье Physical Review X сообщалось, что некоторые алгоритмы работают до 100 миллионов раз быстрее на D-Wave 2X, чем на одноядерном классическом процессоре. Одним из авторов этого исследования оказался технический директор Google. Всё это говорит о том, что мнение о ценности работы D-Wave для развития квантовых вычислений остаётся спорным.

Компания продолжает продвигать свои квантовые компьютеры. В октябре 2018 года D-Wave запустила облачную квантовую среду приложений под названием Leap. Она обеспечивает доступ в реальном времени к квантовому компьютеру D-Wave 2000Q, а в марте 2019 года доступ был расширен, чтобы предоставить такую возможность Японии и всей Европе.

Rigetti

Ещё один игрок в области квантовых вычислений — это стартап под названием Rigetti. В компании уже работает более 120 сотрудников, и они собрали 19-кубитный квантовый компьютер доступный онлайн через свою среду разработки под названием Forest.

Quantum Circuits

Другой стартап — Quantum Circuits, основанный ведущим профессором квантовых вычислений Робертом Шёлкопфом и другими коллегами из Йельского университета. Компания привлекла 18 миллионов долларов венчурного капитала и планирует «победить гигантов компьютерной индустрии» в гонке за создание жизнеспособного квантового компьютера.

IonQ — специализируется в области квантовых вычислений с захваченными ионами. Компания утверждает, что её технология «сочетает в себе непревзойденную физическую производительность, идеальную репликацию кубитов, возможность подключения к оптическим сетям и высокооптимизированные алгоритмы», чтобы «создать квантовый компьютер, который является столь же масштабируемым, сколь и мощным и который будет поддерживать широкий спектр приложений в самых разных отраслях». Если вы хотите узнать больше о квантовых вычислениях, на сайте IonQ есть отличное учебное пособие.

Xanadu

Xanadu разрабатывает фотонные квантовые вычисления, интегрируя «квантовые кремниевые фотонные чипы в существующее оборудование для создания полнофункциональных квантовых вычислений». Как отмечает компания, по сравнению с другими технологиями кубитов, «фотоны очень стабильны и почти не подвержены влиянию случайного шума от тепла. Мы используем фотонные чипы для генерации, управления и измерения фотонов способами, обеспечивающими чрезвычайно быстрые вычисления».

Honeywell

Еще одна компания, которая применяет способ квантовых вычислений с захваченными ионами, является Honeywell. У компании огромный опыт в области бизнес-вычислений. В июне 2020 года Honeywell объявила о создании самого высокопроизводительного квантового компьютера в мире. Остальные компании отнеслись к этому скептически. Но, тем не менее, это ещё одна важная разработка — особенно потому, что как стало известно, американский финансовый холдинг JPMorgan Chase уже экспериментирует со этой системой для разработки приложений финансовых услуг, включая обнаружение мошенничества и торговлю под управлением ИИ.

Amazon

Amazon не объявила о разработке аппаратного или программного обеспечения для квантовых вычислений. Однако, 2 декабря 2019 года гигант запустил ряд квантовых сервисов Amazon Web Services. К ним относится Amazon Bracket, который позволяет учёным, исследователям и разработчикам начинать эксперименты с квантовыми компьютерами от нескольких поставщиков оборудования. В частности, клиенты могут получить доступ к оборудованию от Rigetti, Ion-Q и D-Wave Systems, что означает, что они могут экспериментировать с системами, основанными на трёх различных технологиях кубитов.

Помимо Bracket, Amazon также запустила лабораторию Amazon Quantum Solutions Lab. Она предназначена, чтобы помочь компаниям «подготовиться к квантовым вычислениям», позволяя им работать с ведущими экспертами. Таким образом, ключевая вещь, которую Amazon делает со своими предложениями по квантовым вычислениям, — это действовать в качестве облачного брокера. То есть стать посредником между производителями квантовых компьютеров и теми, кто захочет воспользоваться их мощностями.

Разработчики программного обеспечения для квантовых компьютеров

Даже лучшее всего оборудованный квантовый компьютер не сможет использоваться без соответствующего программного обеспечения, и многие из производителей этих машин разрабатывают собственное. Тем не менее, количество стороннего ПО под квантовые компьютеры постоянно растет.

1QBit

1QBit сотрудничает с крупными компаниями и «ведущими поставщиками оборудования для решения отраслевых задач в области оптимизации, моделирования и машинного обучения». Компания разрабатывает программное обеспечение как для классических, так и для квантовых процессоров.

Cambridge Quantum Computing разрабатывает ПО для квантовых компьютеров под решения «самых интригующих задач» в таких областях, как квантовая химия, квантовое машинное обучение и квантовая кибербезопасность. В число клиентов входят компании, входящие в «некоторые из крупнейших в мире химических, энергетических, финансовых и материаловедческих организаций», которые пробуют использовать возможности квантовых вычислений.

QC Ware

QC Ware разрабатывает «корпоративное программное обеспечение и услуги для квантовых вычислений» с клиентами, включая Airbus, BMW и Goldman Sachs, и партнерами по оборудованию, включая AWS, D-Wave Systems, Google, IBM, Microsoft и Rigetti.

QSimulate

QSimulate разрабатывает ПО, чтобы «использовать возможности количественного моделирования для решения насущных проблем в фармацевтической и химической областях».

Rahko

Rahko создаёт ПО, которое предназначено для использования квантового машинного обучения (квантового ИИ) под решения задач квантовой химии.

Zapata

Zapata работает со своими клиентами над разработкой ПО для квантовых компьютеров под решения сложных вычислительных задач в таких областях, как химия, финансы, логистика, фармацевтика, машиностроение и материалы.

Пользователи приложений квантовых компьютеров

Приложения для квантовых компьютеров включают молекулярное моделирование (также известное как квантовая химия), оптимизацию логистики, финансовое моделирование, криптографию и обучение искусственного интеллекта. Некоторые крупные предприятия уже активно изучают — что именно квантовые машины смогут сделать для их исследований и разработок, продуктов и услуг, а также их чистой прибыли. Я приведу несколько примеров.

Daimler работает как с IBM, так и с Google, чтобы исследовать, как квантовые компьютеры могут использоваться в логистике, чтобы оптимизировать маршруты доставки автомобилей или поток запчастей через фабрики. Компания также изучает, как квантовые компьютеры можно использовать для моделирования химических структур и реакций внутри батарей, чтобы помочь в усовершенствовании электромобилей.

Другой автомобильный гигант — Volkswagen работает с Google и с D-Wave Systems, чтобы применить квантовые компьютеры в решении проблем оптимизации транспортного потока и в разработке лучших аккумуляторов.

В финансовом секторе, JPMorgan работает с IBM, чтобы изучить, как квантовые компьютеры смогут помочь в разработке торговых стратегий, оптимизации портфеля, ценообразования на активы и анализа рисков. Другой финансовый конгломерат — Barclays участвует в сети IBM Q Network, чтобы выяснить, можно ли использовать квантовые компьютеры для оптимизации расчётов по крупным пакетам финансовых транзакций.

В 2011 году аэрокосмический гигант Lockheed Martin стал первым покупателем квантового компьютера, произведенного D-Wave Systems, и продолжил изучение возможности использования этой технологии для приложений, включая управление воздушным движением и проверку системы. Airbus аналогичным образом исследует, как квантовые компьютеры могут ускорить его исследовательскую деятельность, и вложил средства в компанию QC Ware, производящую программное обеспечение для квантовых машин.

Тем временем Accenture Labs и биотехнологическая компания Biogen сотрудничают с 1QBit, исследуя, как можно ускорить открытие лекарств, применив квантовые компьютеры для молекулярных сравнений. В сентябре 2017 года IBM использовала своё 7-кубитное оборудование для моделирования структуры трёхатомной молекулы гидрида бериллия. В октябре 2017 года Google и Rigetti также анонсировали OpenFermion, программу для моделирования химических процессов на квантовом компьютере.

Квантовое будущее

Я надеюсь, что эта статья продемонстрировала вам, как квантовые вычисления довольно быстро превращаются из фантазий в реальность. Разумно предположить, что в 20-х годах из облака будут доступны квантовые суперкомпьютеры, которым найдут практичное применение и это будет стоить недорого. Вполне возможно, что через десять лет основные службы интернет-поиска и облачного ИИ будут использовать возможности квантовых машин, а большинство пользователей этого и не осознают.

Для тех, кто хочет узнать больше, приведу несколько избранных источников для получения дополнительной информации:

  • Кевин Хартнет «Рассвет квантовых вычислений», Quanta Magazine, 18 июня 2019 г.
  • Статья Масуд Мохсени 2017 года «Коммерциализация ранних квантовых технологий»
  • Статья Джона Прескилла «Квантовые вычисления в эпоху NISQ и за её пределами» от 2018 года
  • Сайт IonQ Technology D-Wave Systems, объясняющее квантовый отжиг IBM-Q квантовых вычислений Microsoft Google Quantum AI Intel Quantum Computing D-Wave Systems Quantum Circuits HQS Quantum Simulations

В книге «Digital Genesis» Кристофера Барнатта — автора этой статьи и сайта explainingcomputers.com, вы сможете прочитать о квантовых вычислениях и многом другом, связанном с будущими вычислительными разработками, например органическими компьютерами.

Об авторе

Работаю дворником, в свободное время обустраиваю квартиру, люблю видеоигры и аниме, ну и про тренировки не забываю.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector